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Emerging research on epigenetics has resulted in many novel discoveries in
atherosclerosis (AS), an inflammaging-associated disease characterized by chronic
inflammation primarily driven by macrophages. The bulk of evidence has demonstrated
the central role of epigenetic machinery in macrophage polarization to pro- (M1-
like) or anti-inflammatory (M2-like) phenotype. An increasing number of epigenetic
alterations and their modifiers involved in reprogramming macrophages by regulating
DNA methylation or histone modifications (e.g., methylation, acetylation, and recently
lactylation) have been identified. They may act to determine or skew the direction
of macrophage polarization in AS lesions, thereby representing a promising target.
Here we describe the current understanding of the epigenetic machinery involving
macrophage polarization, to shed light on chronic inflammation-driving onset and
progression of inflammaging-associated diseases, using AS as a prototypic example,
and discuss the challenge for developing effective therapies targeting the epigenetic
modifiers against these diseases, particularly highlighting a potential strategy based on
epigenetically-governed repolarization from M1-like to M2-like phenotype.

Keywords: macrophage, polarization, epigenetic, reprogramming, chronic inflammation, atherosclerosis,
therapeutic target

INTRODUCTION

Atherosclerosis (AS) is known as one of inflammaging-associated diseases (IAADs) that includes
more than 100 different diseases involving almost all human organs (1). AS-related acute
cardiovascular or cerebrovascular events (e.g., heart attack and ischemic stroke) currently
represent the leading causes of death worldwide (2). The common feature of IAADs is sustained
inflammation due to impaired transformation from inflammation into resolution, an event driven
primarily by the disproportionate polarization of macrophages (3–5). For example, as the most
prevalent type of immune cells in AS lesions, macrophages play an essential role in orchestrating the
entire process of AS till plaque rupture (4), thus named AS-associated macrophages (ASAM). High
plasticity enables macrophages to polarize toward pro- (M1-like) and anti-inflammatory (M2-like)
phenotype in response to different environmental cues (6), which is controlled at the transcriptional
level via epigenetic modifications (known as marks or codes) of DNA and histones regulated
by various epigenetic modifiers (7), including writers that add epigenetic marks onto DNA or
histones, erasers that remove epigenetic marks from DNA or histones, and readers that recognize
epigenetic marks and facilitate gene transcription. Despite recent discoveries on the essential roles
of epigenetics in inflammation and immunity, the functional epigenetic investigation in IAADs
is just emerging (8). Here we present the current understanding of the epigenetic mechanisms
regulating macrophage polarization and functions, and discuss a novel strategy targeting epigenetic
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machinery for macrophage repolarization in IAADs such as AS.
To avoid the confusion about the terms of various macrophage
phenotypes due to the diversity of nomenclature (9), the terms
M1 and M2, unless otherwise specified, used in this article
only refer to macrophages with pro-inflammatory and anti-
inflammatory/pro-resolving properties, respectively.

ATHEROSCLEROSIS – A DISEASE
DRIVEN BY NON-RESOLVING
INFLAMMATION

A widely accepted concept is that M1-like ASAMs play a pro-
AS role by initiating and accelerating inflammation; by contrast,
M2-like ASAMs act against AS by stopping inflammation
and promoting resolution. Moreover, M1-like ASAMs promote
necrosis and thin the protective fibrous cap by secreting proteases
(e.g., matrix metallopeptidases such as MMP2 and MMP9),
leading to plaque rupture and acute thrombosis. M2-like ASAMs
remove apoptotic or dead cells through efferocytosis, produce
collagen to thicken the fibrous cap, and secrete growth factors
to promote tissue repair, thereby facilitating plaque stabilization
or even regression (10). Indeed, M1-like ASAMs are often found
in the rupture-prone plaques, while M2-like ASAMs usually
appear in more stable plaques and away from the lipid core of
the lesions (11). AS patients display a heavily-imbalanced ratio
of M1-like to M2-like phenotype, which correlates with disease
severity (12). The concept that AS is an inflammatory disease
has further been supported by the recent identification of various
inflammatory (M1-like) phenotypes of ASAMs at single-cell level
in murine and human AS plaques (13–15). However, current
anti-AS therapies, including cholesterol-lowering agents (e.g.,
statins), angiotension-converting enzyme inhibitors, β-blockers,
and aspirin, have little direct effect on macrophage polarization
because they do not specifically target macrophages.

The principle behind the development of an effective anti-
AS therapy is to reduce and stabilize AS lesions to prevent
disease progression and fatal complications such as myocardial
infarction (MI) and stroke. Over the past decades, tremendous
efforts have been made in developing anti-inflammatory therapy
to reduce inflammation (16), including blocking inflammatory
cell recruitment (e.g., by antagonists of chemokine receptors or
adhesion molecules) (17), stabilizing plaques (e.g., by inhibitors
of MMPs), and neutralizing pro-inflammatory factors (e.g., by
monoclonal antibodies against various cytokines or chemokines)
(18). However, almost all of them have failed at preclinical or
early clinical phases. Notably, a large randomized trial (named
CANTOS) involving more than 10,000 patients with previous
MI and high C-reactive protein levels has shown that the IL-1β

monoclonal antibody canakinumab could reduce C-reactive
protein levels and the incidence rate of recurrent cardiovascular
events, without affecting the LDL cholesterol level, but no
significant difference in all-cause mortality, probably due to
increased risk of fatal infection and sepsis (19). Thus, although
CANTOS has, for the first time, approved the “inflammatory
hypothesis” of AS in a clinical setting, IL-1β seems not an ideal
target (20). Of note, these approaches mainly neutralize various

pro-inflammatory factors (e.g., cytokines, chemokines) secreted
by inflammatory cells (e.g., macrophages) rather than block their
production. Another important lesson learned from the previous
failures is that an effective anti-inflammatory approach may
rely on both inflammation inhibition and resolution promotion,
which require not only the termination of inflammatory cell
recruitment and activation (reducing M1-like macrophages) but
also the removal of apoptotic or dead cells via efferocytosis
(increasing M2-like macrophages) (21).

