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Background: Current electrocardiogram (ECG) criteria of left ventricular

hypertrophy (LVH) have low sensitivity. Deep learning (DL) techniques have

been widely used to detect cardiac diseases due to its ability of automatic

feature extraction of ECG. However, DL was rarely applied in LVH diagnosis.

Our study aimed to construct a DL model for rapid and e�ective detection of

LVH using 12-lead ECG.

Methods: We built a DL model based on convolutional neural network-

long short-term memory (CNN-LSTM) to detect LVH using 12-lead ECG. The

echocardiogram and ECG of 1,863 patients obtained within 1 week after

hospital admission were analyzed. Patients were evenly allocated into 3 sets

at 3:1:1 ratio: the training set (n = 1,120), the validation set (n = 371) and the

test set 1 (n = 372). In addition, we recruited 453 hospitalized patients into

the internal test set 2. Di�erent DL model of each subgroup was developed

according to gender and relative wall thickness (RWT).

Results: The LVH was predicted by the CNN-LSTM model with an area under

the curve (AUC) of 0.62 (sensitivity 68%, specificity 57%) in the test set 1, which

outperformed Cornell voltage criteria (AUC: 0.57, sensitivity 48%, specificity

72%) and Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, specificity 96%).

In the internal test set 2, the CNN-LSTM model had a stable performance

in predicting LVH with an AUC of 0.59 (sensitivity 65%, specificity 57%). In

the subgroup analysis, the CNN-LSTM model predicted LVH by 12-lead ECG

with an AUC of 0.66 (sensitivity 72%, specificity 60%) for male patients, which

performed better than that for female patients (AUC: 0.59, sensitivity 50%,

specificity 71%).

Conclusion: Our study established a CNN-LSTM model to diagnose LVH by

12-lead ECG with higher sensitivity than current ECG diagnostic criteria. This

CNN-LSTM model may be a simple and e�ective screening tool of LVH.

KEYWORDS

left ventricular hypertrophy, electrocardiogram, echocardiography, deep learning

model, convolutional neural network-long short-term memory
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Introduction

Left ventricular hypertrophy (LVH) is an early structural and

functional cardiac change of hypertension, with an estimated

echocardiographic prevalence of 36–41% (1). Other causes

of LVH include aortic stenosis, hypertrophic cardiomyopathy,

valvular heart disease, infiltrative heart muscle disease, storage

and metabolic disorders (2, 3). The incidence of LVH is further

affected by age and obesity (4, 5). Previous studies showed that

LVH is an independent risk of arrhythmias (3), heart failure (6)

and mortality (7).

Echocardiography is the current standard diagnostic

method (8), whereas 12-lead ECG is the most commonly

used diagnostic tool in clinical cardiology as it allows a rapid

screening of LVH. However, current ECG criteria of LVH

including the Cornell voltage and the Sokolow-Lyon voltage

criteria have low sensitivity (7, 9). These criteria mainly focus

on increased QRS complex amplitude, but overlook a leftward

shift of electrical axis in the frontal plane, ST segment deviation

and T wave changes, which are also principal ECG diagnostic

characteristics for LVH (10). Besides, the interpretation of these

ECG criteria are tedious for doctors, affecting the efficiency

and accuracy of diagnosis. To improve these limitations of the

current ECG criteria for LVH, new methods for analysis of ECG

are urgently needed.

Since the digitalization of ECG, artificial intelligence

methods have been employed in computerized interpretation

of ECGs (11). Recently, few studies were presented by machine

learning for the ECG characteristics to detect presence of LVH

(12, 13). Among these methods, deep learning (DL) techniques

are superior to conventional machine learning techniques due

to its ability of automatic feature extraction. The Convolutional

Neural Network (CNN), combined with the Long Short-

Term Memory (LSTM) model, appear to be the most useful

architectures for classification (14). A 16-layer CNN-LSTM

model was efficaciously used to classify coronary atherosclerotic

disease (CAD), myocardial infarction, and chronic heart failure

signals, with a precision rate of 98.5% (15). Our previous

study also showed that the CNN-LSTM performed better

than the CNN, LSTM, and doctors in detecting acute ST-

segment elevation myocardial infarction (STEMI) based on 12-

lead ECG, with an area under the curve (AUC) of 0.99 (16).

