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The empirical evidence from different countries point out many of those who die

from coronavirus would have died anyway in the relatively near future due to their

existing frailties or co-morbidities. The acceleration of the mortality conceives the

underlying insight according to deaths are “accelerated” ahead of schedule due

to COVID-19. Starting from this idea, we forecast the future mortality acceleration,

based on the deterioration due to the presence of the comorbidities at COVID-19

diagnosis. Accordingly, we explicitly determine the contribution of each comorbidity on

the acceleration forecasting, showing the future trend of the excess of deaths due to

the COVID-19. To this aim, our proposal consists in developing a revised Charlson

Comorbidity Index in a stochastic environment. Based on a post-stratification scheme,

we obtain an unbiased comorbidity index that varies by age, centered on the reference

population.

Keywords: mortality projections, Charlson Comorbidity Index, relative frailty, proportional hazards model,

stochastic modeling

1. INTRODUCTION

The ongoing outbreak of the novel coronavirus disease (COVID-19) was announced on the 11th of
March 2020 by the General Director of the World Health Organization (1).

Since the emergence, the governments, the healthcare systems and the whole international
community tried to address critical gaps in knowledge and response and readiness tools and
activities. The scientific literature developed several methodologies based on different approaches,
assumptions, range of predictions andmetrics about themajor findings as to the virus, the outbreak,
transmission dynamics, disease progression and severity.

Forecasting COVID-19 mortality plays a key role in many fields such as healthcare, to ensure
readiness to provide clinical care with early identification protocols, international guidelines as
well as the economic system, to build a more resilient society, avoiding disruptive financial
consequences on the economic sectors.

Some authors discuss “how will the temporarily stressed mortality rates change the post-
COVID-19 mortality rates” (2), by introducing the concept of mortality shocks. The mortality
changes due to the pandemic have been described as a shift in the apparent age (3). In general, as
argued by Milevsky (4), the shocks of mortality corresponds to parallel shifts of the term structure
of the mortality (from herein TSM). A parallel shift to the term structure of mortality (TSM) is
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defined as biologically ageing by years in a Gompertzian
framework (4). Nevertheless, there is no consistent evidence
about the parallel shifts. Furthermore, the virus could be
correlated with non-virus mortality in a non-linear way.

In our paper, we were inspired by the empirical evidence
on England and Wales that many of those who die from
coronavirus would have died anyway in the relatively near
future due to their existing frailties or co-morbidities (5). The
acceleration conceives the underlying idea according to deaths
are “accelerated” ahead of schedule due to COVID-19. From a
medical point of view, the susceptibility as COVID-19 is a “newly
identified pathogen, there is no known pre-existing immunity
in humans. Based on the epidemiologic characteristics observed
so far in China, everyone is assumed to be susceptible, although
there may be risk factors increasing susceptibility to infection”
(1).

Accordingly, in light of these considerations, we focus
on a measure of the mortality acceleration, being inclusive
of the relative deterioration due to the presence of the
comorbidities at COVID-19 diagnosis, the mortality shocks
involving parallel shifts of the TSM that are inconsistent
with the empirical evidence on the Italian data we analyzed.
We model the mortality acceleration by developing a revised
Charlson Comorbidity Index in a stochastic setting. The
Charlson comorbidity index (6) represents a useful tool
for measuring the burden of comorbid disease and its
impact on the 10-years mortality projection. The Charlson
comorbidity index is based on a proportional hazards model.
The proportional hazards model can be usefully implemented
to capture the selection effects in the population (7), as
observed in the increased mortality rate during the COVID-19
(2).

Nevertheless, we propose a new stochastic formulation of
the index, to improve the significant drawbacks of the standard
tool. Based on a post-stratification scheme, we obtain an
unbiased comorbidity index that varies by age, grounded on the
reference population. The new measure appears more suitable
and coherent with the mortality acceleration. The layout of the
paper is the following. In Section 2 we introduce the general
background on the Proportional HazardsModel. Section 3 define
the metrics of interest in modeling mortality due to the COVID-
19. Section 4 presents the Charlson Comorbidity Index in its
standard version. The stochastic formulation of the Charlson
Comorbidity Index is proposed in Section 5 as a proxy of the
future mortality acceleration. Section 6 shows the numerical
results. Section 7 explains the clinical implementation of sCCI.
Section 8 concludes.

2. OUTLOOK ON LIFE EXPECTANCY
PROJECTIONS

Let us define the natural TSM by the following expression:

ln [µx − λ] = ln
(

h
)

+ gxx≫ 0 (1)

where the accidental (Makeham) constant λ ≪ µx given the
natural mortality rate at (chronological) age x by

µx − λ =
1

b
e
x−m
b = hegx (2)

being m a modal coefficient, b a dispersion coefficient and λ

the accidental death rate. The (m, b) formulation is used in
actuarial finance, where the equivalent relationship holds by
implementing the (h, g) traditional notation by the demographers
and biologists.