Plaque regression is clinically desirable, which may be
achieved by redirecting ASAM polarization from M1-like to
M2-like phenotype (10, 22). For example, increasing HDL
levels by targeting miR-33 (an intronic microRNA located
within the SREBF2 gene that encodes sterol regulatory element
binding transcription factor 2) leads to the regression of
established plaques in Ldlr−/− mice (23). Silencing of IRF5
(encoding interferon regulatory factor 5) reprograms ASAMs
from M1-like to M2-like phenotype and improves post-MI
healing by augmenting resolution (24). Whereas the deficiency
of efferocytosis due to high levels of the “don’t eat me”
signal CD47 is observed in advanced plaques, CD47-blocking
antibodies significantly prevent disease progression by restoring
the phagocytotic capability of M2-like ASAMs (25). Taken
together, these findings strongly argue that the therapeutic
strategy promoting phenotypic transition from M1-like to M2-
like phenotype may effectively attenuate and even block non-
resolving inflammation, delaying or halting AS progression or
leading to plaque regression.

MACROPHAGE REPOLARIZATION – A
POTENTIAL APPROACH FOR
REPROGRAMMING MACROPHAGES
FROM PRO- TO ANTI-INFLAMMATORY
PHENOTYPES

Traditionally, macrophages can polarize toward classically
activated M1 [e.g., M(IFNγ), M(LPS), and M(LPS + IFNγ)]
and alternatively activated M2 [e.g., M(IL-4)] phenotype
upon different stimuli (9, 26). While recent application of
single-cell RNA sequencing (scRNAseq) has revealed high
heterogeneity of ASAMs in AS plaques (13–15), the theme
of macrophage polarization seems not to have been changed.
However, the classical model for macrophage polarization
may be challenged by our genome-wide survey based on a
published public available database (27). By comparing the
gene expression profiling (GEP) between resting (M0) and M1
[M(LPS + IFNγ)] or M2 [M(IL-4)] macrophages, we have noted
some interesting phenomena in gene expression reprogramming
during macrophage polarization, including a) that a majority of
changes in differentially expressed genes (DEGs, including up-
and down-regulated ones) occur during M1 [M(LPS + IFNγ)]
polarization (versus M0, particularly involving pro- and anti-
inflammatory genes as well as the genes involved in inflammatory
pathways), while most of these changes (>80%) are, however,
reversed in M2 or M(IL-4) [versus M1 or M(LPS + IFNγ)]; in

Frontiers in Cardiovascular Medicine | www.frontiersin.org 2 March 2022 | Volume 9 | Article 868788

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-868788 March 23, 2022 Time: 16:0 # 3

Yang et al. Macrophage Epigenetic Reprogramming in AS

contrast, much less DEGs (only 16 genes) was observed during
M2 or M(IL-4) polarization (versus M0); b) that the DEGs in M1
[M(LPS + IFNγ)] polarization but reversed in M2 [M(IL-4)] are
functionally enriched for several key pathways (e.g., proteasome,
NF-κB, JAK/STAT, and apoptosis for the up-regulated DEGs;
lysosome, oxidative phosphorylation, and PPAR for the down-
regulated DEGs); and c) interestingly, these pathways appear to
be shared by differentiation of monocytes into macrophages.

Accordingly, we hypothesize an alternative model for
macrophage polarization, in which in addition to the classical
models (i.e., polarization of M0 to either M1 or M2 upon
different stimuli), M1 may be skewed directly to M2 simply by
turning off the M1 program, a process termed repolarization,
similar to inter-phenotypic transition (or trans-differentiation)
in the epigenetic landscape originally described by Waddington
and later updated by many others (28). According to this model,
non-resolving inflammation in AS lesions might be caused by
deficient repolarization of ASAMs (4). Therefore, targeting
the machinery that governs the repolarization from M1-like
to M2-like phenotype provides a rationale for developing
an effective “double-hit” anti-inflammatory therapy, which
simultaneously inhibits inflammation (reducing M1-like
phenotype) and promotes resolution (increasing M2-like
phenotype). In this context, the mechanism driving macrophage
repolarization may be associated with histone lactylation, a
novel form of epigenetic modification, which occurs in the
late stage of M1 [M(LPS + IFNγ)] and is related to M2 gene
expression (29). Interestingly, histone lactylation in macrophages
is induced primarily by lactate, an “end-product” of glycolysis,
which accumulates during M1 polarization due to a metabolic
paradigm shift from oxidative phosphorylation to glycolysis (30).

EPIGENETIC MODIFYING ENZYMES –
AN EXPANDING SUPERFAMILY
GOVERNING HIERARCHICAL
REPROGRAMMING OF MACROPHAGES

Epigenetics is defined as the coding of gene expression in a
highly tissue/cell- and context-specific manner via modifications
of DNA and histones without altering the DNA sequence itself
(8). The transition of cell phenotypes and maintenance of cell
identity are controlled by the epigenetic machinery through
reprogramming gene expression at the transcriptional level
(31). To date, epigenetics has been studied in the context
of chromatin modifications in either DNA or histones, and
recently in higher-order chromatin structures involving large
epigenomic domains named lamina-associated domains (LADs)
and large, organized chromatin lysine modifications (LOCKs)
(32). Epigenetic modifications, often called codes or marks,
include DNA methylation of the nucleotide cytosine (e.g.,
5mC and 5hmC, 5fC, 5caC, 3mC, and 6mA) at CpG sites
and histone post-translational modifications [PTMs e.g.,
methylation, acetylation, phosphorylation, ubiquitylation,
sumoylation, butyrylation, formylation, propionylation,
citrullination, crotonylation, proline isomerization, ADP

ribosylation, succinylation, 2-hydroxy isobutylylation, and more
recently lactylation (29)] mostly at lysine residues (33). Other
epigenetic mechanisms include various RNA modifications
(e.g., m6A, m5C, m1A, 2’-O-Me, and 9) and non-coding RNAs
(e.g., lncRNA, microRNA, and circRNA). DNA methylation is
regulated by DNA methyltransferases (e.g., DNMT1, DNMT2,
DNMT3A, and DNMT3B) and ten-eleven translocation
methylcytosine dioxygenases (e.g., TET1, TET2, and TET3).
The most common histone PTMs are lysine methylation and
acetylation, which are reciprocally regulated by two classes
of histone-modifying enzymes (i.e., “writer” and “eraser”).
The writer that adds epigenetic codes to specific residues of
histones includes lysine methyltransferase (KMT) and histone
acetyltransferase (HAT). The eraser that removes these codes
includes lysine demethylase (KDM) and histone deacetylase
(HDAC). Histone PTMs result in a “loose” (open) or “tight”
(closed) chromatin configuration, called chromatin remodeling,
which control the accessibility of transcriptional factors to the
promoter or enhancer regions of target genes on DNA, thereby
triggering or silencing their expression.

