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Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are newly emerging

insulin-independent anti-hyperglycemic agents that work independently of

β-cells. Quite a few large-scale clinical trials have proven the cardiovascular

protective function of SGLT2is in both diabetic and non-diabetic patients. By

searching all relevant terms related to our topics over the previous 3 years,

including all the names of agents and their brands in PubMed, here we review

the mechanisms underlying the improvement of heart failure. We also discuss

the interaction of various mechanisms proposed by diverse works of literature,

including corresponding and opposing viewpoints to support each subtopic.

The regulation of diuresis, sodium excretion, weight loss, better blood pressure

control, stimulation of hematocrit and erythropoietin, metabolism remodeling,

protection from structural dysregulation, and other potential mechanisms of

SGLT2i contributing to heart failure improvement have all been discussed

in this manuscript. Although some remain debatable or even contradictory,

those newly emerging agents hold great promise for the future in cardiology-

related therapies, and more research needs to be conducted to confirm

their functionality, particularly in metabolism, Na+-H+ exchange protein, and

myeloid angiogenic cells.

KEYWORDS

heart failure, mechanisms, metabolism, sodium-glucose cotransporter 2 inhibitors

(SGLT2is), diabetes

Introduction

Heart failure, a chronic pathological condition, is a universal prevailing disease, with

more than 26 million sufferers (1). It has come to light that several factors are attributed

to the heart failure process, including disorders of the structure, function, rhythm, and

conductive systems (2). Such abnormal diseases place a tremendous cost on society and

the economy. Thus, we should give sufficient emphasis to seeking more economical and

effective treatment techniques for heart failure.

SGLT2is, a new class of oral anti-hyperglycemic agents, were required by the U.S.

FDA to undergo cardiovascular safety testing prior to being officially marketed. The

outcomes exceed expectations—SGLT2is have shown unexpected cardiorenal protection

in both heart failure with reduced ejection fraction (HFrEF) and heart failure with

preserved ejection fraction (HFpEF) in several clinical trials (3–7), which have been

detailed in Table 1. As a result, SGLT2is are recommended as one of the fundamental
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treatments for heart failure in recent guidelines, particularly the

2022 AHA/ACC/HFSA one (8). Together with ACEI/ARNI, BB,

and MRA, they are collectively called “new quadruple therapy.”

It is noteworthy that SGLT2is can be applied across the entire

stages of heart failure management, even if in the at-risk stage

for heart failure.

Those clinical trial results are groundbreaking. Thus,

researchers have conducted quite a few studies concerning the

cardioprotective function of SGLT2is. It has been thoroughly

researched in the regulation of diuresis, sodium excretion,

weight loss, blood pressure improvement, hematocrit and

erythropoietin stimulation, metabolism remolding, protection

from structural dysregulation, etc. Some of them have been

sophisticatedly proven, but the in-depth mechanisms and

some other recently emerging mechanism theories such as

Na+-H+ exchange protein and myeloid angiogenic cells

remain vague.

Thus, this manuscript reviews these newly emerging

studies from the perspectives of natriuresis, weight loss,

blood pressure reduction, etc., containing all the research

that may be concerned with this topic during the past

3 years so as to identify the potential mechanisms and

provide a full landscape of its benefits to patients with

heart failure.

The anti-hyperglycemic
mechanisms of SGLT2i

The maximum transport capacity (Tmax) of the proximal

tubule in humans is 500 g of glucose per day under normal

conditions. Thus, as blood circulates through, almost all

glucose will be reabsorbed. When blood glucose levels are

above a certain threshold, which implies they are higher

than the renal tubules’ capacity to reabsorb glucose, glucose

starts to show up in the urine and is then expelled

(9, 10).

The active transporters or symporters (SGLTs) and the

facilitated transporters or uniporters (GLUTs) are two different

types of glucose transporters that are known to contribute

to glucose homeostasis (11). The SGLT family contributes

to the active absorption of glucose/galactose in the site of

the intestine as well as the reabsorption of glucose in the

kidney (12). SGLT receptors are categorized into six types

in human bodies (11). SGLT1/2 are mainly enriched in the

kidney, while SGLT2, a symporter for Na+ and glucose, plays

a considerable role during glucose reabsorption in the kidney

(11). The new anti-hyperglycemic drug SGLT2i directly binds

to the corresponding receptor to curb the reabsorption of

glucose at the site of the proximal convoluted tubule, and the

unabsorbed part is excreted from the body, thereby achieving

the effect of blood sugar lowering (Figure 1, which was created

with BioRender.com).

