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Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, has a large impact

on quality of life and is associated with increased risk of hospitalization, morbidity, and

mortality. Over the past two decades advances regarding the clinical epidemiology

and management of AF have been established. Moreover, sex differences in the

prevalence, incidence, prediction, pathophysiology, and prognosis of AF have been

identified. Nevertheless, AF remains to be a complex and heterogeneous disorder and a

comprehensive sex- and gender-specific approach to predict new-onset AF is lacking.

The exponential growth in various sources of big data such as electrocardiograms,

electronic health records, and wearable devices, carries the potential to improve AF

risk prediction. Leveraging these big data sources by artificial intelligence (AI)-enabled

approaches, in particular in a sex- and gender-specific manner, could lead to substantial

advancements in AF prediction and ultimately prevention. We highlight the current status,

premise, and potential of big data to improve sex- and gender-specific prediction of

new-onset AF.
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INTRODUCTION

Atrial fibrillation (AF), the most common cardiac arrhythmia, markedly increases the risk of
hospitalization, morbidity, and mortality (1–3). Over the last two decades advances regarding
the clinical epidemiology and management of AF have been established (1–3). Recent evidence
indicates that both sex and gender play a role in the development and progression of cardiovascular
disease, drug reactions, and healthcare utilization (4–7). While sex refers to the biology; including
chromosomes, gene expression, hormone levels, and their function, gender comprises the socio-
cultural attributes; including socially constructed roles, behaviors, expressions, and identities (4–7).
In the field of AF, however, sex and gender implications remain understudied (2, 8–10). Notably,
the age-adjusted prevalence, incidence, and lifetime risk of AF are higher inmen than in women (1–
3). More specifically, it is suggested that several risk factors (hypertension, smoking, alcohol intake,
obesity, history of diabetes mellitus, history of myocardial infarction or history of heart failure),
carry a differential impact on AF risk in men and women (1, 8–11). It has also been suggested that
AF-related adverse outcomes and response to various treatment modalities differ between men and
women (1–3, 8–11). Nevertheless, AF remains to be a complex and heterogeneous disorder and a
comprehensive sex- and gender-specific approach to predict new-onset AF is lacking.
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The past decade has witnessed an exponential growth in
recorded data in the healthcare sector. The massive amount of
recorded information, i.e. big data, has turned to a topic of
special interest, because of its great potential. Leverage of big data,
using artificial intelligence (AI)-enabled approaches, provides
an opportunity to further improve prediction of AF (12, 13).
Use of various sources of big data such as electrocardiograms
(ECGs), electronic health records (EHRs), and wearable devices,
in particular in a sex- and gender-specific approach, could lead
to substantial advancements in AF prediction and ultimately
prevention. Here, we review the current status and highlight the
premise and potential of these data sources to improve sex- and
gender-specific prediction of new-onset AF.

LEVERAGING BIG DATA FOR PREDICTION

OF NEW-ONSET ATRIAL FIBRILLATION

Over the past decade, several AF risk prediction scores have
been developed and validated using more traditional research
methods (14–22). These prediction scores predominantly use
traditional cardiovascular risk factors such as age, sex, race,
height, weight, hypertension, diabetes mellitus, coronary heart
disease, and heart failure which are readily obtainable clinical
variables (14–22). In general, these scores have a moderate
to good performance (C-statistic ranging between 0.65–0.78)
(14–22). Over the past years, there has been an exponential
interest in using various big data sources to further improve
the AF risk prediction beyond the traditional AF risk factors
(23, 24). Specifically, multiple studies have employed AI-enabled
algorithms to evaluate new-onset AF prediction by leveraging
various big data modalities including the clinical data, ECGs,
EHRs, and wearable devices (23–42). Some of these studies
showed that AI-enabled AF prediction models performed similar
to or better than established traditional AF prediction models
(25, 27–30). Furthermore, targeted AF screening using a machine
learning (ML) risk prediction algorithm showed the potential
to enhance AF screening and to improve the cost-effectiveness
of AF screening through an efficient use of limited healthcare
resources (31).

A variety of studies have highlighted the potential predictive
capacity of AI to assess the risk of new-onset AF from a 12-
lead ECG with acceptable to excellent performance (area under
the receiver operating characteristic curve ranging between 0.70–
0.90) (32, 33). The potential of the ECG to predict AF might
be explained by the fact that the AF substrate is caused by
electrical and structural remodeling of the heart (2). AI-enabled
algorithms for ECG assessment could mark the very early
stages of remodeling, not yet being detected by the cardiologist
using routine measures, to predict new-onset AF. However,
previous studies mainly predicted new-onset AF risk within
a short time period (<1 year) (33). Thereby, their value for
primary prevention is limited, as the time window may not
be long enough to intervene in individuals at high AF risk.
In a recent study (32), a convolutional neural network for 10-
second ECG measures was trained to infer 5-year risk of new-
onset AF. The investigators concluded that their method had

similar predictive utility as the widely accepted clinical risk
factor model: the Cohorts for Heart and Aging Research in
Genomic Epidemiology AF score (CHARGE-AF) (14). Yet, the
combination of both (clinical risk factors and ECG) provided
the greatest predictive accuracy with good discrimination and
calibration. These findings underscore the capacity of AI-enabled
approaches to improve AF prediction in an inexpensive, non-
invasive, widely available, and point-of-care testing manner.