Another category of epigenetic molecules called “reader” that
recognizes epigenetic codes and recruit transcription-regulatory
factors to target genes includes two families i.e., bromodomain
and extraterminal protein (BET) and malignant brain tumor
domain protein (MBT) (31). BETs read histone acetylation codes
through their distinct bromodomain (BRD) and then recruit
positive transcription elongation factor b (P-TEFb, a complex
of CDK9 and cyclin T), which in turn phosphorylates the
C-terminal domain (CTD) of RNA polymerase II to trigger
transcription initiation and elongation (34). MBTs (e.g., MBT,
chromodomain, tudor domain) recognize histone methylation
codes, but their role in macrophages remains unknown. Taking
the advantage of recent advances in the development of specific
BRD inhibitors in cancer treatment, these agents may also emerge
as a potential therapy for IAADs such as AS.

An additional category of epigenetic molecules called
chromatin remodeler (or nucleosome remodeling factor, NURF)
includes at least four subfamilies: switch/sucrose non-fermenting
(SWI/SNF), imitation switch (ISWI), inositol requiring 80-like
(INO80-like) and chromodomain helicase DNA binding (CHD)
(35). The remodelers are recruited to their target regions by
transcription factors (TFs) or non-coding RNAs and forms
the ATP-dependent chromatin remodeling complexes, which
facilitate transcription precisely and accurately in time and space,
via multiple mechanisms including nucleosome-positioning or
nucleosome sliding, creation of a remodeled state for DNA to be
more accessible with histones still bound, altering histone–DNA
interactions, disassembly of nucleosomes, exchange of histones
with variants of different properties, and regulation of higher-
order chromatin structures. Although the role of remodelers in
macrophages remains unknown, the characterization of their
structures may pave an entirely new avenue for drug development
to treat various diseases (36, 37).

With further understanding their functions, all epigenetic-
regulatory proteins have been re-categorized into three classes,
including epigenetic modifiers that directly control DNA
methylation (e.g., DNMTs and TETs), histone PTMs (e.g.,
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KMTs and KDMs for methylation and HATs and HDACs for
acetylation), or higher-order chromatin structures; epigenetic
mediators that serve as the downstream targets of epigenetic
modifiers and in turn govern cell plasticity and phenotypes via
reprogramming; and epigenetic modulators that regulate the
activity or subcellular localization of epigenetic modifiers and
bridge (micro)environment with epigenomics (25).

EPIGENETIC ALTERATIONS –
EMERGING EVIDENCE SUPPORTING
ATHEROSCLEROSIS AS AN
“EPIGENETIC” DISEASE

Fast-accumulating evidence indicates the correlation between
epigenetic alterations and the risk of AS, including DNA
methylation and its regulatory enzymes (e.g., DNMTs and
TETs), as well as histone PTMs and their writers and erasers.
To date, at least 15 types of histone PTMs and more than
130 sites have been identified, which regulate gene expression
via chromatin remodeling (33). Functionally, histone PTMs
(particularly methylation and acetylation, mostly involving
histones H3 and H4) can be divided into activating and
inhibitory types, which either allow or prevent the transcription
of target genes during cell phenotype transition like macrophage
polarization. In general, histone lysine (K) acetylation often
activates gene expression via increasing the accessibility of TFs,
which is reciprocally regulated by specific HATs and HDACs.
However, histone lysine methylation can be either activating
or inhibitory in regulating the transcription of target genes,
dependently on which lysine residue(s) is methylated with how
many methyl groups, which is reciprocally regulated by KMTs
and KDMs. Among numerous epigenetic modifiers identified
to regulate histone PTMs, only a small number of them have
been identified in the regulation of macrophage polarization and
functions thus far.

DNA Methylation
Alterations of DNA Methylation in AS-Associated
Macrophages
DNA methylation involves the transfer of a methyl group to the
C5 position of the cytosine to form 5mC, an event mediated by
DNMTs, which primarily silence the expression of target genes
by preventing the binding of TFs to DNA. DNA demethylation
is mediated by TETs, which catalyzes oxidation of 5mC to 5hmC,
5fC, and then 5caC, thereby removing this inhibitory epigenetic
mark to allow gene transcription. In AS, DNA methylation is
specifically associated with disease type and progression, as well
as disease onset, vascular events, and plaque stabilization. For
example, there is a unique whole-genome landscape of DNA
methylation in AS lesions, compared to surrounding normal
vessel tissue (38); a disease- or location-specific methylation
pattern is associated with MI, rather than ischemic stroke (39);
disease progression-specific CpG methylation profiles correlate
with the grade of lesions (40); after cerebrovascular events,
global demethylation is associated with up-regulation of anti-
inflammatory genes and likely contributes to plaque stabilization

(41). Moreover, DNA methylation of specific target genes (e.g.,
TRAF3 that encodes TNF receptor-associated factor 3, PPM1A
that encodes protein phosphatase 1A, among many others) is
also closely associated with AS or its treatment (42). With
rapid advances in the technology of single-cell analysis such as
scRNAseq and mass cytometry by the time-of-flight (CyToF)
(43, 44), cell type-specific profiles of either global or gene-
specific DNA methylomes (e.g., macrophage, endothelial cell/EC,
smooth muscle cells/SMC, lymphocyte, etc.) may soon be
available for more precisely monitoring the dynamic changes
of DNA methylation as well as understanding their clinical
significance in AS.