Underlying mechanisms of SGLT2i’s
benefits to patients with heart failure

Diuresis and natriuresis

The course and prognosis of heart failure are closely tied

to sodium and water retention, which is responsible for 90% of

heart failure hospitalizations (13). Water and sodium retention

result from reduced circulation, decreased renal blood flow,

and elevated aldosterone when the heart’s pumping capacity

is compromised (14). Furthermore, the blood detained in vein

vessels will seep into the interstitial fluid under the pressure of

capillaries, and those penetrative fluids remain there when the

volume of the fluids exceeds the surrounding cells’ abilities of

absorption (remarkably, the fluid in lower limbs) (15).

In terms of its mode of action, SGLT2i is distinct from

traditional diuretics. With the application of SGLT2i, glucose

reabsorption is hindered at the site of renal tubules, and

therefore the unabsorbed portion will flow into the distal

nephron. However, water can still be reabsorbed unimpededly

as usual during this period. Thus, the reduction of the osmotic

gradient leads to a decrease in water reabsorption, termed

osmotic diuresis (16). One of the critical factors in a significantly

reduced rate of heart failure deterioration is a decrease in

circulation volume, which is caused by the natriuretic action

of SGLT2i. But the eyes-catching role of diuresis in the process

of heart failure has been undermined by another large clinical

trial which concludes that patients with a high propensity for

fluid retention show no remarkably extra benefits compared

to the control group under the application of empagliflozin

(17). Beyond this diuresis function, an additional independent

element during the progression of heart failure may be the

improvement of pulmonary artery diastolic pressure (18).

On the other hand, prior research has shown that diabetes

patients have higher sodium levels in their skin and muscles

(19). Moreover, tissue sodium is closely linked to ventricular

hypertrophy regardless of blood pressure and water-sodium

retention conditions. It is reported that the application of

dapagliflozin for 6 weeks can decrease tissue sodium in patients

with T2DM (20) compared to control groups, thereby reducing

the risk of left ventricular hypertrophy and chronic heart failure.

In contrast, in an emergency scenario, increased glycosuria

rather than natriuresis, with SGLT2i utilization, contributes to

improving the patient’s state (21).

Reduction of body weight and fat content

Excessive adipose tissue exerts vital functions in the onset

and progression of heart failure (22). Several studies have

revealed that SGLT2i plays a crucial part in weight shedding

during its pharmacological action in both types of diabetes

(23–25), and the baseline body mass index will not impair
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TABLE 1 Contribution of SGLT2i to heart failure in major clinical trials.
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Year of publication 2015 2017 2019 2019 2019 2020 2020 2020 2021 2021 2021 2021

Region 42 countries 30 countries 33 countries 20 countries 34 countries 20 countries UK UK 23 countries Denmark USA 32 countries

Characteristics of

population

T2DM T2DM T2DM HFrEF with and

without T2DM

(NYHA class

II-IV)

T2DM with

kidney disease

HFrEF with and

without T2DM

(NYHA class

II-IV)

HFrEF with

T2DM

HFrEF with

T2DM (NYHA

class I-III)

HFpEF with

and without

T2DM (NYHA

class II-IV)

HFrEF, with

and without

T2DM (NYHA

class I-III)

HFpEF with

T2DM or

pre-diabetes

(NYHA class

II-IV)

T2DM with

recent

worsening HF

Drugs Empagliflozin Canagliflozin Dapagliflozin Dapagliflozin Canagliflozin Empagliflozin Empagliflozin Dapagliflozin Empagliflozin Empagliflozin Dapagliflozin Sotagliflozin

(SGLT1/2i)

Number of participants, n 7,020 10,142 17,160 4,744 4,401 3,730 23 56 5,988 391 324 1,222

Median follow-up, years 3.1 3.6 4.2 1.5 2.62 1.34 0.15 1 2.18 2 0.23 0.75

Mean age, years old 63 63.3 63.9 66.2 63.0 67.2 69.8 67.1 71.8 68 70.0 70.0

Gender, male% 71 64.2 63.1 76.2 66.1 76.5 73.9 66.1 55.4 78 43 66.3

Mean BMI, kg/m2 30.6 32.0 32.1 28.2 31.3 28.0 33.9 32.5 29.77 29 34.7 30.4

HbA1c, % 8.06 8.3 8.3 N/A 8.3 N/A 7.9 7.72 N/A 5.8 6.1 7.1

CVD risk factor, % 99 65.6 40.5 100 50.4 100 100 100 100 100 100 100

Prior HF, % 10 13.9 9.9 100 14.8 100 100 100 100 100 100 100

3P-MACE* 0.86 (0.74–0.99) 0.86 (0.75–0.97) 0.93 (0.84–1.03) N/A 0.80 (0.67–0.95) N/A N/A N/A N/A N/A N/A 0.72 (0.56–0.92)

CV death* 0.62 (0.49–0.77) 0.87 (0.72–1.06) 0.98 (0.82–1.17) 0.82 (0.69–0.98) 0.78

(0.61-−1.00)

0.92 (0.75–1.12) N/A N/A 0.91 (0.76–1.09) N/A N/A 0.84 (0.58–1.22)