Accordingly, our study aimed to establish a DL model based on

the CNN-LSTM for reliable and rapid detection of LVH using

12-lead ECG.

Methods

Study population

A total of 3,120 patients hospitalized at the Third Affiliated

Hospital of Sun Yat-sen University in China from January 2017

to December 2019 were recorded. Only the first admission

for each patient was included; repeated hospitalizations were

not evaluated in this study. Finally, 1,863 patients with ECG

obtained within 1 week after hospitalization were included

for analysis. Exclusion criteria were as follows: complete

left or right bundle branch block, ventricular paced rhythm,

ventricular arrhythmia at the time of ECG acquisition. Another

independent cohort consisted of 453 patients was used as the

internal test set 2 using the same inclusion and exclusion criteria.

All personal details were erased to protect the confidentiality

of patients’ data. Data collection was approved by the ethics

committee at the Third Affiliated Hospital of Sun Yat-

sen University.

Baseline data collection

Data was extracted from the standard clinical electronic

medical record (EMR) database of the Third Affiliated

Hospital of Sun Yat-sen University, including demographic

characteristics, comorbidities, laboratory tests, and medicines.

The comorbidities were retrieved according to ICD-10

diagnostic codes.

Acquisition and procession of
echocardiography data

Comprehensive 2-dimensional Doppler echocardiography,

the gold standard to assess LVH, was routinely performed using

commercially available ultrasound equipment. Acquisitions and

measurements were performed by two experienced cardiac

ultrasound doctors. LVH is defined as a left ventricular mass

index (LVMI) >115 g/m2 in male subjects and >95 g/m2

in female subjects (17). Calculation of relative wall thickness

(RWT) with the formula (2× posterior wall thickness)/(LV

internal diameter at end-diastole), permits categorization of an

increase in LV mass as either concentric (RWT > 0.42) or

eccentric (RWT ≤ 0.42) hypertrophy (17).

Acquisition and procession of ECG data

ECG was performed at a sampling rate of 1,000Hz, and

acquired in the supine position using the ECGNET Vision 3.0

(SanRui Electronic Technology, Guangdong, China). The ECG

signal had to be clear, stable baseline with no interference.

All ECG data were labeled with the study ID, and stored

as XML file format following the H7L standard on a secure

server. The quality of ECG data and ECG interpretations were

independently reviewed by 2 cardiologists. The comparison of

our model was referred to the Cornell voltage criteria and the

Sokolow-Lyon voltage, given their relative higher sensitivity and
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specificity (9, 18). The sex-specific Cornell voltage criteria was

computed as the amplitude of R in aVL plus the amplitude

of S or QS complex in V3 (RaVL + SV3) with a cutoff of

>2.8mV in men and >2.2mV in women. The Sokolow-Lyon

voltage was obtained by adding the amplitude of S in V1 and

the amplitude of R in V5 or V6 ≥3.5mV (SV1 + RV5 or

RV6) (19).

Deep-learning modeling

ECG data extraction

ECG data was extracted from XML files, consisted

of 12 channels. The duration of ECG generally lasted

from 10 to 90 s, and were cut into 5-s segment.

The specification of each ECG segment was finally

intercepted (5,000, 12), which was then utilized in the

input model.

Data balance

There was imbalance in the quantity of cases and ECG

segments between the control and LVH groups, as the latter

group had less cases and ECG segments. To solve this problem,

we drew sample cases and ECG segments of the control group

referring to these of the LVH group, at last the cases and ECG

segments were balanced in two groups.

