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Background: Molecular biomarkers are widely used for disease diagnosis and

exploration of pathogenesis. Pulmonary arterial hypertension (PAH) is a rapidly

progressive cardiopulmonary disease with delayed diagnosis. Studies were

limited regarding molecular biomarkers correlated with PAH from a broad

perspective.

Methods: Two independent microarray cohorts comprising 73 PAH samples

and 36 normal samples were enrolled in this study. The weighted gene co-

expression network analysis (WGCNA) was performed to identify the key

modules associated with PAH. The LASSO algorithm was employed to fit a

diagnostic model. The latent biology mechanisms and immune landscape

were further revealed via bioinformatics tools.

Results: The WGCNA approach ultimately identified two key modules

significantly associated with PAH. For genes within the two models, differential

expression analysis between PAH and normal samples further determined

nine key genes. With the expression profiles of these nine genes, we initially

developed a PAH diagnostic signature (PDS) consisting of LRRN4, PI15, BICC1,

PDE1A, TSHZ2, HMCN1, COL14A1, CCDC80, and ABCB1 in GSE117261 and

then validated this signature in GSE113439. The ROC analysis demonstrated

outstanding AUCs with 0.948 and 0.945 in two cohorts, respectively. Besides,

patients with high PDS scores enriched plenty of Th17 cells and neutrophils,
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while patients with low PDS scores were dramatically related to mast

cells and B cells.

Conclusion: Our study established a robust and promising signature PDS for

diagnosing PAH, with key genes, novel pathways, and immune landscape

offering new perspectives for exploring the molecular mechanisms and

potential therapeutic targets of PAH.

KEYWORDS

pulmonary arterial hypertension, weighted gene co-expression network analysis,
functional analysis, machine learning, diagnostic model, immune infiltration

Introduction

Pulmonary arterial hypertension (PAH) is a rapidly
progressive and fatal cardiopulmonary disease, and its
incidence is about one–two in a million per year (1, 2). The
development and progression of PAH are closely associated
with structural and functional abnormalities of the pulmonary
vasculature. Pulmonary vascular remolding involves intimal
injury, middle hypertrophy, adventitia proliferation and
fibrosis, and perivascular inflammatory cell infiltration, leading
to progressive stenosis and occlusion of the pulmonary artery
lumen. Consequently, increased pulmonary vascular pressure
results in right heart failure and even death, ultimately, and
PAH is characterized by high mortality (3). The gold-standard
test for diagnosing PAH is the right heart catheterization
(RHC), but the severe complication rate was 1% (4). Although
echocardiography is recommended in current guidelines (5), a
meta-analysis had elucidated that the pooled sensitivity was 88%
(84–92), and specificity was 56% (46–66) for the diagnosis of
PAH (6). Besides, the mechanisms of PAH are not understood,
especially at the molecular level. Therefore, it is necessary to
explore a novel perspective for diagnosing patients with PAH
and gaining deeper insights for understanding the biological
mechanisms of PAH.

Recently, the rapid development in bioinformatics
facilitated the detection of potential biomarkers and the
exploration of latent disease mechanisms in PAH. Large-scale
research confirmed that the mutations in BMPR2, ACVRL1,
ENG, SMAD9, TBX4, KCNK3, and EIF2AK4 in adult-onset
patients were related to specific PAH (7). Mutations of
multiple genes and aberrant gene expression are involved in
the pathogenesis of PAH via promoting the proliferation and
reducing apoptosis of pulmonary vascular cells. Nevertheless,
based on the available discovery, existing biomarkers lack
sufficient sensitivity and specificity on account of heterogeneity
and confounding factors of samples and the simplicity of the
analytical method. Overall, the previous studies are insufficient
to interpret the mechanistic pathways of PAH susceptibility
and disease progression, and thus, it is essential to detect

biomarkers by integrative and insightful analysis between
patients with PAH and normal.

In our study, two independent microarray cohorts were
generated from the Gene Expression Omnibus (GEO).1 In
addition, the weighted gene co-expression network analysis
(WGCNA), the functional enrichment analysis, and the
differentially expressed gene (DEG) analysis were performed
to screen the hub genes. Subsequently, the LASSO algorithm
was employed to construct a reliable and individualized PAH
diagnostic signature (PDS) for diagnosing PAH and evaluating
the immune landscape. In addition, the results might shed light
on the clinical application and molecular mechanism of PAH.