A parallel shock to the term structure of mortality can be
modeled by ln [µx − λ] increasing by a constant v for all x in the
Gompertzian age range.

Indeed some authors assume that the total mortality rates
during the coronavirus period have been strictly proportional
to normal mortality rates, which effectively increase biological
ages across the curve, otherwise known as a parallel shift of the
(Gompertzian) term structure (4). In (2) as well the stresses and
post-pandemic mortality rates are referred to as mortality shocks,
by involving parallel shifts of the TSM.

According to (8), we introduce the Mortality Acceleration
MA
t ϑx as the spread between the mortality projections:

MA
t ϑx =

Acc
t qx −

Base
t qx (3)

the Acc
t qx being the accelerated future mortality estimate for

individual aged x at time t obtained by ADM and Base
t qx the

future mortality estimate for individual aged x at time t obtained
by a baseline stochastic model based on the Human Mortality
Database (HDM) data.

3. GENERAL BACKGROUND ON
PROPORTIONAL HAZARDS MODEL

In literature, themodels to depict the time to occurrence of events
are known variously as survival analysis methods, Cox regression,
proportional hazards models, duration models ore failure time
models, where the incidence, or hazard rate, is the number of new
cases of disease per population at-risk per unit time. The hazard
function expresses the probability that if a person survives to t,
they will experience the event in the next instant.

Let denote λ(t|X1,i,X2,i, . . . ,XK,i) the hazard function for the
i − th person at time t, i = 1, 2, ..n where Xj,i, j = 1, 2, ..,K
are the regressors, λ0(t) is the baseline hazard function at time
t, i.e., when X1,i = 0,X2,i = 0...XK,i = 0. Typically the hazard

ratio, which corresponds to λ1(t)
λ0(t)

, represents the relative risk of

the event occurring at time t.
The logarithm of the hazard function divided by the baseline

hazard function at time t can be formulated as a linear
combination of parameters and regressors:

log

[

λ(t|X1,i,X2,i, . . . ,XK,i)

λ0(t)

]

= β1X1,i + β2X2,i + . . . + βKXK,i

(4)
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The proportional hazard model can be considered in terms of
hazard function at time t:

λ
(

t
∣

∣X1,i,X2,i, . . . ,XK,i

)

= λ0(t)e
(β1X1,i+β2X2,i+...+βKXK,i) (5)

where is pointed out that the variation in a covariate involves a
multiplicative effect on the baseline risk.

This model assumes that the hazard for any individual is a
fixed proportion of the hazard for any other individual (i.e.,
proportional hazards). In the graphical analysis, the proportional
hazards appear as approximately parallel hazard curves, the
hazard curves violating the proportionality assumption when
appreciably diverging, converging, or crossing one another.

In the proportional hazards model, the magnitude of the
impact of the individual variables and how much the hazard
rate is expected to vary as a consequence of changing the
individual variables are estimated. For instance, in the analysis
of mortality, due to this setting, the relative rates or rate ratios
(RRs) can be directly calculated, in order to quantify the relative
risk of a risk factor on the overall mortality. In other words,
the relevant benefit of the proportional hazards consists in its
potential to evaluate the effect of a certain risk factor after
having incorporated the (confounding) effect of other relevant
risk factors on the phenomenon under consideration.

Starting from the concept of relative risk, the Charlson
comorbidity index meets the need to combine the changes in
mortality risk due both to age and comorbidity in a single
index. While statistical models allow us to analyse the effects on
mortality risk of the variables considered individually, on the
other hand, it is necessary to guarantee a certain sample size
to obtain reliable results. However, in most clinical studies, the
sample sizes are small and the use of a synthetic index could be a
useful tool to ensure the reliability of results (9).

4. STANDARD CHARLSON COMORBIDITY
INDEX

The Charlson comorbidity index (6) represents a useful tool for
measuring the burden of comorbid disease and its impact on the
10-years mortality projection. The relevance of comorbidity, as
expressed by the total burden of chronic diseases, has received
surprisingly little attention in the literature, despite its proven
ability to predict mortality (10). It is considered a validated
method [for instance see (11–14), etc.] of classifying comorbidity
to predict short and long-term mortality. In particular, this is a
prognostic indicator showing how age and comorbid conditions
might alter the risk of mortality. The index assigns weights
for specific diseases. A total of 16 comorbidities are included.
Specifically, the formula of Charlson Comorbidity probability of
10-years survival can be expressed as follows:

CCI
10 px = 0.983e

CCI·0.9
(6)

0.983 being a theoretical low risk 10-years survival probability of
an age class from 0 to 50 and eCCI·0.9 representing a proportional

hazards model where both comorbidity and age are combined
in a scoring system determined according to Hutchinson and
Thomas method (15). The lowest score of 0 corresponds to
a 98% estimated 10-year survival rate. As the age increases
and comorbidities appear, the total score increases and the
estimated 10-year survival decreases. The proportional hazards
model expresses the relative risk of death due to the presence
of adverse prognostic factors, i.e., the comorbidities, the score
having assigned by the age-equivalence principle as in (15). For
instance, 1 year of codified comorbidity is equivalent to an extra
year of age.