The Roles of DNA Methylation Modifiers in
AS-Associated Macrophages
To date, understanding of the functional roles of the epigenetic
modifiers involving DNA methylation is relatively limited in
AS. Functionally, DNMT3A and DNMT3B catalyze de novo
DNA methylation. DNMT3A and TET2 represent the most
commonly mutated genes in patients with coronary heart
disease carrying clonal hematopoiesis of indeterminate potential
(CHIP) (45). Transplantation with bone marrow of Dnmt3a−/−
mice significantly increases plaque size of Ldlr−/− mice (46),
suggesting the anti-AS role of DNMT3A. However, Dnmt3a
expression is suppressed in M2 [M(IL-4)] macrophages, probably
via an lncRNA called DNMT3aos located on the antisense
strand of Dnmt3a (47). Interestingly, the effect of TET2
resembles that for DNMT3A, although these two epigenetic
enzymes have opposite functions in regulating DNA methylation.
Partial reconstitution of bone marrow clonal hematopoiesis
by transplanting Tet2-mutant cells increases plaque size in
Ldlr−/− mice, in association with increased IL-1β production
by Tet2-mutant ASAMs via NLRP3 inflammasome (48). TET2
specifically represses IL-6 expression in macrophages, an event
for inflammation resolution (48, 49). DNMT1 is a DNA
methyltransferase maintaining DNA methylation. Macrophage-
specific expression of Dnmt1 promotes AS in Apoe−/−mice, via
increasing M1 cytokine production but suppressing the M2 gene
expression, in association with promoter methylation and thus
down-regulation of PPAR-γ or KLF4 (Kruppel-like factor 4) (50,
51). Following the paradigm shift from profiling epigenomics to
functional epigenetics in the epigenetics field (52), the functions
of these or other epigenetic enzymes involving DNA methylation
will be defined more precisely and thus become a potential targets
for anti-inflammatory therapy.

Histone Methylation
The Roles of Lysine Methyltransferases in
AS-Associated Macrophages
H3K4me3 is one of activating histone PTMs, which is reciprocally
regulated by MLL (KMT2A) and KDM5B, respectively. Emerging
evidence supports the involvement of H3K4me3 in the regulation
of macrophages involving AS. H3K4 methylation stepwisely
increases in macrophages during AS progression, in association
with disease severity (53). Training monocytes by oxLDL, rather
than native LDL, results in up-regulation of multiple pro-
inflammatory and pro-AS genes, in association with H3K4me3
on their promoters (Figure 1A), while this event can be abolished
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via H3K4me3 inhibition by pan-KMT inhibitors (54). MLL is
up-regulated in M1 [e.g., M(IFNγ)] macrophages, in association
with increased H3K4me3 (Figure 1A); in contrast, its enzyme
activity is reduced in M2 [M(IL-4 + IL13)] macrophages
(55). Increased H3K4me3 up-regulates the pro-inflammatory
genes, which can be prevented by an inhibitor of the MLL-
Menin interaction (MI2-2). Consistently, pan-KMT inhibition
(e.g., by 5’-methylthioadenosine/MTA) also inhibits LPS-induced
expression of M1 genes and LPS + IFNγ-triggered secretions of
pro-inflammatory cytokines (56).

H3K9me3 and H3K27me3 represent two inhibitory PTMs.
Both of these PTMs are markedly increased in ASAMs and
lymphocytes in AS plaques, but they are undetectable in healthy
vessel tissues (57). However, these PTMs markedly decrease
during disease progression (53), while they do not correlate
with the expression of their KMTs, including PRC2 (EZH2 or
KMT6, which inhibits M1-like polarization in AS lesions (58))
(Figure 1B), the H3K27me3 methyltransferase G9a (KMT1C),
and the H3K9me3 methyltransferases SETDB1 (KMT1E) or
SUV39H1/2 (KMT1A/B). SETDB2, a member of the KMT1
family that methylates H3K9, is up-regulated in M1 [M(LPS)]
but not M2 [M(IL-4)] macrophages (59). While SETDB2 is
highly expressed in murine AS lesions, its genetic deletion in
hematopoietic cells promotes inflammation and accelerates AS
in Ldlr−/− mice, in association with enhanced expression of
pro-inflammatory genes but attenuated efferocytosis in CD45+
ASAMs (Figure 1C).

The Roles of Lysine Demethylases in Macrophage
Polarization and AS-Associated Macrophages
Jumonji domain-containing 3 (JMJD3) (KDM6B), which
specifically demethylates H3K27me3, is involved in the
reprogramming of M1 [M(LPS)] polarization (60) (Figure 2A).
More than 70% of LPS-inducible genes are JMJD3 targets in
macrophages. However, although Jmjd3 deletion increases
H3K27me3, but does not markedly affect most of those LPS-
induced genes, suggesting that JMJD3 only acts to fine-tune the
transcriptional program for inflammatory gene expression in
LPS-activated macrophages and this action is independent of
its H3K27me3 demethylase function. Although the enzymatic
activity of JMJD3 seems unable to determine the direction
of macrophage polarization by itself, it works together with
the H3K9me2/H3K27me2/H4K20me1-specific demethylase
KIAA1718 and certain transcription elongation-regulated
proteins to demethylate H3K27me3 of pro-inflammatory genes.
In contrast, down-regulation of either JMJD3 or KIAA1718
attenuates mRNA elongation of these genes (61). In this case,
JMJD3 may require collaboration with an additional epigenetic
modifier (e.g., KIAA1718) to act as an H3K27me3 demethylase
in M1 reprogramming, at least in response to LPS. Serum
amyloid A (SAA), another pro-inflammatory factor involved
in AS, induces JMJD3 expression, in association with reduced
H3K27me3 in macrophages (62). Unlike LPS-induced genes,
SAA-induced expression of pro-inflammatory genes can,
however, be blocked by Jmjd3 knockdown or inactivation, via
restoration of H3K27me3, suggesting that the JMJD3 functions
may vary in a stimulus-specific manner. Considering JMJD3
and H3K27me3 as a potential target in inflammation (63), the

selective inhibitors of H3K27-specific demethylases have been
developed as a novel anti-inflammatory therapy. For example,
GSK-J1 (an inhibitor of JMJD3 and UTX, both belonging to
the KDM6 subfamily), which specifically binds to the catalytic
pocket of JMJD3 to inhibit its demethylase activity, sharply
inhibits pro-inflammatory gene expression in macrophages, via
increasing H3K27me3 (64).