Materials and methods

Data generation and preprocessing

The keyword “pulmonary hypertension” in GEO’s gene
expression profile was searched. Two datasets met the inclusion
criteria: (i) the datasets contained complete transcriptome data
of PAH and normal lung tissues and (ii) the number of samples
was more than ten in each group. The GSE117261 dataset
contained total RNA gene expression microarray data from 58
PAH and 25 normal lung tissues (Supplementary Table 1).
GSE113439 contains total RNA gene expression microarray
data from 15 PAH and 11 normal lung tissues (Supplementary
Table 2). They were based on the same platform, GPL6244. The
data processing procedure of the research was illustrated in the
workflow (Figure 1).

Co-expression network analysis

The weighted gene co-expression network analysis
(WGCNA) was conducted to screen potential modules of high

1 http://www.ncbi.nlm.nih.gov/geo/
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relationship with PAH based on the gene expression profiles
via the “WGCNA” R package. The expression of genes was
ranked via standard deviation. Then the top 5,000 genes were
picked for the next step of analysis. Next, the hierarchical
cluster analysis was used to exclude outlier samples. We
calculated the Pearson correlation value between each gene
pair to obtain a gene similarity matrix. Then, the formula,
aij (adjacency matrix between gene i and j) = | Sij (similarity
matrix of all gene pairs)| × β (the soft threshold), was used to
construct the adjacency matrix. The optimal β was picked by
the “pickSoftThreshold” function in the “WGCNA” R package
to meet the scale-free distribution. The adjacency matrix was
transformed into a topological overlap matrix (TOM) and a
1-TOM, reflecting the similarity and dissimilarity between
genes, separately. Ultimately, the genes were divided into
different modules using hierarchical clustering methods. The
module eigengene (ME) was calculated, representing the gene
expression profile of each module. Therefore, modules highly
correlated with PAH were selected as key modules for further
analysis. The soft threshold was β = 7, minModuleSize = 50,
deep Split = 2, and MEDissThres = 0.3.

Functional enrichment analysis

The “clusterProfiler” R package was used to further describe
potential biological functions and obtain pathways of genes
in the WGCNA key gene modules via Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. The false
discovery rate (FDR) was further computed according to the
Benjamini–Hochberg procedure (Benjamini and Hochberg, (8).
The FDR < 0.05 was considered as statistically significant.

Construction of protein–protein
interaction (PPI)

To identify the hub genes and PPI network in the
key modules, genes within the key modules were further
uploaded to the Search Tool for the Retrieval of Interacting
Genes (STRING)2 for constructing PPI network. The medium
confidence score of the PPI network was 0.400. Then the
“MCODE” algorithm with default parameters was implemented
in the Cytoscape software (version: 3.8.2).

Differentially expressed gene analysis

The differentially expressed genes (DEGs) between PAH
and normal lung tissue were identified through the “limma”

2 https://string-db.org/

R package. P-adjusted value < 0.05 and |log2 fold change
(FC)| > 2/3 were set as the threshold of DEGs.

Identification of key regulatory genes

The intersection of the most positive correlation module
in the WGCNA and upregulated genes significantly in the two
datasets is known as upregulated key genes of PAH. Similarly,
the intersection of the most negative correlation module in
the WGCNA and downregulated genes significantly in the two
datasets is known as downregulated key genes of PAH.

Machine learning

The least absolute shrinkage and selection operator
(LASSO) is a machine-learning algorithm to obtain a robust
predictive performance model and is applied to select the best
predictive gene for the diagnosis of PAH. This process was
achieved through the “glmnet” R package. The performance
of PDS was assessed by the area under the receiver operator
characteristic (ROC) curve.

Gene set enrichment analysis

The normalized enrichment score (NES) was calculated
for PAH on GO and KEGG pathways in the Molecular
Signature Database (MSigDB) via all GO gene sets
(c5.go.v7.4.symbols.gmt) and KEGG gene sets as gene symbols
(c2.cp.kegg.v7.4.symbols.gmt), respectively. | NES| > 1.50,
FDR < 0.01, and adjusted P-value < 0.01 were set as
cutoff criteria.