Since the CCI is formulated based on the proportional
hazard model, it is possible to predict the survival probability
for every single patient. However, the acceleration of mortality
is an aggregate phenomenon. Furthermore, the acceleration is
modeled as a multiplying factor starting from the comorbidity-
free population. In this application, the approach proposed by
Charlson et al. (6) shows its limits, since the formula is closely
linked to the clinical data used to calculate it and cannot be
generalized to a specific country population. For this reason, it
is necessary to:

• Reformulate the comorbidity index in a such of way that can
predict the survival probability at an aggregated age level,
using an aggregation criterion not affected by sample bias;

• Define a reliable low-risk population survival probability;
• Reassess the age threshold of the risk-free population and the

age equivalence coefficient based on the empirical evidence on
the country population data.

Following these steps, we propose a Stochastic Charlson
Comorbidity Index (sCCI), used to predict the acceleration of
mortality based on a baseline stochastic model, namely a Lee-
Carter family model.

5. STOCHASTIC CHARLSON
COMORBIDITY INDEX: A PROXY OF THE
MORTALITY ACCELERATION

Starting from formula 6 we generalize the 10-years survival
probability in case of comorbidity as follows:

CCI
10 px = γ eCCI·β (7)

where γ is the low-risk population survival probability and β

is the age equivalence score. Formula 7 allows to redefine the
survival probability through a reparameterization of CCI, γ and
β . The procedure for each parameter is described below:

• For CCI the idea is to obtain an index that can synthesize
comorbidities aggregated by age. In this sense, it is necessary
to consider that clinical data tend to overestimate the
incidence of disease in the population. For this reason, a post-
stratification strategy is used in the construction of the age
index, re-weighing the observations based on the incidence
of the disease in the population, using the European Health
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Interview Survey (EHIS) data (16), an official statistics relating
to the incidence of diseases in the main European countries;

• For γ the idea is to adapt the low-risk age threshold to the
country population analyzed. For this reason, a sensitivity
analysis on age thresholds is performed, to assess the best age
threshold for our case;

• For β the idea is to obtain a flexible age equivalence score,
using a relative risk ratio computed using the Disability-Free
life expectancy, obtained by Sullivan method, and the entire
population life expectancy. This ratio represents the difference,
in terms of risk of survival, of the comorbidity at a defined age
and year.

The reparameterization allows solving the problem of the
excessive rigidity of the CCI which, although useful for the
analysis of a clinical database, is actually built on the basis of
a population of hospitalized patients limited in space and time.
This reparameterization process aims to provide a strategy that
allows redefining the index in order to be useful for the analysis
of aggregate phenomena and of a country population in a certain
time and not only on a clinical sample.

5.1. Comorbidity Matrix
In order to obtain a CCI aggregated by age, we arrange the vector
of individual CCI scores in a matrix age by CCI, which we can
call Comorbidity Matrix:

CCI11 CCI12 . . . CCI1n
CCI21 CCI22 . . . CCI2n

...
...

. . .
...

CCIω1 CCIω2 . . . CCIωn

(8)

where we have for each age (by row) different score of
comorbidity, i.e., CCI, since each age has more than one
patient with a different score. To obtain a unique measure for
each age class, we calculate an average by row. In particular,
we develop a weighted average, since the data of hospitalized
patients overrepresent the presence of comorbidities in the case
of COVID-19 infection, with a consequent overestimation of
survival probability in the event of comorbidity. Our intuition
of calculating the weights relies on the logic of the survey
post-stratification strategy, so that we attribute a weight to our
sample affected by comorbidities, based on the proportion of the
individuals affected by comorbidities on the total exposures to
the risk of death. Post-stratification is a very common practice
in survey analysis, that allows avoiding the selection bias and the
response bias of the estimators (17, 18). Similarly, we consider
CCI as an estimator of the comorbidity of a country’s population
and it is necessary to avoid the selection bias of the use of a clinical
dataset instead of a random stratified sample.

Since a list of the population of CCI is not available, but only
the presence of a certain disease is, the weights are inserted within
the index, in such a way as to obtain a score weighted by the
incidence of the population of a given disease:

¯CCIx =
1

nx

K
∑

k=1

nx
∑

i=1

Wk score
xi
k
∀x = 1, ..,ω (9)

where:

CCIx is the weighted CCI for age x;
Wk is disease weight k measured as the incidence on the total of
comorbid individuals according to the EHIS survey;
score

xi
k
comorbidity score according to the CCI original formula

for each individual i of x;
nx number of individuals of age x.