Non-fatal myocardial

infarction*

0.87 (0.70–1.09) 0.85 (0.69–1.05) 0.89 (0.77–1.01) N/A N/A N/A N/A N/A N/A N/A N/A N/A

Non-fatal stroke* 1.24 (0.92–1.67) 0.90 (0.71–1.15) 0.73 (0.61–0.88) N/A N/A N/A N/A N/A N/A N/A N/A N/A

CV death or HHF* 0.66 (0.55–0.79) 0.78 (0.67–0.91) 0.83 (0.73–0.95) 0.75 (0.65–0.85) 0.74 (0.63–0.86) 0.75 (0.65–0.86) N/A N/A 0.79 (0.69–0.90) N/A N/A 0.67 (0.52–0.85)

All-cause mortality* 0.68 (0.57–0.82) 0.87 (0.74–1.01) 0.93 (0.82–1.04) 0.83 (0.71–0.97) 0.83 (0.68–1.02) 0.92 (0.77–1.10) N/A N/A 1.00 (0.87–1.15) N/A N/A 0.82 (0.59–1.14)

HHF* 0.65 (0.50–0.85) 0.67 (0.52–0.87) 0.73 (0.61–0.88) 0.70 (0.59–0.83) 0.61 (0.47–0.80) 0.69 (0.59–0.81) N/A N/A 0.71 (0.60–0.83) N/A N/A 0.64 (0.49–0.83)

HbA1c changes, %* N/A −0.58 (−0.61 to

0.56),

−0.42

(0.40–0.45)

−0.24 (−0.34 to

−0.13)

−0.31

(0.26–0.37)

−0.16 (−0.25 to

−0.08)

N/A −1.49 (−6.95 to

3.97)

N/A −3.9 (−6.8 to

−1.1)

N/A N/A

Serum creatinine changes,

mg/dL*

N/A N/A N/A 0.02 (0.01–0.03) N/A N/A −1.66 (−3.07 to

−0.25)

1.46

(−5.56–8.47)

N/A 2.1 (−2.3–6.4) N/A N/A

Hemoglobin changes,

g/dL*

N/A N/A N/A N/A N/A N/A N/A 0.86 (0.27–1.46) N/A 0.4 (0.2–0.5) N/A N/A

Hematocrit changes, %* N/A N/A N/A 2.41 (2.21–2.62) N/A 2.36 (2.08–2.63) 0.018 (−0.05 to

0.042)

2.89 (1.14–4.64) N/A 0.02 (0.01–0.03) N/A N/A

NT-proBNP changes,

pg/ml*

N/A N/A N/A −303 (−457 to

−150)

N/A 0.87 (0.82–0.93) 283.4 (−835.8–

1,402.3)

N/A N/A N/A 0.99 (0.88–1.12) N/A

Weight/ BMI changes (kg,

m/kg2)*

N/A −1.60 (−1.70 to

−1.51)

−1.8 (1.7–2.0) −0.87 (−1.11 to

−0.62)

−0.80

(0.69–0.92)

−0.82

(1.18–0.45)

−1.71 (−2.90 to

−0.53)

N/A N/A −1.4 (−2.3 to

−0·6)

−0.72 (−1.42 to

−0.01)

N/A

Systolic blood pressure

changes, mmHg*

N/A −3.93

(−4.30–3.56)

−2.7 (2.4–3.0) −1.27 (−2.09 to

−0.45)

−3.30

(2.73–3.87)

−0.7 (−1.8 to

0.4)

−6.8 (−17.6 to

4.0)

−4.7

(−14.51–5.11)

N/A −5.4 (−9.3 to

−1.6)

−0.6 (−4.4 to

3.3)

N/A

*Hazard Ratio or Absolute difference (95% CI).

BMI, body mass index; HbA1c, hemoglobin A1c; CVD, cardiovascular diseases; HF, heart failure; 3P-MACE, cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke; HHF, hospitalization for heart failure; NT-proBNP, N-terminal

pro–B-type natriuretic peptide.
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FIGURE 1

The anti-hyperglycemic mechanism of SGLT2i. In normal status, glucose and Na+ can be e�ciently reabsorbed at the site of the proximal

convoluted tubule to maintain glucose homeostasis. Once applied with SGLT2i, such reabsorption will be inhibited, thereby leading to diuresis

and natriuresis.

the effectiveness of SGLT2i, contrary to what is known as the

“obesity paradox” (26).

Attributed to the calories loss caused by the excretion of

glucose (27) and enhanced hypothalamic insulin responsiveness

(28), the application of SGLT2i can significantly reduce the

weight of patients, leading to the reduction of total fat mass,

subdermal fat, visceral fat, and liver fat content (29–33).