Evaluation of immune cell infiltration

To describe the differences in immune cell infiltration
between the high-score and low-score groups, we used single-
sample gene set enrichment analysis (ssGSEA), which is an
extension of GSEA that generates enrichment scores for
individual samples. The abundance of infiltrating immune cells
was calculated and visualized through the “GSVA” R package
(v1.42.0). Furthermore, we evaluated correlation coefficients
between PDS scores of samples and immune cell abundance to
investigate the main immune cells engaged in the PAH.

Statistical analysis

The data processing, statistical analysis, and plotting
were conducted in R 4.1.0 software. Pearson’s correlation
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FIGURE 1

Flowchart of this study.

coefficient was assessed for correlations between two continuous
variables. The chi-square tests were used to compare categorical
variables, while the Wilcoxon rank sum test or t-test was
used to compare continuous variables. The “survminer”
R package was fitted to determine the optimal cutoff

value. The LASSO was fitted by “glmnet” R package. The
“pROC” R package utilized ROC and the area under the
ROC curve (AUC). P < 0.05 was determined using the
“pROC” R package. It was determined that P < 0.05 was
statistically significant.
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Results

Identification of key modules in
pulmonary arterial hypertension via
weighted gene co-expression network
analysis

The GSE117261 dataset was used as a training dataset to
recognize the key genes associated with PAH. First, two outlier
samples were removed, and the 81 samples and the top 5,000
genes were used to obtain the gene similarity matrix. Then,
the gene similarity matrix was constructed as an adjacency
matrix according to the formula. Second, the soft-thresholding
power was set to seven by the “pickSoftThreshold” function
for the analysis of a scale-free network (Figures 2A,B). Third,
the adjacency matrix was converted to the TOM. We clustered
MEs based on calculating the dissimilarity of MEs and using the
“mergeCloseModules” function and then 14 MEs were identified
(Figures 2C,D). Ultimately, data were visualized in regard to
the module–trait relationships based on the Pearson correlation
coefficient between the MEs and the disease (Figure 2E). Among
these, the salmon module was the top positive module (r = 0.441,
P < 0.0001) with PAH including 646 genes (Figure 2F), and the
red module was the top negative module (r = –0.718, P< 0.0001)
including 176 genes (Figure 2G).

Enrichment analyses and
protein–protein interaction
construction of key modules

To acquire a deep understanding of the function of
genes in positively and negatively related modules, salmon
and red module genes were analyzed through enrichGO
and enrichKEGG function in the “clusterProfiler” R package,
respectively. Genes of the red module were significantly
enriched in “neutrophil activation,” “neutrophil activation
involved in immune response,” “neutrophil degranulation,” and
“neutrophil mediated immunity,” all of which were terms
about neutrophil, as shown in Figure 3A. The KEGG pathway
terms were related to “Osteoclast differentiation,” “Neutrophil
extracellular trap formation,” and “B cell receptor signaling
pathway,” which might play essential roles in PAH (Figure 3B).
Meanwhile, the top three GO terms were enriched by genes
of the salmon module, including “Extracellular structure
organization,” “Extracellular matrix organization,” and “External
encapsulating structure organization,” which were mainly
associated with the extracellular organization (Figure 3C). The
KEGG pathways suggested that the “ECM–receptor interaction”
and “protein digestion and absorption” might be potential
pathways of PAH (Figure 3D). The lists of genes involved in
the GO and KEGG enrichment analysis in red and salmon

modules can be found in Supplementary Tables 3–6. These
results indicated that inflammation and immune cells played a
significant role in the process of PAH.

To screen the hub gene of positive and negative correlation
modules with PAH, the PPI network was established through
the STRING database, including 852 nodes and 5,841 edges.
Then the network was processed in the Cytoscape software,
and the possible 38 essential genes ranked by node degree
were visualized using the MCODE plugin. The top 10 highest
degrees of genes were screened, including ITGAM, CYBB, SPL1,
FCGR3A, CD86, ITGB2, LILRB2, CCR1, 1L10RA, and CSF1R
(Figure 3E).