The model was evaluated through 5-fold cross-validation

technique. In each repetition of the cross-validation process, one

part was selected as the validation set, another part was selected

as the test set, while the remaining parts were served as the

training set. Thus, the datasets of cases and ECG segments were

needed to be equally split into 5 parts following below steps:

(1) ECG segments of each case were ranked by number; (2)

counted the frequency of the number of ECG segments; (3) if

the ECG data of cases had the same quantity of segments and

the number of those cases was more than 5, the ECG data of

those five cases were selected and evenly divided into five parts,

and then the remaining ECG data of cases were partitioned

into five proximately equal parts, making the total number of

cases and ECG segments among 5-fold subsets approximate.

In order to split five equal parts rapidly, we developed an

algorithm replacing manual processing with automation. The

final dataset included 36,350 ECG segments (n = 931) and

36,348 ECG segments (n= 932) in the control and LVH groups,

respectively. Previous studies have showed that the sensitivity

and specificity of ECG criteria could be influenced by gender

and left ventricular geometry, therefore we performed subgroup

analyses. And we also balanced data for all subgroup analyses

using the same method.

Model architecture and training

The architecture of CNN-LSTMmodel has been described in

our previous study (16). In the training process, the model input

was 12-lead ECG segment which had the specification of (5,000,

12). The first part of the CNN-LSTMmodel was CNN layers. The

(5,000, 12) ECG segments were split into m smaller segments

(length of smaller segments = 5,000/m) to train m CNN time

Distributed layers simultaneously. The time Distributed layer is

fully connected in the time dimension. In CNN time Distributed

layer, weight parameters or convolution kernels were shared,

instead of each have its own weight. We made the number of

smaller segments (m) as a parameter with a value scope in (1, 2,

5, 10, 20, 25, 50, 100, 200, 250, and 500). The number of smaller

segment (m) was settled according to the best validation output

during training process. The number of CNN layers ranged from

1 to 5, and that of LSTM layers was 2. The CNN layer kernels

would be selected from the scope of (16, 24, 32, 48, 56, and 64).

All hyper-parameters would be Grid Search by keras tuner tool,

which could automatically record and compare the accuracy of

different models. Finally, the model with the best performance

and corresponding hyper-parameters were selected, and then the

parameters of the best model were utilized for LVH prediction

based on ECG. Among all of the models explored, the CNN-

LSTMmodel which had 200 smaller segments to input data, and

contained 3 CNN layers (16 kernels in each layer), followed by 2

LSTM layers (200 LSTM units and 2 LSTM units in each LSTM

layer, respectively) performed the best. The last 2 LSTM units

output was predictive probability of the control and LVH groups.

The DL models of each subgroup, including gender and RWT,

were developed in the same process. More details of all models

were showed in Supplementary Table 1.

Statistical analysis

The baseline characteristics were described as mean

(standard deviation) (SD) or median with interquartile range

(IQR) for continuous variables, and categorical variables

were described as proportions. Kolmogorov-Smirnov test

was used for continuous variables whether conforming to

normal distribution. Differences in baseline characteristics were

compared using t-test between two groups or analysis of

variance (ANOVA) for continuous variables, while Mann-

Whitney U-test between two groups and Kruskal-Wallis test

among three groups was for abnormal distribution, and Chi-

square test was applied for categorical variables. The statistical

analyses were performed using the SPSS 22.0. A 2-tailed P-value

< 0.05 was considered statistically significant.

Receiver operating characteristic (ROC) curve analysis

and area under the curve (AUC) were used to evaluate the

diagnostic efficacy of CNN-LSTM models and conventional

ECG indexes of LVH. Delong’s test was used to compare the
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performance of two ROC curves. Sensitivity, specificity,

positive predictive value (PPV), negative predictive

value (NPV) and F1-score were calculated with python

(version 3.6.9).

Results

Study population and baseline
characteristics

The study flow chart was shown in Figure 1. In the first

cohort, 1,863 patients were divided into 2 groups according to

the LVMI criteria: LVH group (n= 932) and control group (n=

931). Compared with the patients of control, patients in the LVH

group were older, composed of higher proportion of female,

more combined with hypertension, chronic heart failure (CHF),

chronic kidney disease (CKD), as well as more likely to receive

angiotensin-converting enzyme inhibitor (ACEI) and diuretics,

but had lower level of hemoglobin (HGB). More details were

shown in Table 1.