What’s more, it has been revealed that SGLT2i can reduce

the size of adipocytes in the perivascular adipose tissue (34)

and be capable of inducing mitochondrial biogenesis through

the AMPK/SIRT1 pathway and β3-adrenoceptor-cAMP-PKA

signaling pathway, thereby increasing the energy consumption

of adipocytes directly in vivo (35–37). Some researchers believe

that it is possible to achieve pounds shedding by inducing
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the beigeing of fat (38), while beigeing refers to a specific

metabolism remolding of fat tissue (39). Additionally, a recent

study reveals that the activated innervation of intra-adipose

sympathetic induced by SGLT2i in mice with a high-calorie

diet also contributes to such an increased energy consumption

(37, 40). Fibroblast growth factor 21 (FGF21) is a coordinator

for the SGLT2i-dependent decline in adiposity and the trigger of

lipolysis during weight loss (41). This mediator can perform a

role in the activation of the nervous system, thereby achieving

the biological effect of white/brown adipose tissue and the

induction of thermogenesis (40, 42).

This weight loss impact does not last indefinitely; it

progressively reaches a plateau between 24 and 52 weeks. These

phenomena may be explained by the fact that adipose tissue has

an anti-lipolytic function, and the decline in leptin levels has

boosted compensatory eating (43–45). Such increased intake is a

higher calorie intake (46) with a constant proportion of nutrients

as previously, although those intake calories are ultimately

countered by glucose loss (28, 47). Figure 2, which was produced

using BioRender.com, shows intricate mechanisms. Therefore,

although SGLT2i cannot permanently treat obesity, lowering

body weight and fat percentage may still positively affect the

cardiovascular system.

Improvement of blood pressure

The blood volume in the body is tightly connected to blood

pressure levels. Nevertheless, it has been observed that volume

changes and urinary sodium excretion, under the application

of SGLT2i, do not significantly lower blood pressure (48),

suggesting that additional processes may have been at work

throughout this blood pressure-lowering process.

In clinical trials, the 24 h ambulatory blood pressure shows

a slight reduction among people suffering from nocturnal

hypertension, diabetes, or salt sensitivity with the application of

SGLT2i, thereby lowering the incidence of heart failure and the

tolls of cardiovascular mortality (49). Such an efficacy may be

achieved by regulating renal HIF-1α, impairing inflammation

and oxidative stress (50), regulating the function of the

paraventricular nucleus of the hypothalamus (PVN) (51), and

sGC pathways (52). A meta-analysis of 43 RCT studies reveals

that under SGLT2i treatment, patients’ systolic blood pressure

(SBP) decreases by a mean of 2.46 mmHg and diastolic

blood pressure (DBP) by a mean of 1.46 mmHg (25, 53),

while another meta-analysis confirms that SGLT2i significantly

reduced 24 h dynamic SBP and dynamic DBP, and such

an effect is concluded as SGLT2i-like effect (54). Therefore,

SGLT2i generates cardiovascular benefits by reducing blood

volume, lowering blood pressure, and improving ventricular

load through its diuretic and natriuretic effects. In themeantime,

it also exerts cardiovascular effects by regulating the central

nervous system and affecting PVN.

Promotion of hematocrit and
erythropoietin

An endogenous glycoprotein hormone called erythropoietin

(EPO) can promote erythropoiesis (More details on this concept

have been fully explicated in the reviews by Lappin, T.R. and

Koury, M.J.) (55, 56). EPO is mostly produced by the kidney

and in minor quantities by the liver. At the same time, a hypoxic

environment will trigger its production. Moreover, the values of

hematocrit and hemoglobin within normal ranges are negatively

correlated to the incidence or prognosis of cardiovascular

diseases (57–60). EPO and hematocrit significantly rise after

using empagliflozin for 1–6 months, causing a continuous rise

in blood cells that peaks in 2–3 months (29, 61, 62), and this

tendency is independent of the initial levels of anemia (63).

These changes in EPO and hematocrit can be elaborated as

follows: (1) Decreased plasma volume and blood concentration

induced by osmotic diuresis (64), but some hold the

contradictory view (2) Increased erythropoiesis and hematocrit

via inhibiting hepcidin and regulating other iron regulatory

proteins (65), (3) The application of SGLT2i can reduce the

reabsorption of glucose and reduce the expensed ATP in

Na+/K+ pumps, thereby decreasing the metabolic load of

the EPO-related cells and improving the status of hypoxia.

To a certain extent, such an improvement of hypoxia restores

myofibroblasts back to erythropoietin-producing fibroblasts,

leading to enhanced hematopoietic function and increased

hematocrit (64, 66, 67), (4) Inhibition of SGLT2 will induce the

activity of HIF and SIRT1. The HIF-2α activation in the kidney

and liver can promote the production of erythropoietin (68) and

strengthen the activation of SIRT1, resulting in modification of

macrophage polarization which promotes anti-inflammatory

phenotypes and impairs myocardial inflammation (69). (5) In

vivo, it has also been observed that dapagliflozin can increase

endogenous antioxidant enzymes and regulate fibrosis markers

in renal tissues, thereby reducing the oxidative stress of

rat kidneys.