Identification of differentially
expressed genes in two pulmonary
arterial hypertension datasets

The DEGs in lung tissue between the patients with PAH
and normal controls were excavated by the “limma” R package.
Consequently, in the GSE113439 dataset, 1,355 significantly
upregulated genes and 483 significantly downregulated genes
were defined. Similarly, in the GSE117261 dataset, we identified
120 significantly upregulated genes and 99 significantly
downregulated genes. These DEGs are shown as a volcano plot
and heatmap in Figures 4A–D.

Determination of the key genes

The core downregulated gene was screened through the
intersection of the genes in the red module of WGCNA and
the significantly downregulated genes in two datasets, including
LRRN4 (Figure 5A). Likewise, the key upregulated gene was
screened through the intersection of the genes in the salmon
module of WGCNA and the significantly upregulated genes
in the two datasets, including PI15, BICC1, PDE1A, TSHZ2,
HMCN1, COL14A1, CCDC80, and ABCB1 (Figure 5B). The
expression levels of nine key genes are verified in the two
datasets shown in Figures 5C,D.

Construction of a diagnosis model via
least absolute shrinkage and selection
operator algorithm

The nine key genes were developed as a reliable and
individualized PAH diagnostic signature (PDS) by applying the
LASSO algorithm to diagnose patients with PAH. The optimal
lambda was 0.002116 when the LASSO regression partial
likelihood deviation was minimized (Figure 6A). Consequently,
nine key genes with non-zero LASSO coefficients were regarded
as the diagnostic model’s main variables (Figure 6B). The nine
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FIGURE 2

Detection of weighted gene co-expression network and modules. (A) Scale-free topological indices at various soft-thresholding powers.
(B) The correlation analysis between the soft-thresholding powers and mean connectivity of the network. (C) Gene clustering diagram based on
hierarchical clustering under optimal soft-thresholding power. (D) The heatmap of the eigengene adjacency. (E) Correlations between gene
modules and PAH. (F) The correlation between the salmon module memberships and the gene significance. (G) The correlation between the
red module memberships and the gene significance.

genes were COL14A1, TSHZ2, CCDC80, BICC1, HMCN1,
LRRN4, PDE1A, ABCB1, and PI15, and their coefficients
were 0.1522, 0.1191, –0.1084, –0.0963, 0.0785, –0.0676, –
0.0545, –0.0452, and –0.0292, respectively. The ROC analysis
demonstrated outstanding AUCs with 0.948 and 0.945 in two
cohorts for evaluating the power of the PDS to differentiate

the PAH (Figures 6C,D). Therefore, we established an
optimal diagnostic signature PDS with the formula: PDS
score = 0.1522 × Exp COL14A1 + 0.1191 × Exp TSHZ2 -
0.1084 × Exp CCDC80 - 0.0963 × Exp BICC1 + 0.0785 × Exp
HMCN1 - 0.0676 × Exp LRRN4 - 0.0545 × Exp PDE1A –
0.0452 × Exp ABCB1 - 0.0292 × Exp PI15 + 0.7037.
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FIGURE 3

Enrichment analysis and protein–protein interaction construction of key modules. (A) GO enrichment analysis of genes in the red module.
(B) KEGG pathway analysis of genes in the red module. (C) GO enrichment analysis of genes in the salmon module. (D) KEGG pathway analysis
of genes in the salmon module. (E) The protein–protein network of two modules.

Exploration of biological mechanisms
via gene set enrichment analysis
(GSEA)

First, we calculated the PDS scores and gene expression
correlations for gene sequencing. Subsequently, GSEA
was performed to detect potential mechanisms for PAH.
Figures 7A,B illustrate the most important GO terms and
the KEGG pathways. Among these, Figure 7C depicts the top

five positively relevant GO terms, including “Regulation
of cholesterol metabolic process,” “Sterol biosynthetic
process,” “Sterol metabolic process,” “Odorant binding,” and
“Oxidoreductase activity acting on CH-OH group.” Figure 7D
depicts the top five negatively relevant GO terms, comprising
“Collagen fibril organization,” “Basement membrane,” “Collagen
binding,” “Extracellular matrix structural constituent,” and
“Extracellular matrix structural constituent conferring.” On the
contrary, Figure 7E describes the top five positively correlated
the KEGG pathways, consisting of “Glutathione metabolism,”
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FIGURE 4

Differential expression analysis of the PAH datasets. (A) The volcano plot of DEGs in GSE117261. (B) The heatmap of DEGs in GSE117261. (C) The
volcano plot of DEGs in GSE113439. (D) The heatmap of DEGs in GSE113439.