On the other hand, IL-4 also induces JMJD3 expression
and thus activates M2 genes by reducing H3K27me2/3 at
their promoters (65), suggesting a role of JMJD3 in M2 [e.g.,
M(IL-4)] polarization (Figure 2B). JMJD3 also mediates M2-
like polarization in response to M-CSF, but is not involved
in M1-like polarization induced by GM-CSF. In this context,
helminth infection or chitin fails to induce M2-like polarization
in Jmjd3−/− mice (66). Although Jmjd3 deficiency results in
a global increase in H3K27me3 at the promoters of numerous
genes, only a small number of them are specifically affected
by Jmjd3 deletion. In the latter, IRF4 (interferon regulatory
factor 4) represents one downstream target responsible for M2-
like polarization, expression of which is associated with the
demethylase activity of JMJD3. While Irf4 knockout copies the
phenotype of Jmjd3 deletion, restoration of IRF4 expression can
rescue the M2-like polarization that is impaired in Jmjd3−/−
macrophages. However, GM-CSF also induces IRF4 expression
via enhancing JMJD3 demethylase activity, leading to the
production of pro-inflammatory CCL17 in a murine model
of arthritis, an event blocked by GSK-J1 (67). In addition,
the JMJD3-IRF4 axis may also contribute to repolarization of
M1-like to M2-like phenotype mediated by adiponectin (68)
(Figure 2C). Therefore, JMJD3 and its downstream targets such
as IRF4 play dual functions context-specifically in both M1 and
M2 polarization.

JMJD3 expression is regulated at transcriptional level by a
number of TFs. LPS induces JMJD3 expression via a MyD88-
dependent activation of the NF-κB pathway in ECs (69) or the
activation of STAT1 and STAT3. For the latter, knockdown of
both Stat1 and Stat3, rather than either of them, inhibits the
expression of JMJD3 and pro-inflammatory genes in microglia
(70). As one of the HIF-1-dependent genes (71), JMJD3
expression also involves the HIF pathway in response to LPS (72).
Whereas IL-4 induces JMJD3 expression via STAT6 activation in
macrophages, Stat6 knockout only prevents JMJD3 expression
induced by IL-4, but not LPS (65). Moreover, Stat6 deficiency
prevents H3K27me3 demethylation and M2 gene expression in
response to IL-4, while has no effect on the pro-inflammatory
effect of LPS. Similar phenomenon has also been found in SOD1-
induced M2-like polarization (73). Thus, although the roles of
JMJD3 and its downstream targets (e.g., IRF4) may not be specific
to M1 or M2 polarization, the upstream signals (e.g., diverse
TFs) of JMJD3 seem to determine the direction of JMJD3-
mediated macrophage polarization (74). Of note, myeloid Jmjd3
deficiency leads to progression of AS lesions in Ldlr−/− mice,
suggesting an anti-AS role of JMJD3 in ASAMs (75). However, it
remains unclear whether JMJD3 acts to promote the polarization
of ASAMs toward an anti-inflammatory (M2-like) phenotype
in this setting.

KDM4A [JMJD2A or jumonji C-domain-containing
histone demethylase 3A (JHDM3A)] demethylates H3K9me3,
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FIGURE 1 | Different lysine methyltransferases may play opposite roles of in macrophage polarization and functions. (A) H3K4me3 mediated by lysine
methyltransferases (KMTs e.g., KMT2A/MLL) is involved in oxLDL-induced training immunity of monocytes (Mo) in atherosclerosis (AS) and LPS-induced M1
polarization. (B) High-fat diet (HFD) induces the expression of TRPA1 (a calcium permeable non-selective cation channel), which stabilizes EZH2 (PRC2 or KMT6) to
inhibit M1 polarization via H3K27me3. (C) LPS and IFNs up-regulates SETDB2 via IRF7, while deletion of SETDB2 in hematopoietic cells promotes M1-like
polarization and impairs efferocytosis, a function of M2 macrophages, via H3K9me3 in AS lesions. oxLDL, oxidized low-density lipoprotein; LPS, lipopolysaccharide;
TRPA1, transient receptor potential ankyrin 1; EZH2, enhancer of zeste homolog 2; IFN, interferon; IRF7, interferon regulatory factor 7; SETDB2, SET domain
bifurcated histone lysine methyltransferase 2.

FIGURE 2 | Lysine demethylases can play dual roles in both M1 and M2 polarization or M1→M2 repolarization. (A) LPS up-regulates the lysine demethylase (KDM)
jumonji domain-containing (JMJD3) (KDM6B) via a process involving multiple transcription factors (e.g., NF-κB/MyD88, STAT1/3, and HIF-1), which in turn acts to
either fine-tune M1 phenotype via an H3K27me3-independent process or promote M1 polarization, which requires another KDM KIAA1718 and
elongation-regulatory factors (ERFs). Similarly, JMJD3 is involved in M1-like polarization induced by serum amyloid A (SAA) or granulocyte-macrophage
colony-stimulating factor (GM-CSF) by up-regulating IRF4 via H3K27me3. (B) Alternatively, multiple factors (e.g., IL-4, M-CSF, helminth infection, chitin, and SOD1)
can induce JMJD3 and UTX (KDM6A) expression via STAT6, which in turn mediate M2 polarization by up-regulating IRF4 via H3K27me3. (C) JMJD3 may promote
adiponectin-triggered repolarization from M1-like to M2-like phenotype, likely via the similar mechanism involving H3K27me3-depdendent IRF4 expression. On the
contrary, oxLDL induces the expression of KDM4A (JMJD2A), another member of the JMJD demethylase family, which blocks the repolarization from M1-like to
M2-like phenotype, an event that can be restored by KDM4A deficiency or inhibition. LPS, lipopolysaccharide; JMJD3, Jumonji domain-containing protein 3; NF-κB,
nuclear factor kappa-light-chain-enhancer of activated B cells; STAT, signal transducer and activator of transcription; HIF-1, hypoxia-inducible factor 1; IRF4,
interferon regulatory factor 4; IL-4, interleukin-4; M-CSF, macrophage colony-stimulating factor; SOD1, superoxide dismutase 1; oxLDL, oxidized low-density
lipoprotein; KDM4A, lysine demethylase 4A.