Improvement of cardiac energy
metabolism

Incessant contraction of the heart requires enough energy

to support. Previous studies (70) have concluded that when

the heart goes through the process of failing, abnormalities in

cardiac energy metabolism, particularly in advanced stages, will

occur, often manifested as increased glucose intake (mainly on

anaerobic glycolysis) (71–73), reduced fatty acid oxidation, and

decreased ketone oxidation, coincident with severely impaired

mitochondrial function, leading to an overall depleting ATP

content (More on the metabolic profile of the failing heart can

be found in the reviews by Stanley et al. (70). Thus, it is essential
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FIGURE 2

Mechanisms of weight loss. Full view of how SGLT2i a�ects adipocytes—how to reduce the size, and how to stimulate its transformation to

beige adipocytes, as well as how it makes the body pounds shed directly via calories loss. Consequently, the subcutaneous, visceral, and

perivascular fat content decreases under the treatment of SGLT2i.

to shift the substrate preference to satisfy such a pathological

energy demand. However, such an alternation comes with a

price—patients may be trapped in a vicious circle that worsens

their more advanced heart failure.

The chief role SGLT2i plays in the metabolism of a failing

heart is to improve the overall cardiac ATP production through

the increased consumption of fatty acids, ketone bodies, and

amino acids, with a concomitant decrease in glucose utilization

(73, 74). Quantitatively, it can increase the overall ATP content

by∼30% (75). Concerning glucose metabolism, SGLT2i-treated

heart failure models show a reduced intake of cardiac glucose

and a decreased level of metabolism-related enzymes, mainly

shifting the substrate preference to ketone bodies, free fatty

acids (73). Also, SGLT2i improves glucose tolerance and

insulin resistance via several mechanisms such as inflammasome

suppression (76), while the plasma insulin has been down-

regulated and the glucagon shows a rise (37, 41, 77).

Inmitochondrial dysfunctionmodels, the improved potency

of fatty acid oxidation, the reduced aggregation of fatty acid

intermediates, as well as the improved synthetic efficiency

of mitochondrial bioenergy are attributed to the function

of SGLT2i, thereby enhancing the oxidation of the fatty

acids in cardiac mitochondria and, as a result, avoiding

mitochondrial failure (36, 78–80). A similar trend has also

been observed in clinical trials (74). From another perspective,

both in vitro and in vivo, SGLT2i has been confirmed to

act as an activator of the AMPK signaling pathway to

regulate metabolism, ameliorate inflammation, and maintain

mitochondrial homeostasis (81–83).

SGLT2i can upregulate the plasma ketone levels, in part,

mediated by the reduced plasma glucose levels and decreased

insulin levels (41), coincident with a climb in free fatty acids

(84, 85). As a result of the ongoing disorder of glucose, the failing

heart becomes more dependent on ketone bodies to serve as

extra fuel (86, 87). It will simulate a pseudo fasting state and give

priority to the utilization of ketone bodies (29, 80, 88, 89). Such

an effect of ketone bodies production is directly induced without

other factors’ mediation (90). SGLT2i also upregulates ketogenic

enzymes and transporters in livers, kidneys, and intestines,

which, accordingly, increases the level of beta-hydroxybutyric

acid in the bodies and tissues (91). However, this promising

hypothesis remains debatable and controversial due to the

absence of further cogent and robust evidence (92). Some

find that the efficiency of ketone bodies oxidation remains

approximately unchanged under the application of SGLT2i

and believe that the increased production of ATP benefits,

in part, from the extra supplement of ketone bodies (75).

Nevertheless, some researchers observe the contradictory results
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that bioavailability and oxidation have been increased by SGLT2i

(93). This vague issue requires more research to tackle with.

And such an increase in ketone bodies may, in turn, bring about

worries about diabetic ketoacidosis, which is worthy of caution

during its application.

Alleviation of inflammation

As both a cause and a result of cardiovascular diseases,

inflammatory cytokines, such as interleukin-1 (IL-1),

interleukin-6 (IL-6), tumor necrosis factor (TNF), galectin-3,

and others, have a very significant positive link with the

pathophysiology and development of these conditions (94). The

inflammatory profile of heart failure has been well-illustrated

in the reviews by Murphy et al. (95) and Adamo et al. (96).

Inflammasomes were initially reported as a kind of complex for

caspase-activator (97). Moreover, now, they are referred to as

multiprotein signaling complexes, including NOD-like receptor

1 (NLRP1), NOD-like receptor 3 (NLRP3), NOD-like receptor

6 (NLRP6), absent in melanoma 2 (AIM2), etc., which regulate

inflammatory processes as well as anti-pathogen defenses

(98, 99), inducing an increase in pro-inflammatory cytokines

(100, 101). Those factors have a close connection with impaired

blood vessels (102), disordered mitochondrial function (103),

elevated oxidative stress, deteriorated hypertension (104),

progressed atherosclerosis (99, 105), and advanced myocardial

damage (106), etc.