“Pathogenic Escherichia coli infection,” “Pyruvate metabolism,”
“Steroid biosynthesis,” and “Terpenoid backbone biosynthesis.”
Likewise, Figure 7F describes the top five negatively
correlated KEGG pathways, consisting of “Arrhythmogenic
right ventricular cardiomyopathy ARVC,” “ECM-receptor
interaction,” “Intestinal immune network for IgA production,”
and “Systemic lupus erythematosus.” Notably, “ECM–receptor
interaction” was enriched once again which was enriched
in the salmon KEGG pathway. It can be concluded that the

"extracellular matrix organization" may play an essential
role in PAH.

Immune landscape of PAH diagnostic
signature

We assumed that the two PDS score groups had different
immunological characteristics since inflammation and immune
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FIGURE 5

Selection and validation of key regulatory genes. (A) Venn diagram to indicate one downregulatory gene from the red module and DEGs.
(B) Venn diagram to indicate eight upregulatory genes from the salmon module and DEGs. (C) Validation of key regulatory genes in the dataset
GSE117261. (D) Validation of key regulatory gene in the dataset GSE113439.

cells are essential in the PAH process. To probe the
discriminating immune landscape of patients with PAH,
the ssGSEA algorithm was used to estimate the infiltration
abundance of 24 types of immune cells among the GSE117261
dataset. The fraction of 24 types of immune cells in GSE117261
samples is depicted as a heatmap in Figure 8A. The relative

expression is portrayed as a boxplot in Figure 8B. We can see
that a superior abundance of Th17 cells, neutrophils, effective
memory T cell (tem), and eosinophils was the immune feature
of the high-score group, whereas high infiltration of mast cells,
B cells, Th2 cells, interdigitating cell (iDC), Th1 cells, and T
cells was the immune feature in the low-score group. Figure 8C
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FIGURE 6

Screening and validation of the genes. (A) Determination of the optimal lambda was obtained when the partial likelihood deviance reached the
minimum value and further generated the key gene with non-zero coefficients. (B) LASSO coefficient profiles of the candidate gene for PDS
construction. (C) The ROC curve of the modeling dataset (GSE117261). (D) The ROC curves of validation datasets (GSE113439).

shows the heatmap of correlations between immune cells. The T
cells and B cells showed the strongest positive correlation, and
the neutrophils and T helper cells showed the strongest negative
correlation. Subsequently, we probed the correlation between
the PDS score and immune infiltration. As shown in Figure 8D,
the infiltration level of Th17 cells (r = 0.467, P < 0.0001),
neutrophils (r = 0.394, P = 0.0003), tem (r = 0.335, P = 0.0023),
and eosinophils (r = 0.250, P = 0.0249) was positively correlated
with the PDS score; the infiltration level of mast cells (r = –0.470,
P < 0.0001), B cells (r = –0.381, P = 0.0005), Th2 cells

(r = –0.376, P = 0.0006), iDC (r = –0.355, P = 0.0012), Th1 cells
(r = –0.354, P = 0.0012), and T cells (r = –0.284, P = 0.0103) was
negatively associated with the PDS score.

Discussion

Pulmonary arterial hypertension is a disorder characterized
by a progressive increase in pulmonary vascular stress
and significant pulmonary vascular remodeling, resulting in
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FIGURE 7

Gene Set Enrichment Analysis (GSEA). (A) The ridge plot of the top 20 GO terms with ranked genes of the modeling dataset. (B) The ridge plot of
the top 20 KEGG pathways with ranked genes of the modeling dataset. (C,D) The positive and negative top five GO terms with ranked genes of
the modeling dataset. (E,F) The positive and negative top five KEGG pathways with ranked genes of the modeling dataset.

hypertrophy and remodeling of the right ventricle (9–11).
If a patient with pulmonary hypertension is not diagnosed
promptly, the probability of death due to right ventricular failure
is drastically increased (9). As a rapidly evolving approach,
molecular analysis is utilized to comprehend the latent pathways
in the context of human disease. The notion is recognized that