In this case, the stratified sampling idea is used to calculate
the score at age x, which is given by the score for the
severity of the disease according to the definition of
the CCI and the weight given by the proportion of the
incidence of that disease on the total of the comorbid
population:

Wk =
Nk

N
(10)

where:

Nk is the number of people at age x that present the disease k.
N is the number of people with almost one disease.

5.2. Low-Risk Population Sensitivity
As previously noted, the low-risk population thresholds are
obtained based on a study by Charlson et al. (6). The low-risk
population survival probability is computed on a cohort of 604
patients of the New York Hospital in 1 month of 1984. Since this
is not a random sample, but a clinical dataset limited in space and
time, it could be necessary to redefine the low-risk population and
the relative survival probability in such a way that is adaptable to a
different population in time and space. In this sense, a sensitivity
analysis is carried out on the age threshold to assess whether a
threshold of 50 years can also be valid for populations other than
the clinical dataset used to define CCI.Table 1 shows the different
scores by age used to define the alternative low-risk populations
in CCI estimation.

5.3. Age Equivalence Score
Following the same principles of the low-risk population survival
probability redefinition, we reconsider the age equivalence score,
computing the RRs of combined comorbidity and age using the
survival probabilities of the life table. Following the Sullivan
method (19), we define the RRs as the ratio between the
entire population survival probability and the disability-free
survival probability. The estimation of the disability-free survival
probability follows the idea of the construction of the disability-
free life expectancy, computing the disability-free survival as
follows:

DF
t Lx = tLx · (1− πx) (11)

where:

tLx is the survival in the mortality table. πx is the proportion
of individuals with disabilities in the population of the mortality
table.
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TABLE 1 | CCI score according to low-risk age threshold.

Age threshold Age class Score

20

0–20 0

20–30 1

30–40 2

40–50 3

50–60 4

60–70 5

70–80 6

80 and more 7

30

0–30 0

30–40 1

40–50 2

50–60 3

60–70 4

70–80 5

80 and more 6

40

0–40 0

40–50 1

50–60 2

60–70 3

70–80 4

80 and more 5

50

0–50 0

50–60 1

60–70 2

70–80 3

80 and more 4

the survival probability is computed as the ratio between the
survival at age x and the survivals at age x+1:

DF
t lx =

DF
t Lx

DF
t Lx+1

(12)

Finally, the RRs are defined as:

RR =
t lx
DF
t lx

(13)

6. NUMERICAL APPLICATIONS

In this section, we investigate the presence of mortality
acceleration in the Italian population due to COVID-19
infection, using an “empirical” approach, based on observed data
and a “modeling” approach, estimating the expected acceleration
based on a stochastic CCI. To obtain the considered result we
proceed by the following steps: in first, the baseline mortality
using a Lee-Carter model (20) of all-aged aggregated Italian
population has been estimated, the second step consists in
estimating the acceleration function as in Cairns et al. (5), using
a data-driven approach and considering two different scenarios:

the former is based on ISS data, relating to the entire population,
the latter is based on SIIA data, relating to a hospitalized
population in 26 hospitals and centers, located in 13 regions in
Italy (21). The use of both datasets allows focusing the analysis
on two different aspects. ISS dataset reports weekly the number
of death by COVID-19 in Italy by gender and age, but provide
no information about comorbidities. On the contrary, the SIIA
dataset is based on a subpopulation of hospitalized people by
COVID-19. The information is classified by age, gender, and
co-morbidities. In this sense, the analysis focused firstly on the
acceleration effects due to age and then on the acceleration due
to comorbidities. The final step is the estimation of the Stochastic
CCI, whose procedure will be described in detail below.

6.1. Estimation of Observed Acceleration
The estimation of the baseline scenario is obtained using a Lee-
Carter model using the all-aged aggregated Italian population,
both for male and female, estimated from 1950 to 2017, using the
Human Mortality Database (2020) data. The Lee-Carter model
(22) expresses the improvements in the mortality trend and it
allows to capture the changes in the mortality trend. The data
are easily implemented, capture the correct description of the
phenomenon and consequently highlight the changes in this
trend.

The COVID-19 deaths dc(x, t) are obtained starting from the
projection of all causes da(x, t), obtained by baseline scenario
function. Since data about COVID-19 deaths at age x are not
directly available, the procedure described below is followed:

• Estimation of amplitude α(x) as the proportion of the COVID-
19 death on all causes of death. The number of COVID-19
deaths is estimated using the two scenarios given by ISS and
SIIA datasets. For each database, the sample proportion is
computed and multiplied by the number of deaths at 30th

November 2020, obtaining an estimation of the number of
COVID-19 deaths by age. Then the proportion of deaths in
the population is computed using the mortality for all causes
data by age groups of 10 years published by ISTAT;

• Estimation of the reach ρ(x) as the life expectancy reduction
by age groups due to COVID-19 mortality, as follows: the life
expectancy at age x for 2021 is estimated and the year losses are
estimated as the product of the weight of COVID-19 deaths
by age, that is the proportion of deaths at age x on the total
of COVID-19 deaths and the life expectancy estimated in the
baseline model;

• Finally, π(x, t) is estimated, in the form on negative
exponential function, as defined by (5).