H3K36me2, and H1.4K26me3. We have identified KDM4A as
another member of the JMJD demethylase family that regulates
M1-like polarization, at least in response to oxidized low-density

lipoprotein (oxLDL) (76) (Figure 2C). Exposure to oxLDL
results in KDM4A up-regulation, accompanied by the expression
of multiple M1 genes. While KDM4A knockdown prevents
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oxLDL-induced M1-like polarization, it instead promotes the
expression of M2 genes. As an oxygen sensor, hypoxia increases
the protein level of KDM4A, but not its mRNA level (77), by
preventing its degradation via the SCF-containing ubiquitin
ligase complex (78). In contrast, other JMJD family members
(e.g., JMJD3) are primarily regulated at the transcriptional level
via HIF-1α activation (79). However, although oxLDL also
activates the NF-κB and HIF pathways (80), KDM4A expression
seems to be independent of the NF-κB and HIF-1 pathways
in macrophages exposed to oxLDL (76). Therefore, KDM4A
inhibition may skew ASAM polarization straight from M1-like
to M2-like phenotype (i.e., repolarization), thus serving as
a potential target for the development of anti-inflammatory
therapy against AS.

The Role of Histone Methylation in Trained Immunity
Involving Atherosclerosis
Traditionally, the epigenetic modifications were considered
to act only temporarily due to their reversible features and
thus not to contribute to immune memory. However, this
concept has been challenged by recent discoveries that immune
cells (e.g., macrophages) can memorize the cellular states and
perturbations (e.g., environmental stimuli) without changing
the DNA sequence. Such an epigenetic memory is able to
burst a rapid and robust inflammatory response once cells
encounter the same or even different stimuli (8). For example,
Western diets can cause NLRP3-dependent immune memory
in monocytes/macrophages, which contributes to chronic and
stepwisely worsening inflammation in AS plaques (81). Later,
such phenomenon has been attributed to trained immunity (e.g.,
by oxLDL) via histone epigenetic modifications (e.g., H3K4me1
and H3K4me3), which could be prevented by the inhibitors
of HMTs (54, 82, 83). Of note, trained immunity driven by
epigenetic reprogramming is closely associated with metabolic
rewiring from oxidative phosphorylation to glycolysis (84–86),
a well-documented hallmark of M1 macrophages. However,
which HMT(s) or KDM(s) are responsible for trained immunity
remains to be defined.

Histone Acetylation
The Roles of Histone Acetyltransferases in
Macrophage Polarization
Histone acetylations are generally activating PTMs that promote
the expression of target genes. To date, only a few HATs have
been identified to be involved in macrophage polarization. EP300
(KAT3B) binds to c-Myc via protein arginine methyltransferase
1 (PRMT1) and is recruited to the promoters of target
genes, resulting in M2 gene expression (87). Another HAT
CBP (KAT3A) mediates transcriptional activation of IFNβ via
increasing H3K56-Ac (88). However, a novel HAT named MOF
(KAT8) promotes TNF-α/NF-κB-mediated expression of pro-
inflammatory genes via increasing H4K16-Ac (89).

The Roles of Histone Deacetylases in Macrophage
Polarization and AS-Associated Macrophages
HDAC3, a class I HDAC, deacetylates H4K9-Ac and H4K14-
Ac, which is involved in the regulation of both M1 and M2

polarization. In HDAC3-deficient macrophages, LPS fails to
activate nearly half of the inflammatory genes, suggesting the role
of HDAC3 in M1 polarization (90) (Figure 3A). While there are
near 700 genomic regions are hyperacetylated at histone H4 in
Hdac3−/−macrophages, the number of hyperacetylated regions
are tripled after LPS stimulation. In contrast, a large number
of regions display H4 hypoacetylated in both untreated or LPS-
treated Hdac3−/−macrophages, in which the recognition motifs
for the IRF family and STAT1 are mostly enriched. Moreover,
while IRF3 (interferon regulatory factor 3) directly controls
Ifnb1 transcription, the pro-inflammatory IFNβ-STAT1 axis is,
however, impaired in Hdac3−/− macrophages exposed to LPS,
in association with up-regulation of PTGS1 (encodes COX-1).
During NLRP3 inflammasome activation, HDAC3 translocates
to mitochondria and thus restricts fatty acid oxidation (FAO) by
deacetylating the non-histone protein HADHA (mitochondrial
trifunctional protein subunit α) at K303, which reduces its FAO
enzyme activity and promotes IL-1β production by shaping
mitochondrial adaptation (91). Thus, HDAC3 seems to trigger
M1 gene expression indirectly via diverse mechanisms.

HDAC3 is also involved in the regulation of M2 polarization
(Figure 3B). In this case, Hdac3−/− macrophages display
an M2-like phenotype analogous to IL-4-induced alternative
activation, in association with increased H3K9-Ac and H3K14-
Ac (92). Interestingly, although most up-regulated genes in
Hdac3−/− macrophages can be induced by both IL-4 and
LPS in wild-type macrophages, a large number of the down-
regulated genes in Hdac3−/− macrophages are up-regulated
only by LPS in wild-type macrophages. Thus, HDAC3 acts
as a suppressor of M2 polarization via its deacetylase activity
even in the absence of pro-inflammatory stimuli. After exposure
to oxLDL, Hdac3−/− macrophages secrete more TGF-β, an
M2 cytokine, than wild-type counterparts, in association with
increased H3K9/14-Ac at the Tgfb locus. This suggests that
HDAC3 directly binds to the regions near the Tgfb promoter
and inhibit its expression. Taken together, HDAC3 activation may
skew the direction of macrophage polarization from M1-like to
M2-like phenotype.