Inflammatory cytokines and inflammasomes can both be

suppressed by SGLT2i. To be more specific, it has been

confirmed in rodent models that the crucial inflammasome

NLRP3, a complex of caspase-1, IL-1β, and IL-18 cytokine-

triggering factors (76, 101, 107), can be suppressed under the

application of SGLT2i (108–110), which is, in part, calcium-

mediated (105, 109). Several studies have shown that the AMPK

pathway can restrain the increase of inflammasomes (111), and

treatment with SGLT2i can bring about a climb of AMPK

phosphorylation in LPS-treated cardio-fibroblasts (69), thereby

avoiding the consequently augmented inflammation.

From another perspective, β-hydroxybutyrate also plays a

significant role in regulating inflammasomes and inflammatory

cytokines. Oscillated levels of β-hydroxybutyrate and insulin

go hand in hand with inflammation (or inflammasome) levels.

It has been established that SGLT2i can increase the β-

hydroxybutyrate levels (discussed in the previous section), and

this climb acts as a defender against endoplasmic reticulum

stress-related inflammasomes via the activation of AMPK (111).

However, some researchers believe this regulation is not AMPK-

dependent. They reveal that the suppressive function of β-

hydroxybutyrate on inflammasomes has nothing to do with

fasting-related mechanisms such as AMPK, ROS, or other

factors. Instead, it works by reducing the apoptosis-associated

speck-like protein containing CARD (ASC) oligomerization

and speck formation (112, 113), and this can be mediated

through the G-protein-coupled receptor 109a (Gpr109a)–

NLRP3 pathway associated with the increased influx of

extracellular calcium (105). Furthermore, β-hydroxybutyrate is

able to regulate mitochondrial protein acetylation, lowering the

levels of NLRP3 and inflammatory cytokines, thus achieving the

benefits in HFpEF models (103).

The most logical explanation for how SGLT2i reduces

inflammation seems to be that inflammation is closely associated

with hyperglycemia (114–117), and these negative effects will

be lessened as soon as the glucose level falls. Recently, more

attention has been paid to the regulation of insulin, which is

regarded universally as an anti-inflammatory factor in most

cases (118–120). However, recent studies report that in some

specific circumstances, insulin can trigger the pro-inflammatory

pattern of macrophages, thereby contributing to a climb in

IL-β mediated by activated inflammasome and overproduction

of ROS (121, 122). Such a function of insulin has been

validated in a clinical setting by other research conducted by

La Grotta et al. (123). Likewise, given the glucose-lowering

function of SGLT2i, the insulin shows a decrease along with the

dropped levels of blood glucose correspondingly, contributing

to the avoidance of progressed inflammation and increased

inflammasome. Moreover, alleviated insulin resistance, which

has been mentioned above, also brings benefits to inflammation

reduction, because the insulin resistance status possesses strong

links with pro-inflammatory and inflammatory states (124–126).

So, insulin-related mechanisms can at least partially mediate

SGLT2i’s ability to suppress inflammation.

Reduction of oxidative stress

Oxidative stress is a biological process characterized by

high levels of free radicals that is accompanied by detrimental

consequences (127, 128). It is well-known that a high level of

blood glucose can induce oxidative stress intracellularly (129,

130), and such a stress-related function is negatively correlated

with the level of HbA1c (131). SGLT2i can significantly

contribute to the reduction of oxidative stress through a variety

of mechanisms besides blood sugar lowering in its capacity as an

anti-hyperglycemic drug.

Both in vivo and in vitro, it is reported that SGLT2i can

attenuate cell apoptosis induced by endoplasmic reticulum

stress (132–136). This process may be mediated by the

curbed TGF-β/Smad pathway (137, 138) and the activated

Nrf2/ARE signaling (139). Furthermore, SGLT2i use can

eliminate intracellular ROS, block ROS-activated signaling

pathways, and improve the hyperglycemic state in this process

as well (140, 141). It can also normalize the size and

quantity of mitochondria by regulating autophagy and reducing

mitochondrial abnormalities attributed to myocardial infarction

(142). What’s more, SGLT2i is able to suppress inflammatory
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factors and oxidative stress by inhibiting the NO-sGC-cGMP

pathway and curbing the polymerization of PKGIa (141, 143).

Therefore, the methods above, as well as SGLT2i-mediated

suppression of endoplasmic reticulum stress-induced apoptosis,

can support cardioprotective function in heart failure.