Table 2 shows the estimated values of amplitude α(x), reach ρ(x)
and acceleration π(x) for the two scenarios, computed from 1st

January to 30th November 2020, both for SIIA and ISS scenarios:
As can Table 2 shows, the estimates based on the SIIA and ISS

scenarios differ evidently, in the function of the age group.
The amplitude is higher for ages up to 69 years in the SIIA

scenario compared to the ISS scenario, similar for ages from 70
to 90 years and lower for the 90+ age group. In other words,
the SIIA scenario gives more emphasis on not extreme age group
than the ISS scenario. This aspect could depend on the different
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TABLE 2 | Estimation of amplitude, reach, and acceleration.

Age All causes Life SIIA ISS

class of death expectancy Amplitude Reach Acceleration Amplitude Reach Acceleration

0–9 906 78.92 0.000 0.473 0.000 0.006 0.011 0.546

10–19 958 68.98 0.272 1.195 0.206 0.005 0.004 0.990

20–29 2,311 59.15 0.352 2.976 0.092 0.015 0.025 0.602

30–39 3,890 49.35 0.364 5.311 0.044 0.037 0.099 0.376

40–49 11,564 39.66 0.167 6.898 0.014 0.052 0.357 0.140

50–59 29,221 30.28 0.318 6.226 0.030 0.069 1.051 0.061

60–69 61,998 21.50 0.353 5.388 0.042 0.095 2.135 0.037

70–79 132,227 13.62 0.143 1.943 0.062 0.108 3.481 0.023

80–89 244,434 7.29 0.014 0.296 0.045 0.087 2.993 0.023

90+ 146,379 3.34 0.003 0.018 0.174 0.060 0.628 0.091

FIGURE 1 | Estimation of all causes of deaths and non-COVID-19 deaths. Young ages.

nature of data, since, as specified previously, SIIA data are based
on COVID-19 hospitalizations in presence of comorbidities, that
aggravate the clinical course and therefore the possible death.
In this sense, the SIIA scenario highlighted the effects of co-
morbidities on COVID-19 mortality.

The reach is higher for ages up to 69 years in the SIIA
scenario than in the ISS scenario, with a loss of life expectancy
of up to about 5–7 years in the age groups between 30
and 69 which, in this case, are the most affected group.
On the contrary, in the ISS scenario, the most affected age
groups are those between 60 and 89 years, with a loss of
life expectancy between 2 and 3 years. Also in this case the
difference depends not only on the distribution by different ages
of the two databases on which scenarios are based but also
on the different distribution of frailties. The greater fragility
determines a greater loss of years of life expectancy due to the
COVID-19 infection.

Figures 1, 2 show the deaths for all causes da(x, t), obtained
by baseline scenario and the non-COVID-19 deaths ds(x, t)
estimated on the data, based on ISS and SIIA scenarios, as
the difference between the da(x, t) and the COVID-19 deaths
dc(x, t), obtained by acceleration function π(x). In this way,
acceleration death area is highlighted. In particular, Figure 1
shows the effects of acceleration for young ages (up to 50
years) and Figure 2 the effects of acceleration of adult ages
(over 50 years).

As we can observe from Figures 1, 2, the acceleration
factor is different according to age groups and considered
scenarios. For the younger ages, although there is an acceleration,
the differences between the two scenarios are negligible. On
the contrary, for adult ages, for both scenarios, there is an
acceleration, but the ISS scenario is less pessimistic than SIIA,
with a higher non-COVID-19 death (green area vs. blue area).
This aspect underlines the importance of distinguishing between
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FIGURE 2 | Estimation of all causes of deaths and non-COVID-19 deaths. Adult ages.

FIGURE 3 | Estimation of non-COVID-19 deaths. Young ages.

fragile and non-fragile populations in the context of the analysis
of the effect of COVID-19 mortality.

Figures 3, 4 show the COVID-19 deaths dc(x, t) obtained for
young and adult ages both for SIIA and ISS scenarios.

As shown by Figures 3, 4, the COVID-19 mortality for young
ages is greater than the ISS scenario with respect to SIIA, while,
the opposite is observed for adult ages, in particular over 60
years old. As highlighted previously, ISS data tends to be more
optimistic for adult ages, due to take not into account the
comorbidity conditions of the infected.