HDAC3 expression is associated with plaque vulnerability
in human AS (93), suggesting its pro-AS role. Moreover,
conditional knockout of Hdac3 in macrophages transforms
their phenotype to an anti-AS fibrotic phenotype, leading to
increased collagen deposition and thus more stable plaques in
Ldlr−/− mice. Interestingly, while HDAC3 overexpression in
ECs promotes endothelial-to-mesenchymal transition (EndMT),
HDAC3 inhibition reduces AS lesions in Ldlr−/− mice, further
supporting the pro-AS role of HDAC3 (94). On the contrary,
up-regulation of HDAC3 in ECs may also inhibit inflammation
and AS (95). Nevertheless, whether the functions of HDAC3
described above in the regulation of macrophage polarization
would be applied in AS remains uncertain.

During the differentiation of monocytes to macrophages,
HDAC9 (a class IIa HDAC) are up-regulated (96), which consists
of two isoforms with or without HDAC domain, respectively.
The latter, named HDAC-related protein (HDRP) or MEF2-
interacting transcription repressor protein (MITR), is a truncated
form that lacks deacetylase activity, which functions to recruit
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FIGURE 3 | Histone deacetylases promote M1 polarization and pro-inflammatory functions of macrophages via deacetylation of histones or non-histone proteins.
(A) HDAC3 mediates LPS-induced M1 polarization and inflammasome activation via the IFNβ-STAT1 signaling cascade and HADHA deacetylation that restricts fatty
acid oxidation, respectively. (B) On the other hand, HDAC3 can block M2 polarization involving either IL-4 or oxLDL via deacetylation of H4K9-ac and H4K14-ac.
(C) Multiple pro-inflammatory factors (e.g., LPS, oxLDL, and ac-LDL) induce the expression of HDAC9 via toll-like receptors (TLR), which in turn inhibits M2
polarization, promotes M1 polarization via PPARγ, or induces M4 macrophages (in conjunction with MMP12) that recruit neutrophils to form neutrophil extracellular
traps (NETs). (D) LPS induces HDAC9 expression via DNMT3A-associated repression of H3K27me3, thus triggering M1 polarization via deacetylation of TBK1 that
phosphorylates IRF3. Alternatively, LPS up-regulates HDAC7 via TLR4, which deacetylates PKM2 to promote glycolysis, thereby promoting pro-inflammatory
function of M1 macrophages. HDAC, histone deacetylase; IFNβ, interferon β; STAT1, signal transducer and activator of transcription 1; HADHA, hydroxyacyl-CoA
dehydrogenase trifunctional multienzyme complex subunit alpha; oxLDL, oxidized low-density lipoprotein; ac-LDL, acetylated low-density lipoprotein; MMP12,
matrix metallopeptidase 12; PPARγ, peroxisome proliferator-activated receptor gamma; DNMT3A, DNA methyltransferase 3A; TBK1, TANK-binding kinase 1; PKM2,
pyruvate kinase muscle isozyme 2; ac-, acetylation; p-, phosphorylation.

other HDACs (e.g., HDAC1 or HDAC3). Although HDAC9
is highly expressed in macrophages, it can be further induced
by LPS (via toll-like receptor, TLR), oxLDL, and acetylated
LDL (Figure 3C). High levels of HDAC9 in macrophages
is maintained by DNMT3A via H3K27me3 repression at it
distal promoter region, while HDAC9 in turn binds to TBK1
to enhance its K241 deacetylation and kinase activity (97)
(Figure 3D). In this context, Dnmt3a deficiency selectively
impairs the expression of type I interferons (e.g., IFN-α and
IFN-β) induced by LPS, due to inhibition of TBK1-mediated
IRF3 phosphorylation. Therefore, HDAC9 could execute its
pro-inflammatory functions via diverse mechanisms involving
multiple upstream and downstream pathways. As relatively high
basal levels of HDAC9 seems to be required for macrophages,
it would be quite challenging to target only the inducible
part of HDAC9 to inhibit inflammation triggered by (micro)
environmental stimuli.

A genome-wide association study (GWAS) has unveiled a
SNP within the HDAC9 gene, which is significantly associated
with the risk of large vessel stroke (98). Another genome-
wide association meta-analysis has identified two genetic loci
(HDAC9 and RAP1GAP) associated with aortic calcification,
an independent predictor for the risk of cardiovascular events
(99). These observations in the large population-based cohorts

provide a strong link between HDAC9 and AS. In this context,
Hdac9 deficiency inhibits M1 gene expression via up-regulating
PPAR-γ, while promotes M2-like polarization of macrophages
and expression of the ATP-binding cassette transporter ABCA1
and ABCG1 via increasing H3K9-ac at their promoters in
Ldlr−/− mice (96). In AS plaques, HDAC9 is associated with
MMP12 expression in the regions clustered with inflammatory
genes in ASAMs. The expression of both Mmp12 and Hdac9
is associated with a unique subtype of macrophages named
M4 (100), an inflammatory phenotype that recruits neutrophils
to form neutrophil extracellular traps (NETs) in response to
oxLDL (101). In Apoe−/−mice, Hdac9 deficiency confers plaque
stability via an alternative mechanism involving deacetylation
of the non-histone protein IKKα and IKKβ, which leads to the
activation of the NF-κB pathway in both macrophages and ECs to
drive inflammatory response (102). Of note, a specific inhibitor
of the class IIa HDACs (including HDAC9) limits this pro-
inflammatory response and attenuates lesion formation. Thus,
due to its dual roles in pro-inflammatory response and plaque
vulnerability, HDAC9 is considered as a very promising target for
the treatment of AS-related diseases.