PAH is actuated by a comprehensive network of molecular
processes (12–15). Measurement of RNA expression is one of the
high-throughput unbiased techniques in the Omics approach,
which provides a snapshot of the transcriptome aspect (13).
These insights provide new perspectives for predicting potential
pathogenesis and therapeutic aspects. Therefore, it is of great
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FIGURE 8

Analysis of immune landscape associated with PAH. (A) The heatmap of the immune infiltration in high- and low-score groups. (B) The boxplot
of the 24-type immune infiltration in high- and low-score groups. *P < 0.05, **P < 0.01, and ***P < 0.001. (C) The heatmap of the correlations
between different immune cells. (D) Relationship between the PDS score and immune infiltration. H: high score; L: low score. aDC: activated
dendritic cell; DC: dendritic cell; iDC: interdigitating cell; NK cells: natural killer cells; pDC: plasmacytoid dendritic cells; Tcm: central memory T
cell; Tem: effector memory T cell; TFH: T follicular helper cell; Tgd: gamma delta T cells; TReg: T regulatory cells.

significance to explore molecular biomarkers and to construct
a diagnostic model for the diagnosis of PAH.

The WGCNA, as a bioinformatics approach, explicitly
exploits the relationship between gene co-expression modules
and disease to further explore the pathogenesis of diseases.

Our study screened out 11 modules associated with PAH via
WGCNA. Among the 11 modules screened, the genes in the
salmon module are the most positively correlated with PAH and
those in the red modules are the most negatively correlated with
PAH. In the salmon modules, genes were mainly concentrated
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in extracellular structure organization, extracellular matrix
(ECM) organization, and external encapsulating structure
organization in GO terms and gathered in the KEGG pathway
of ECM–receptor interaction and PI3K–Akt signaling pathway.
As mentioned in the literature review, ECM remodeling
triggers pulmonary arterial smooth muscle proliferation and
pro-inflammatory response in the endothelial cells resulting
in increased stiffness of the proximal and distal pulmonary
arteries in PAH (16, 17). Meanwhile, the PI3K–Akt signaling
pathway is an essential nexus of pulmonary artery smooth
muscle cell (PASMC) proliferation and hypoxia-induced
pulmonary vascular remodeling (18, 19). Conversely, in the
red modules, genes were mainly concentrated in GO terms
related to neutrophil and immune response. Besides, genes
were gathered in the B-cell receptor signaling pathway and
neutrophil extracellular trap (NET) formation in the KEGG
pathway. The release of neutrophil elastase is part of neutrophil
activity. NE, which is found in PASMCs and neointimal lesions
of PAH, is thought to cause vascular remodeling by causing
the release of growth factors, aggregation and activation of
their receptors, and subsequent migration and proliferation
of smooth muscle cells and fibroblasts through extracellular
matrix degradation (20–22). NETs, formed from chromatin
decondensation provoked by reactive oxygen species (ROC),
can trigger the inflammatory activation of lung endothelial
cells and stimulate endothelial angiogenesis through myelo-
peroxidase/H2O2/NFkB/TLR4-dependent signaling. These
results confirm the findings of extensive previous work
demonstrating the potential pathological relevance between
NETs and inflammatory angiogenesis, a disturbance of vascular
homeostasis in PAH (23). In summary, the comprehensive
bioinformatics analysis perceived that neutrophil activation
and immune response played a considerable role in disease
pathogenesis and the process of PAH. On the contrary, the
complexity of cytokine, cellular immunity, and autoantibody
changes indicated that PAH might be an autoimmune and
inflammatory disease, which was consistent with previous
reports (11, 24–26).

From a broad perspective, the development of PDS for
clinical application is of great significance. Previous studies
have examined key genes by DEG analysis between PAH
lung specimens and normal lung specimens solely based on
the public database in the GEO (27–29). The presence of
heterogeneity of the disease and confounding factors reduces
the sensitivity and specificity of DEGs as biomarkers for PAH.
In addition, redundant key genes limited the clinical practice of
the clinical application. In our study, the essential biomarkers
relevant to the PAH were filtrated by combining the results
of the WGCNA and the DEGs. Further analysis identified
nine robust PDS by the application of the LASSO algorithm,
including COL14A1, TSHZ2, CCDC80, BICC1, HMCN1,
LRRN4, PDE1A, ABCB1, and PI15. The PDS demonstrated high
discriminatory power with outstanding AUCs in the two cohorts