6.2. Estimation of Expected Acceleration
In order to obtain a measure of expected accelerated deaths, that
is the survival probability on the basis of comorbidity population,
we propose an alternative measure of CCI, called stochastic CCI,
obtained with the following procedure:

• Estimation of an age-aggregated CCI, obtained by the
weighted mean of individual CCI using a post-stratification
weighting scheme;

• Definition of a flexible low-risk population survival
probability, calibrating the 10-years survival probability
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FIGURE 4 | Estimation of non-COVID-19 deaths. Adult ages.

on the basis of the age threshold to assign the zero score and
the estimation of the Disability-Free survival probability, as
an indicator depending on both age and year;

• Definition of a flexible age equivalence score, using a relative
risk ratio on the basis of Disability-Free life expectancy and the
entire population life expectancy, as the difference, in terms of
risk of survival, of the comorbidity at a defined age and year.

CCI is usually measured for every single patient, but the interest
of the analysis is on the aggregated population by age groups. For
this reason, it is necessary to synthesize it. The simplest way to
synthesize data by age groups is themean, but taking into account
that the proportions of the co-morbidities in the SIIA dataset
could not be representative of the entire Italian population, we
use a weighted mean, as a post-stratification of the sample.

The first step is the reorganization of the SIIA database by age,
obtaining a matrix that we can call Comorbidity Matrix, based on
the CCI scores:

CCI11 CCI12 . . . CCI1n
CCI21 CCI22 . . . CCI2n

...
...

. . .
...

CCIω1 CCIω2 . . . CCIωn

(14)

The following step is to compute the weighted mean to
obtain a weighted CCI by age. Weights are obtained from
European Health Interview Survey (EHIS) data, whose age
groups are used. To observe if the use of the weighted
average allows obtaining more reliable results, weighted CCI
by age is compared with the unweighted CCI by age
in Table 3.

TABLE 3 | Weighted vs. unweighted CCI.

Age wCCI uwCCI

15–17 0.001 0.129

18–19 0.002 0.625

20–24 0.001 0.356

25–34 0.005 0.542

35–44 0.025 0.719

45–54 0.503 1.545

55–59 1.207 2.415

60–64 2.106 3.464

65–74 2.759 4.209

75+ 3.868 5.592

As shown in Table 3, the use of a weighting scheme greatly
reduces the age score. This is an important aspect because it
allows the probability of survival in the event of co-morbidities
to be estimated more reliably than using a sample in which the
co-morbidities are overrepresented.

The effects on the estimation of the probability of survival can
be seen in Figure 5.

As can we observe from Figure 5, for the younger ages there
are few differences in survival probabilities, instead the gap
widens starting from the 45–54 age group, with an increasingly
lower probability of survival in the case of unweighted CCI. In
the latter group, 75+, the probability of survival in case of co-
morbidity using the unweighted CCI is almost zero, while in the
case of the weighted CCI it is about 0.5.
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FIGURE 5 | Survival probability with weighted CCI and unweighted CCI.

FIGURE 6 | Survival probability with different age thresholds.

Subsequently, a robustness analysis is carried out relating to
the choice of the low-risk age group. In the standard CCI the low-
risk age is up to 50. We observe the difference among the use of
different age thresholds, that is up to 20, up to 30 and up to 40, in
order to observe the differences in terms of survival probabilities.
The results are shown in Figure 6.

As can we observe from Figure 6, the lower is the low-
risk age group, the lower is the survival probability for all the
age groups. This result suggests that the age threshold of 50
years (original CCI, in red) is not robust with respect to the

survival probability estimation. We can also observe that the
20 years old and 30 years old thresholds show a functional
form different from other survival probability functions. It
suggests that it is preferable to take into account a lower age
as low-risk population but not excessively, to avoid the risk of
underestimation for the elder ages. For this reason, we consider a
40-year-old threshold.

Then, we estimate a Disability-Free survival probability by
age as an alternative baseline to propose. Following the Sullivan
method (19), we estimate the survival probability from a life table.
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TABLE 4 | Disability-free survival probability.

Age Survivals DF Probability DF

15–17 91207.39 –

18–19 90540.2 0.9927

20–24 89661.82 0.9903

25–34 89510.3 0.9983

35–44 83170.82 0.9292

45–54 72536.36 0.8721

55–59 61974.57 0.8544

60–64 57254.69 0.9238

65–74 48255.94 0.8428

75+ 28605.37 0.5928

TABLE 5 | Relative risk of death between Disability-Free and frail populations.

Age Relative risk

15–17 –

18–19 0.9928

20–24 0.9904

25–34 0.9985

35–44 0.9295

45–54 0.8734

55–59 0.8574

60–64 0.9292

65–74 0.8535

75+ 0.7033

In our case, we compute a projected life table from RHmodel and
calculate the survival probability as the ratio of person-years of
life at age x+1weighted by the proportion of disability-free people
at the age x+1 and the person-years of life at age x weighted by
the proportion of disability-free people at the age x. Results are
shown in Table 4.