Two studies utilized EHRs to develop AF prediction models
(41, 42). EHRs contain real-time, patient-centered data that
are instantly available to patients and authorized healthcare
providers. The increasing digitalization of healthcare systems
makes EHRs more and more widely available, making them
particularly useful to predict new-onset AF. A recent study
developed an AF prediction model for a 6-month time period
using 200 most common EHR features of 2,252,219 individuals.
However, this ML approach did not substantially perform better
than a logistic regression model using traditional AF risk factors
(41). Another study developed a model to predict new-onset AF
over a 2-year time period with good discrimination (C-statistic
of 0.81) using a 10-variable model compromised of covariates
commonly available in the EHRs of 53,552 subjects. This study,
however, did not compare the developed prediction model to
previous validated AF risk prediction models (42). Another study
evaluated the improvement in 5-year AF risk prediction when
adding novel variables identified by ML to the CHARGE-AF
enriched score (27). Although this study was not conducted using
EHRs, it did include clinical, serological, echocardiographic,
and cardiac imaging information that are increasingly becoming
more available within EHRs. This method, however, did not
significantly improve AF prediction in comparison to the
CHARGE-AF enriched score (27).

The emergence of wearable devices constitutes another
major source to improve AF prediction and management
(23). Wearable devices often use photoplethysmography or
ballistocardiography to monitor an individual’s cardiac rhythm.
Other forms of wearable devices include cardiac implantable
electronic or patch-based ECG devices that have proven to be
useful in selected patient populations to detect AF or assess the
risk of stroke in AF patients beyond the CHA2DS2-VASc score
(43, 44). Such wearable devices are simple to apply and enable
real-time continuous monitoring of the heart. This makes the
use of wearable devices promising as one could use this electrical
information to predict new-onset AF. Nonetheless, the use of
wearable devices and AI algorithms is currently mainly limited
to AF detection rather than new-onset AF prediction.

PREMISE OF BIG DATA IN PREDICTION OF

NEW-ONSET ATRIAL FIBRILLATION

Leveraging big data by AI-enabled approaches could offer
great opportunities to improve AF prediction. First, AI
methods could be used to overcome statistical issues that are
potentially challenging in traditional approaches. In particular,
for complex diseases such as AF, simultaneous use of hundreds
of quantitative biomarkers may lead to problems such as
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multi-collinearity, non-linearity, complex interactions, and the
possibility of over-fitting (45–47). AI methods, including
random (survival) forest method, a non-parametric ML decision
tree-based approach, have been proposed to overcome such
challenges (45, 47). Second, AI approaches allow for data mining
purposes to automatically extract more valuable information
from unstructured and complex datasets to improve AF
prediction. Ultimately, use of AI would allow combination of
various extensive, annotated data libraries into multidimensional
datasets which include genotyping, imaging, clinical, and other
subphenotypic information. These multidimensional datasets
could be used to identify different AF subphenotypes which
then could be utilized to improve AF prediction, prevention,
and management in a potentially sex and gender-specific
manner. Particularly, the inclusion of multilayered high-
throughput omics data in such datasets seems promising,
given the vast contribution of genetic studies (genome-wide
association studies, experimental and in silico candidate gene
studies, and Mendelian randomization studies) to advance
AF pathophysiology. Recently, a data-driven cluster analysis
of 9,749 AF patients, using 60 clinical characteristics, led
to identification of 4 cluster AF phenotypes (48). The 4
AF phenotypes were: AF with limited risk factors, younger
AF patients with comorbid behavioral disorders, AF patients
with tachycardia-bradycardia with device implantation due to
sinus node dysfunction, and AF with atherosclerotic vascular
disease (48). Another cluster analysis of 2,458 AF patients,
using 46 variables, identified 3 cluster AF phenotypes including
younger paroxysmal AF, persistent/permanent AF with left
atrium enlargement, and atherosclerotic comorbid AF in elderly
(49). Another study used hierarchical clustering analyses to
identify distinct phenotypes of primary mitral regurgitation
which is also considered a heterogeneous disease, as it is the
case with AF (50). As such, AI applications could further aid in
improving subphenotypic AF classifications to further unravel
the complexity and heterogeneity of AF. Based on data-driven
approaches, rather than hypothesis-driven approaches with a-
priori assumptions, leverage of big data with AI methods can
also identify and prioritize AF biomarkers within the realm of
AF risk prediction.

POTENTIAL OF BIG DATA FOR SEX- AND

GENDER-SPECIFIC PREDICTION OF

NEW-ONSET ATRIAL FIBRILLATION

While big data sources such as ECGs, EHRs, and wearable
devices could improve AF prediction and management, their
potential for a sex- and gender-specific approach to AF needs
further attention.