Reduced sympathetic hyperexcitability

In patients with T2DM, hyperglycemia and

hyperinsulinemia often lead to sympathetic hyperexcitation,

which consequently results in aggravated hypertension and an

increased occurrence of other cardiovascular diseases (144–

146). Contrary to our expectations, the heart rate, under the

effects of those mechanisms above, including diuresis, decreased

blood volume, and decreased blood pressure, has not shown

a significant increase, suggesting that SGLT2i can reduce the

heart rate of patients with a heart rate faster than 70 bpm (147).

It may have the potential effect of inhibiting sympathetic nerve

excitation. This role can be described as a “mediator” of SGLT2i

to produce cardiovascular benefits.

In vivo, dapagliflozin significantly improves mice’s blood

pressure and endothelial function via reduced excitability of

the sympathetic nervous system and down-regulated IL-6 (148).

Interestingly, such a function goes hand in hand with the

natriuretic effect of SGLT2i rather than its sugar-lowering

function (149). At the same time, it is well-known that SGLT2

receptors are mainly enriched in the tissues of the central

nervous system involved in autonomous regulation, and SGLT2i

may affect the central nervous system in an uncharted way,

exerting a sympathetic inhibition effect (51). In clinical trials of

those who suffer from acute myocardial infarction with T2DM,

the application of SGLT2i for 24 weeks improves sympathetic

hyperexcitability and parasympathetic nerve function through

changes in hemodynamics, myocardial energy metabolism, and

function of the hepatic vagus nerve (150). On the other hand,

from the perspective of cardiorenal syndrome, SGLT2i can also

indirectly suppress sympathetic hyperexcitability by improving

renal function.

However, there are limited clinical studies on how SGLT2i

affects the sympathetic nervous system in the human body, and

further clinical studies are required to be conducted.

Improvement of left ventricular
remodeling and myocardial necrosis

It has been reported that SGLT2i can prevent and delay

heart remodeling (135, 151–153), thereby protecting against the

deterioration of heart failure.

In various animal models, SGLT2i shows the ability to

prevent atrial remodeling, electrical remodeling (154, 155),

and endothelial dysfunction (156–158). SGLT2i is confirmed

to be capable of delaying the progression of left ventricular

concentric hypertrophy in aorta cells by reducing sympathetic

nerve tension and inflammation in the aorta (159). At the same

time, the left ventricular systolic and diastolic functions have

been enhanced, and the stiffness of cardiomyocytes has been

improved (160, 161). Additionally, SGLT2i directly affects the

phenotype and function of human cardiac myofibroblasts by

weakening their activities and regulating cell-mediated collagen

remodeling. Also, it can regulate the PERK-eIF2α-CHOP axis

and activate the SIRT1 pathway (135, 162), thereby improving

cardiac remodeling and heart failure.

On the other hand, SGLT2i can also exert a cardioprotective

effect on patients suffering from myocardial infarction,

preventing heart failure after that occurrence. It can reduce

the infarct area (163, 164) independently of the blood sugar

state, improving the heart function, remodeling, and metabolic

state after myocardial infarction, etc. (93, 165, 166). However,

cardiomyocytes chiefly express SGLT1 and seldom express

SGLT2. It has been reported that specific knockdown of SGLT1

can reduce the infarct size in mice through function with

EGFR (167), and SGLT1 knockdown can also ameliorate

cardiac fibrosis and pyroptosis in vivo (168, 169), suggesting the

potential ability of SGLT1 to provide cardiovascular benefits.

So, is there a possibility that SGLT1/2i will have more beneficial

impacts compared with SGLT2i? The SOLOIST-WHF trial

shows that SGLT1/2 brings great benefits to the patients (which

has also been detailed in Table 1), but whether SGLT1/2i is

superior to SGLT2i or not remains unclear. Moreover, what is

worth mentioning is that dual inhibitors of SGLT1/2 have been

reported to exacerbate cardiac dysfunction after myocardial

infarction in rats (170), which contradicts the assumption and

clinical trials. The underlying reason for such a phenomenon

requires additional preclinical research.

Inhibition of Na+-H+ exchange protein

It has been revealed that empagliflozin can curb the activity

of NHE1 (Na+/H+ Exchange Protein 1) in the hearts of

mice, rats, and rabbits, thereby reducing the concentration

of sodium and calcium in cardiomyocytes (171–173). Also, it

can function as a direct cardiac effect to inhibit the NHE of

the isolated intact heart and delay the occurrence of ischemic

contracture of the heart in the absence of insulin (174).

Similarly, empagliflozin can reduce the calcium sensitivity of

human myocardial myofilament (175), improving the diastolic

dysfunction of the human myocardium and inhibiting NHE in

human bodies. By and large, SGLT2i successfully reduces the

amount of Na+ entering cells by inhibiting NHE1 and improves

the contractile dysfunction in heart failure by normalizing

the intracellular pH, thereby producing cardiovascular benefits.