As can we observe from Table 4, disability-free survival
probability is higher for the younger ages. In the age groups
45–54 and 55–59 the survival probability is lower than the
group of 60–64. This aspect can be interpreted as a greater
onset of co-morbidities in those age groups with respect
to 60–64 one. In this sense, reaching a certain age group
without co-morbidities ensures greater longevity than in the
younger groups.

The final step is to estimate the age equivalence score.
Following the idea of (15), and (9), a relative risk of survival
probability between Disability-Free and the frail population is
calculated. Since the relative risk is the ratio of the incidence
of death considering the presence of a particular condition
(COVID-19 comorbidities in this case) and the incidence of
death in its absence, we estimate the relative risk using the
Disability and Disability-free deaths. Results are shown in
Table 5.

As shown in Table 5, the relative risk is higher for the frail
population with respect to disability-free population, and higher

for higher age groups up to a certain age and then decrease slowly.
In particular, the maximum value is for the ages 60–64, and it
remains quite constant for the ages 65–75 and lower for 75+ age
group.

Using the parts we previously showed, we calculate the
theoretical survival probability using the CCI formula (6), with
the components we previously estimated, that is:

DF
x pt

ewCCI40RR
(15)

where:

DF
x pt is the disability-free survival probability;

wCCI40 is the weighted CCI, using 40 years as the threshold
of the low-risk population;

RR is the relative risk of survival in case of co-morbidities.

Figure 7 shows the theoretical survival probability compared to
disability-free survival probability shown in Table 4.

As shown in Figure 7, the comorbidity is an important driver
of survival probability. Except for the age groups up to 25–34,
the survival probability in presence of co-morbidities is lower
than disability-free population, and the gap is wider as the age
increases, with a slight improvement for the age 60–64 for both
the survival functions.

6.3. A Compact Discussion: From the Data
to Results
We represent the CCI indicator as a population comorbidity
measure that varies by age based on clinical information
collected by hospitalized patients. The clinical data show lower
survival probabilities by definition, in comparison with an
aggregated national population, showing a sort of the actuarial
adverse selection (23). To overcome this phenomenon which
determines biased estimates due to the overestimation of the
actual prevalence of the disability in the population, we propose a
post-stratification scheme that allows for a sample re-weighting.
In particular, we aggregate the CCI by this approach based on the
EuropeanHealth Interview Survey. Accordingly, we summarize a
CCI based on age, by obtaining an unbiased and consistent score
coherently with the reference population.

The weighted CCI by the prevalence of the disabilities in
the Italian population shows a lower score by age concerning
the standard CCI. This implies the opportunity of considering
the CCI as an aggregate index of population comorbidity by
age. Furthermore, using official data on disability incidence, the
low-risk population survival probability and the relative risk of
survival between disability-free and disability can be obtained,
which are used to replace the coefficients of the CCI standard,
to adapt the survival probability in case of co-morbidities to the
Italian framework. As a result, it would be more appropriate to
lower the low-risk population age threshold to 40 years, and the
relative risk increases as the age increase up to 75 years. It is also
noted that survival for the disability-free population tends to be
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FIGURE 7 | Theoretical survival probability.

higher for some older age groups, such as 60–64 and 65–74 than
others.

6.4. Strengths and Potential Drawbacks
The potential drawback related to our proposal consists in
assigning the age threshold for computing the low risk population
survival probability. The original threshold posed by the standard
CCI at level of 50 age represent an unreliable value since,
as intuitively expected, as the age increases lower survival
probabilities we estimate. So that, for avoiding the threshold
inconsistency in the standard CCI setting, we modify the
thresholds as described in Section 6.2, by means of an heuristic
approach which gradually decreases the value of the threshold
according to a sensitivity analysis. From the sensitivity analysis
a potential inconvenience emerges: as decreases the age value
of the threshold, being theoretically consistent with a low risk
population, a CCI score increase arises due to the age effect. In
other terms, for higher ages than the threshold, as the age value
threshold decreases, the CCI score make worse, i.e., increases due
to the contribution of the age to the CCI score (a sort of age
effect). The balance between the age effect and the contribution
of comorbidities on the estimation of the CCI score value, we
call comorbidity effect, can be a problematic aspect to take into
account in choosing the “right” age threshold. In the future
research we are going to develop an optimization algorithm for
minimizing the error of the procedure.

The advantages of the new proposal of the CCI relies in
the stochastic environment of the calculus instead of a poor
deterministic approach that makes more reliable the estimates
and in the clinical implementation of this accurate index. The
clinical computation has been widely detailed in the following
section, by stressing the support for medical problems in
processing information recorded by medical data.

7. CLINICAL IMPLEMENTATION OF SCCI

The sCCI can have great clinical utility and support medical
practical problems in collecting and analyzing the medical data,
to gain transferable insights in medical research.