separately. Phosphodiesterase 1 (PDE1), encoded by three genes,
namely PDE1A, 1B, and 1C, is a sub-family of enzymes.
Some animal studies have shown that the inhibition of PDE1A
treats pulmonary arterial hypertension by reversing pulmonary
vascular remodeling and right heart hypertrophy (30, 31).
The basement membrane collagen COL4A5 was significantly
upregulated in the intima and media of the IPAH patient cohort,
indicating improved vascular stiffness via stabilizing existing
collagen fibers (32). PI15 belongs to the CAP superfamily of
proteins and is a trypsin inhibitor (33). Against extracellular
matrix proteins, trypsin has high protease activity. PI15 has
been hypothesized to perform a protective role in elastic tissues
against proteolytic damage and a role in controlling extracellular
matrix changes (34). LRRN4, also known as leucine-rich repeat
neuron protein-4, is a member of the LRRN family and linked to
a range of pathological events, including cardiac remodeling (35,
36). BICC family RNA-binding protein 1 (BICC1) is an RNA-
binding protein that modulates protein translation to control
gene expression. BICC1 can influence biological processes
including proliferation and apoptosis. Furthermore, abnormal
BICC1 expression has been linked to immune cell infiltration
during disease progression (37). Hemicentin-1 (HMCN1) is an
ECM fibulin protein that is thought to be required for stable
cell-to-cell interactions and ECM structure stability and may
interact with receptors on the cell surface, either directly or
indirectly, providing a mechanism for cell behavior modulation
(38, 39). Taken together, exploring the underlying mechanisms
in PAH of key genes contained in PDS might facilitate the
clinical translation and application of the diagnostic model.

The PDS score-based GSEA indicated that immune-
related pathways were enriched between high and low groups.
Hence, deciphering the exact mechanisms of immune cells in
pulmonary vessels might lead to a wide range of potential
attractive therapeutic targets for PAH therapy. We further
estimated the fraction of 24 immune cells between the two
groups via the ssGSEA algorithm. We discovered that the
Th17 cells, neutrophils, tem, and eosinophils were at high
expression in the high-score subgroup compared to the low-
score subgroup, while mast cells, B cells, Th2 cells, iDC,
Th1 cells, and T cells presented low infiltration levels in the
low-score group. Th17 cells, a subpopulation of effector T
cells that produce IL-17, are highly pro-inflammatory and are
widely involved in inflammatory diseases (40). It has been
shown that IL-17 is of significance in chronic inflammation-
associated pulmonary hypertension, where it correlates with
disease severity in SSc-associated pulmonary hypertension.
Neutrophils release NE, present in PASMCs of PAH, which can
lead to vascular remodeling through aggregation and activation
of growth factors and their receptors, and degradation of the
smooth muscle cell and fibroblast migration and proliferation
(21). In addition, there is growing evidence that eosinophil
infiltration of the pulmonary vasculature is an important,
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influential factor in the pathological changes of all types of PAH
(41). Eosinophils stimulate pulmonary vascular remodeling
by releasing granular content and stimulating intravascular
PASMC proliferation. Combined with previous studies, we
further confirmed that abnormal immune cell expression was
critical in the pathogenesis of vascular remodeling and might be
potential targets for PAH treatment.

Although advanced bioinformatics techniques and
machine-learning algorithms are combined to identify
candidate genes and construct diagnostic models for PAH,
several limitations should be noticed. First, the relevant genes
and pathways screened are not experimentally validated.
Fundamental study validation is required for better clinical
application in further studies. Second, the PDS needs to be
validated with a larger sample size. Last, the dataset lacked
comprehensive information on clinical aspects.

In summary, our study constructed a nine-gene diagnostic
model of PAH and PDS, through comprehensive bioinformatics
analysis. Two modules significantly associated with PAH were
identified, and key genes and novel mechanistic pathways
were identified. In addition, the inflammatory and immune
landscapes of patients with PAH were depicted. Overall, the
key genes, novel pathways, and immune landscape may shed
light on exploring the molecular mechanisms and potential
therapeutic targets of PAH.
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