However, there are some opposite voices that the activity

of cardiac NHE1 will not be influenced by empagliflozin or
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FIGURE 3

Full view of SGLT2i in heart failure.

other SGLT2i, as under the application of therapeutic doses,

empagliflozin shows no regulatory effect on the concentration of

Na+ (176). They believe that the role of SGLT2i in heart failure

should not be interpreted as being mediated by myocardial

NHE1 or intracellular Na+. In general, the function of SGLT2i

for NHE is controversial since the clinical research data is very

scarce, and more evidence is still required.

Regulation of adipokines and epicardial
adipose tissue

Adipose tissues secrete a large amount of biologically

active substances collectively known as adipokines, which have

been fully described in the reviews by Lelis et al. (177) and

Kim et al. (178). Adipokines are in a harmonious balance—

adiponectin and SFPR5 can down-regulate the expression of

many pro-inflammatory mediators and prevent a variety of

obesity-related endocrine or cardiovascular diseases (179, 180).

Simultaneously, leptin can stimulate inflammatory responses

and up-regulate pro-inflammatory elements such as TNF- and

IL-6, hastening the onset and progression of cardiovascular

disease (181, 182). Leptin and adiponectin exert contrary

effects on subclinical inflammation and insulin resistance.

Under the pathological condition of obesity, hypertrophic

lipocytes and immunocytes in adipose tissue will activate and

accelerate the chronic pro-inflammatory response and regulate

the secretion of adipokines and other regulatory factors, with
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a deterioration of cardiometabolic diseases (183). Meta-analysis

shows that SGLT2i can effectively reduce circulating leptin

levels, increase circulating adiponectin levels (184), and inhibit

the excretion of IL-6 and TNF-α in animal aortas (137,

159, 185), thereby producing cardiac vascular protection and

delaying the progression of heart failure. Furthermore, SGLT2i

can also reduce the size of epicardial adipose tissue (186) in

patients by improving systemic micro-inflammation (187) and

alleviating adipose-related vascular diseases (188), benefiting

heart failure patients.

Improved level of myeloid angiogenic
cells level

Myeloid angiogenic cells are abbreviated to MAC, which

means vascular endothelial progenitor cells, and play a vital

role in the pathological process of atherosclerosis. Its quantity

is negatively correlated with cardiovascular events, serving as a

biomarker (189). The regulation of SGLT2i on such progenitor

cells expression is controversial, and some studies confirm

that treatment with SGLT2i can up-regulate the expression

of vascular progenitor cells (190). However, some studies

believe that SGLT2i does not increase circulating stem cells

and endothelial progenitor cells, while such an increase of

endothelial progenitor cells may be indirectly achieved through

the improvement of blood glucose level, and SGLT2i has no

direct effect on endothelial progenitor cells (191, 192). In

conclusion, the relationship between SGLT2i and endothelial

progenitor cells is an emerging direction, and the results of

existing studies are inconsistent and controversial.

Renal benefits and its resultant heart
failure benefits

With several clinical trials finishing in succession, it has

been approved that SGLT2i will bring quite a few renal benefits

(3–5, 193, 194), and those renal benefits will, synchronously,

favor the treatment of heart failure. The dominant mechanism

for its renal-protection is attributed to the tubuloglomerular

feedback change under the application of SGLT2i (which has

also been shown in Figure 1). Briefly speaking, when applied

with SGLT2i, the reabsorption of Na+ and glucose will be

impaired. Then, the macula dense can detect such changes,

activating the tubuloglomerular feedback and inducing the

contraction of afferent arteriole to maintain homeostasis. As a

result, some pathological states, such as high perfusion, high

load, and high filtration of the glomerulus, will be relieved,

leading to sound renal protection (195, 196). From another

perspective, it has been discussed in previous sections that

SGLT2i can also be capable of reducing the kidney’s metabolic

burden and mitigating oxidative stress or inflammation at that

site in vivo. The improved renal function will, in turn, bring

benefits to heart failure via increased EPO generation, etc.,

thereby creating a virtuous cycle for cardiorenal interaction.

Conclusion

With the advent of SGLT2i, a breakthrough in the

treatment of cardiovascular diseases has appeared. At this stage,

SGLT2i has been applied clinically and has been accepted

in a variety of guidelines. By and large, SGLT2i achieves

its cardiovascular outcomes and benefits patients with heart

failure through combined effects of multiple ways (which

has been visualized in Figure 3), which means it is hard

to fully explain its rapid and comprehensive benefits only

by one of those mechanisms. Nevertheless, some of those

mechanisms mentioned above are still uncertain, while others

are contradictory and controversial, like Na+-H+ exchange

protein and myeloid angiogenic cells. Thus, further studies

on cells, animals, and clinics ought to be supplemented. It is

promising that in-depth research will further open up more

paths and hold great promise for cardiovascular diseases,

including heart failure, myocardial hypertrophy, and even

treatments for comorbidity.
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