In particular, based on the clinical picture of a patient, the
sCCI index allows calculating the specific risk of mortality by
calibrating the scores according to the comorbidity and longevity
of the population he/she belongs to (reference population). In
this section, we disentangle the determinants for the calculation
of the sCCI as in formula 7, to show the index implementation
for clinical evaluations by an example of the case study.

The sCCI consists of the following components:

1. β ;
2. γ ;
3. Comorbidity score;
4. Age score.

β and γ represent idiosyncratic factors specifically related to the
reference population. In this paper, as explained in Section 5, we
re-calibrate the value of the parameters of the Italian population.

For sake of clarity, in the following, we offer a picture of the
specific parameters for each European population that have to
be implemented for obtaining the idiosyncratic factors beta and
gamma. Indeed in Figure 8, we provide the different values of the
disability-free life expectancy (DFLE) for individuals aged 65, for
geographical areas in Europe (24) and relative risk measured by
years lost in the life expectancy due to disability (RR) we compute
based on the DFLE.

As Figure 8 shows, Eastern Europe countries, Slovakia,
Croatia and Portugal have a lower DFLE than the others, while
the Scandinavian countries have the highest values, followed by
Germany, Spain and Ireland. RR, on the other hand, is the highest
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FIGURE 8 | Disability-free survival probability and relative risk for 65yo in EU. Eurostat.

for the Scandinavian countries, followed by Germany, Ireland
and Hungary, while it is the lowest for the Baltic countries,
Portugal, Slovakia and Croatia. In general, it can be thought that
the higher the life expectancy without disability, the lower the
relative risk.

The comorbidity score and age score are the competing
determinants of the standard CCI, as proposed in (6). The
comorbidities score depends on the clinical sample observed
on N patients and it is computed as in (6). As regards the age
score, we propose to modify the calculation basis, according
to the following considerations. We change the threshold or
maximum value of the age class which constitutes the basis of the
calculation. In particular, we adopt the age class 0–20 instead of
0–40, intuitively based on the idea of lower mortality risk as the
age decreases.

Hence, let us consider an example of an Italian patient aged
50 with hypertension, diabetes, and chronic rheumatic diseases.
Based on Table 1, the age score corresponds to 4. According to
(6), the comorbidity score is 3. The CCI comes from the sum of
the age score and comorbidity one. Accordingly, in this case it
amounts to 7. Being the β and γ parameters respectively 0.8721
and 0.8734 as we computed for the Italian population by the
HMD, the sCCI for the patient under consideration corresponds
to 0.4331.

8. CONCLUDING REMARKS

The empirical evidence in medical and actuarial literature shows
that many of those who die from coronavirus would have died
anyway in the relatively near future due to their existing frailties
or co-morbidities (5, 8, 25–27). The underlying idea according
to deaths is “accelerated” ahead of schedule due to COVID-19
representing a mortality acceleration. We focus on the future
evolution of the mortality acceleration due to the COVID-19
by setting up the Charlson Comorbidity Index in a stochastic
setting. We propose a new stochastic formulation of the index, to
improve the significant drawbacks of the standard tool. Based on
a post-stratification scheme, we obtain an unbiased comorbidity
index that varies by age, grounded on the reference population,
that represents a good proxy of the future evolution of the
mortality acceleration.

In this perspective, it is possible to consider the stochastic CCI
as an index that measures the age comorbidity of a population
and can be adapted in time and space through the use of
easily available data, such as the incidence of disability in the
population. Moreover, in a dynamic perspective, through the
evolution of the probability of survival, the stochastic CCI can
be used to evaluate the decay of the population according to
the incidence of disability over time. In other words, we can
consider extending the use of CII from the clinical field to a more
general one on the analysis of longevity considering the presence
of co-morbidities in the population.

In our work, we study on national all-causes-of death
mortality aggregated by geographical area and comprehensively
including in-hospital and out-of-the hospital mortality that has
been adjusted by means of some clinical scores. Nevertheless,
in the future research we will focus on widening the predictors
for better projecting the mortality phenomenon by selecting
other relevant diseases such as atrial fibrillation or HR and
so on, by selecting the most important features according
the variable importance algorithm artificial intelligence-based.
For instance, chronic kidney disease (CKD), incidence of
acute kidney injury (AKI) and atrial fibrillation (AF) have
been shown to represent comorbidities associated with reduced
survival in patients hospitalized for COVID-19 disease. The
role of the comorbidities under consideration particularly
on in-hospital mortality has been well-documented in some
studies as in (28, 29) and others. Accordingly, it could be
useful to adjust the stochastic CCI according to a correction
factor based on these risk factors, for obtaining a more
reliable projections.

Further research we will focus on the long-run mortality
projections, to detect the systematic nature of the acceleration.
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