In particular, recent electrophysiological evidence highlights
sex differences with regard to cardiac cellular electrophysiology
and their translation to the ECG parameters. It is well
documented that sex hormones affect the action potential
morphology and cellular electrophysiology through their
influence on ion channel function and current densities.
Specifically, men have a shorter action potential duration,

have a more prominent phase 1 repolarization, and shorter
phase 3 repolarization than women (51). It is hypothesized
that primarily inward depolarizing L-type Ca2+ current and
outward repolarizing K+ currents modified by sex hormones
are responsible for these sex differences in action potential
morphology. Moreover, women have a higher heart rate, lower
heart rate variability, shorter and taller P waves, shorter PR
interval, shorter and smaller QRS complexes, longer QT and
QTc interval, longer JT interval, wider and smaller T waves,
smaller J point, and smaller ST segment in comparison to
men (51). From a clinical perspective, the longer QTc interval
in women makes women more prone to drug-induced QTc
prolongation which may result in torsades de pointes (51).
The higher J point and ST segment in men may explain the
higher prevalence of J-wave syndromes (Brugada syndrome, and
early repolarization syndrome) in men (51). Next to these sex
hormones’ modulations on a cellular level, it is thought that the
smaller size of the women’s heart, at least partially, explains some
of the documented ECG sex-differences. Noteworthy, these sex
differences in sinus rhythm generally persist when men and
women develop AF (52).

EHRs hold real-time, patient-centered data from men and
women that reflect sexual and biological differences such as
obesity and hypertension, among others. However, lack of
precise and inclusive documentation of gender, the socio-
culturally constructed characteristics of men and women, in
EHRs is notable (7, 53). Although, gender documentation may
be incomplete in the narrow sense (no actual documentation
of i.e. cis-, trans-, or non-binary gender identity), EHRs
provide more information in a broad sense on socio-cultural
habits, thereby representing gender. More specifically, EHRs
could provide information on socio-culturally determined
characteristics, roles or habits; including but not limited to socio-
economic status, physical and social behaviors that influence
e.g. physical activity, social interaction, medication use and
adherence to medication, and healthcare use (5–7). Such
information could shed more light on gender-related factors
that may impact AF. With regards to wearable devices, previous
evidence has shown a higher burden of atrial and ventricular
arrhythmia in women using a wearable cardioverter-defibrillator,
compared to men (54). This is in line with the evidence
underpinning the existence of sex-specific ECG features, as
mentioned earlier. In addition, similar to EHRs, wearable devices
may give more insight into gender-related behavioral habits
including physical activity, working hours, sleep, caloric and
fluid intake, and other social activities. The latter variables
have indeed been suggested to be of added value when
modeling sex and gender differences in various health domains,
although data to support this claim within the AF field is
lacking (55).

The sex-related dimensions in ECGs, and gender-related
features in EHRs and wearable devices, as discussed earlier,
are recognizable and should yet be fully explored to improve
AF prediction and management. AI-enabled algorithms may
be able to detect more sex-specific characteristics and gender-
related behavioral patterns within these big data sources that
might not be apparent on a more macroscopic level or by using
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traditional statistical methods. This may eventually improve our
understanding of sex- and gender-related differences in AF.

DISCUSSION

This review highlighted the current status, premise, and potential
of big data to improve prediction of new-onset AF in a sex-
and gender-specific manner. While leveraging big data using AI-
enabled algorithms offers major opportunities to further advance
AF prediction, adoption of a sex- and gender-specific approach is
still lacking.

Ample challenges remain before AI-enabled algorithms can
be adopted for prediction, prevention, and management of AF.
First, the interpretability (transparency and explainability) of AI
and exact definition of how all the different methods work is yet
difficult (56). This so called “black box” is dependent on the type
of AI algorithms that is being used (in particularly deep learning).
Application of such algorithms warrants careful and thorough
examination of the methods before their implementation,
because an algorithm that is intransparent and/or unexplainable
may lead to erroneous conclusions that could potentially
harm a patient. Second, validation and calibration of AI-
enabled algorithms for AF prediction while using external data
sources are essential before such algorithms could be widely
adopted, implemented, and used within the AF field. Third,
the classification codes of clinical variables, drugs, and diseases
in different countries and hospitals are different. This leads to
challenges with regard to data extraction and harmonization.
Careful standardization to harmonize the data, derived from
multiple sources, and to integrate all the data modalities within
a multidimensional dataset is warranted. Fourth, various ethical
issues such as privacy, transparency, informed consent, and

trust should be taken care of, and the potential for criminal
and malicious use and contested ownership of data should
be carefully considered (57). Lastly, rigorosity of AI-enabled
algorithms depends on the objectivity, quality, and size of the
data used to train them. False, low quality, non-representative
study sample, and/or missing data will result in invalid models,
while also limiting the generalizability of such models (58). This
latter limitation is in particular of concern, as it further magnifies
the sex and gender inequalities that already exist within research.

Large, diverse, and multidimensional data sources carry
the potential to improve AF prediction and management. Yet,
various challenges remain before AI-enabled algorithms
can be adopted and implemented. Enhancement of
personalized and precision medicine in AF warrants
taking into account the complexity of sex and gender
dimensions in big data sources and methods, while also
overcoming the challenges that currently accompany the use of
AI-enabled algorithms.
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