HDAC7, another class IIa HDAC, is structurally similar
to HDAC9. Unlike the latter, HDAC7, however, has minimal
deacetylase activity, while often binds to HDAC3 to suppress gene
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expression. In pre-B cells, HDAC7 inhibits pro-inflammatory
genes essential for macrophage functions, while HDAC7
is specifically down-regulated to release this brake during
transdifferentiation of pre-B cells into macrophages (103).
In differentiated macrophages, HDAC7 promotes the TLR4-
induced expression of a subset of pro-inflammatory genes
(Figure 3D), an event prevented by a selective inhibitor of
the class IIa HDACs (104). In macrophages, HDAC7 binds to
and deacetylates PKM2 (pyruvate kinase muscle isozyme 2) at
K433, therefore increasing LPS-induced inflammatory responses
via promoting glycolysis (105), suggesting a role of HDAC7 in
immunometabolism (106). In this case, while the role of HDAC7
in M1 polarization remains uncertain, it appears to be required
for maintaining the pro-inflammatory property of M1-like
macrophages. Thus, targeting HDAC7 could suppress the pro-
inflammatory functions of macrophages, but not reprogramming
for M1 polarization. While the role of HDAC7 remains uncertain
in AS, it has been demonstrated that HDAC7 plays an important
role in the maintenance of vascular integrity by repressing
MMP10 expression in ECs (107). The latter would be a major
concern for targeting HDAC7 in AS.

The findings involving the effects of HDAC inhibition on
inflammation remains controversial thus far. The pan-HDAC
inhibitor SAHA (vorinostat) reduces immune cell infiltration and
inflammation in AS plaques of hypercholesterolemic Apoe−/−
mice (108), while another pan-HDAC inhibitor TSA increased
macrophage infiltration in AS lesions, in association with
increased histone H4 acetylation (109). In macrophages, TSA
impairs the expression of most M1 markers and cytokines
induced by LPS or IFNγ + LPS, but also inhibits the expression
of M2 markers induced by IL-4 (56). In the latter case, TSA
down-regulates both basal and IL-4-induced expression of Arg1
via an HDAC3-independent process (92). MS-275 (entinostat), a
selective inhibitor of class I HDACs (e.g., HDAC1 and HDAC3),
increases the basal level of the M2 marker Arg1, similar to the
phenotype of Hdac3 deletion, while does not affect IL-4-induced
Arg1 expression.

The Roles of Non-histone Acetylation in
Macrophages
Numerous non-histone proteins also serve as substrates of
deacetylation by HDACs (110), including various TFs (e.g.,
RelA/p65, p53, STAT1). For example, the activation of the NF-
κB pathway represents a major signal required by M1 [M(IFNγ)]
polarization and functions, while NF-κB inhibition can promote
M2 [M(IL-4 + IL-13)] polarization (111). Inhibition of class
I HDACs (e.g., HDAC3) lead to persistent activation of the
NF-κB pathway via preventing deacetylation of RelA (p65)
(112–114), which may induce the IKK-dependent expression of
pro-inflammatory CXCL8 (IL-8) (115) or up-regulate CD47 to
impair efferocytosis by M2-like macrophages (25, 116). Similarly,
acetylation of STAT6 also suppresses M2 [M(IL-4)] polarization
(117). Therefore, owe to such diversity of HDACs’ substrates,
HDAC inhibition may have either anti- or pro-inflammatory
activities, dependently upon which class or individual HDAC(s)
are targeted more specifically as well as which substrate(s) are
involved more preferentially (118).

CONCLUSION AND PERSPECTIVES

Although multiple clinical trials have recently shown promising
benefits of anti-inflammatory agents or immunotherapies in
AS-related cardiovascular diseases, several major challenges
for targeting inflammation in AS remains to be addressed
to achieve successful clinical translation of novel targets as
well as their targeted agents or therapies (119). Of note, a
paradigm shift of AS from an “inflammatory” disease to an
“epigenetic” disorder is emerging (120). Fast-increasing evidence
supports that the epigenetic machinery plays a central role in the
regulation of inflammation. It has been widely accepted that high
phenotypic plasticity and functional diversity of macrophages
stem from their flexibility in reprogramming gene expression at
the transcriptional level, a process primarily orchestrated by the
epigenetic machinery (121). Among numerous DNA (as well as
RNA) or histone epigenetic modifications and their epigenetic
modifiers (including writer, eraser, and reader), an increasing
number of them have been demonstrated to be associated
with macrophage polarization and functions in inflammation
or AS. Theoretically, they and many more candidates could
be considered a potential therapeutic target for the treatment
of AS. However, only a few therapeutic agents targeting these
epigenetic modifications or their modifiers have been investigated
thus far in the animal models of AS. Therefore, it remains to
be defined whether this approach would be effective and safe
in the treatment of patients with AS-related diseases. But, a
caution should be taken in the development of their inhibitors
as anti-inflammatory therapeutics, due to their diverse functions
in macrophages as well as their “off-target” effects (e.g., those
involving non-histone proteins). Moreover, there are extensive
cross-talks between different epigenetic mechanisms (e.g., DNA
methylation and histone PTMs), epigenetic regulation and TFs,
or epigenetic reprogramming and metabolic rewiring in the
regulation of macrophage polarization and functions (31, 122–
125), which make targeting the epigenetic machinery even more
challenging. To deal with this challenge, it is necessary to better
understand the epigenetic mechanisms underlying macrophage-
mediated non-resolving inflammation that drives AS (126). To
this end, in addition to the traditional models for M1 or
M2 polarization from M0 (resting) macrophages, which have
been widely used to develop anti-inflammatory therapy, our
observations from the GEP analysis raise a potential alternative
model, in which M1 macrophages might be directly skewed to
M2 phenotypes (repolarization) via epigenetic reprogramming
of gene expression or silencing at the transcriptional level. Of
note, this model has been supported by accumulating evidence
from recent studies. For example, it has been found that histone
lactylation might mediate the repolarization from M1 to M2 via a
transition from glycolysis to oxidative phosphorylation (29, 30).
Inhibition of NO production leads to repolarization of M1 to
M2 via restoration of mitochondrial function that is impaired in
M1, thus inhibiting AS (127). However, it is worth mentioning
that M2 macrophages may have certain pro-AS properties.
For example, CD163+ (M2-like) macrophages could promote
intraplaque angiogenesis, vascular permeability, and leukocyte
infiltration, leading to AS progression (128, 129). Nevertheless,
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the model proposed here could be useful to discover the
epigenetic modifiers specific for governing the repolarization of
macrophage from pro- (M1-like) to anti-inflammatory (M2-like)
phenotype as novel therapeutic targets, which would hopefully
change the game in the development of effective and safe anti-
inflammatory therapy for IAADs like AS.
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