Further, patients in the first cohort were evenly split

into 3 sets: the training set (n = 1,120), the validation set

(n = 371) and the test set 1 (n = 372). Patients in the

training set had higher prevalence of CAD. There were no

significant difference in other clinical characteristics among the

three sets. More baseline characteristics were summarized in

Supplementary Table 2. In the internal test set 2, patients in the

LVH group were older, composed of higher proportion of female

and had higher prevalence of CHF, but had lower level of HGB

(Supplementary Table 3).

The predictive value of DL models in LVH
diagnosis

LVH was predicted by the CNN-LSTM model with an

AUC of 0.62 (sensitivity 68%, specificity 57%) in the test set

FIGURE 1

Study flow diagram. (A) The first cohort was further divided into training, validation and test sets. (B) The second cohort was used as internal test

2 to evaluate developed DL model.
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TABLE 1 Patient characteristics between LVH and control groups.

Characteristics LVH Control P-value

(n = 932) (n = 931)

Demographic

Female, n (%) 511 (54.8) 273 (29.3) <0.001

Age, years 67.3 (10.5) 63.9 (11.3) <0.001

Medical history

CAD, n (%) 601 (64.5) 564 (60.6) 0.082

HT, n (%) 586 (62.9) 486 (52.2) <0.001

CHF, n (%) 330 (35.4) 223 (24.0) <0.001

DM, n (%) 306 (32.8) 333 (35.8) 0.182

Stroke, n (%) 129 (13.8) 122 (13.1) 0.641

CKD, n (%) 85 (9.1) 47 (5.0) 0.001

STEMI, n (%) 23 (2.5) 16 (1.7) 0.259

Laboratory examination

HDL-C (mmol/L) 1.07 (0.29) 1.04 (0.27) 0.270

LDL-C (mmol/L) 2.77 (1.06) 2.82 (1.03) 1.030

HGB (g/L) 125.71 (19.06) 133.02 (18.74) <0.001

PLT (10∧9/L) 230.52 (85.34) 228.64 (68.03) 0.607

BUN (mmol/L) 6.82 (4.58) 6.16 (2.70) <0.001

Cr (umol/L) 103.92 (122.34) 87.81 (58.00) <0.001

UA (umol/L) 394.94 (124.77) 394.92 (112.51) 0.997

potassium (mmol/L) 3.99 (0.45) 4.00 (0.40) 0.620

sodium (mmol/L) 141.58 (3.24) 141.39 (5.17) 0.767

ECG

RV5 (mV) 1.49 (1.12, 1.99) 1.40 (1.09, 1.75) <0.001

RV6 (mV) 1.20 (0.87, 1.58) 1.10 (0.86, 1.42) <0.001

RaVL (mV) 0.42 (0.24, 0.63) 0.33 (0.17, 0.54) <0.001

SV1 (mV) −0.81 (−1.12 to−0.53) −0.72 (−0.97 to−0.50) <0.001

SV3 (mV) −0.93 (−1.32 to−0.58) −0.86 (−1.17 to−0.55) 0.002

Cornell voltage LVH, n (%) 414 (45.2) 240 (26.3) <0.001

Sokolow-Lyon LVH, n (%) 109 (11.9) 18 (2.0) <0.001

Echocardiography

LVEF (%) 64.08 (9.35) 67.43 (5.17) <0.001

LVEDD (mm) 49.23 (5.34) 44.6 (3.97) <0.001

LVPW (mm) 10.44 (1.10) 9.58 (1.01) <0.001

IVS (mm) 11.77 (1.68) 10.50 (1.34) <0.001

LVMI (g/m2) 129.28 (28.93) 89.97 (14.47) <0.001

Concentric LVH, n (%) 515 (55.3) 532 (57.1) 0.412

Treatment

ACEI, n (%) 192 (20.6) 113 (12.1) <0.001

ARB, n (%) 264 (28.3) 234 (25.1) 0.120

Spirolactone, n (%) 134 (14.4) 107 (11.5) 0.064

CCB, n (%) 366 (39.3) 326 (35.0) 0.057

BB, n (%) 586 (62.9) 563 (60.5) 0.286

Diuretics, n (%) 240 (25.8) 186 (20.0) 0.003

CAD, coronary artery disease; HT, hypertension; DM, diabetes mellitus; CHF, chronic heart failure; CKD, chronic kidney disease; STEMI, ST-segment elevation myocardial infarction;

HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; HGB, hemoglobin; PLT, platelet; BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid; LVEF,

left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension; LVPW, left ventricle posterior wall; IVS, ventricular septum; LVMI, left ventricular mass index; ACEI,

angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CCB, calcium channel blocker; BB, beta-block.
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FIGURE 2

Receiver operating characteristic curve analysis, (A) compared the DL model with Cornell voltage and Sokolow-Lyon voltage in test set 1, the

confusion matrix for predicting control and LVH using the DL model in the test set 1; (B) to test the DL model in internal test set 2. DL, deep

learning model; CV, Cornell voltage, SL, Sokolow-Lyon voltage.

1, which had a better performance than the Cornell voltage

criteria (AUC: 0.57, sensitivity 48%, specificity 72%) and the

Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, specificity

96%). Differences in ROC curves were statistically compared

via Delong’s test (CNN-LSTM model vs. Cornell voltage

criteria, p-value = 0.075; CNN-LSTM model vs. Sokolow-Lyon,

p-value = 0.037). Although no significant difference was found

between CNN-LSTM model and Cornell voltage criteria, the

sensitivity of CNN-LSTMmodel was higher than that of Cornell

voltage criteria. In the internal test set 2, the CNN-LSTMmodel

had a stable performance in predicting LVH with an AUC of

0.59 (sensitivity 65%, specificity 57%) (Figure 2), which was

comparable to that of the internal test set 1.

In the subgroup analysis, the first step was to train different

DL models according to gender. In the test sets, the CNN-

LSTM model predicted LVH with an AUC of 0.66 (sensitivity

72%, specificity 60%) for male patients, which was better

than that for female patients (AUC: 0.59, sensitivity 50%,

specificity 71%) (Figure 3). The second step was to evaluate

the effect of left ventricular geometry on the diagnosis of

ventricular hypertrophy based on ECG. The DL models were

trained for concentric and eccentric hypertrophy according

to RWT. In the test sets, the CNN-LSTM model predicted

concentric hypertrophy with an AUC of 0.66 (sensitivity 62%,

specificity 70%) and eccentric hypertrophy with an AUC of

0.68 (sensitivity 65%, specificity 71%) in male patients, and an

AUC of 0.58 (sensitivity 48%, specificity 68%) for concentric

hypertrophy and an AUC of 0.58 (sensitivity 47%, specificity

69%) for eccentric hypertrophy in female patients (Figure 4)

(Supplementary Table 4).

Discussion

This is a study to develop DLmodels of LVH diagnosis based

on a large real-world ECG database. Our main achievement was

that we built a DL model based on CNN-LSTM with higher

sensitivity than current ECG diagnostic criteria. Moreover, we

constructed different CNN-LSTM models to predict LVH for

male and female patients separately, and the predictive value was

better in male patients.

Our DL model predicted LVH with higher sensitivity than

the Cornell voltage criteria and Sokolow-Lyon voltage (68, 48,

and 14%, respectively), whereas its specificity was inferior to
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FIGURE 3

Comparing the DL model with Cornell voltage and Sokolow-Lyon voltage to predict LVH, the confusion matrix for predicting control and LVH

using the DL model in the test set; (A) for male patients; (B) for female patients. DL, deep learning model; CV, Cornell voltage; SL, Sokolow-Lyon

voltage.

these two criteria (57, 72, and 96%, respectively). The accuracy

of our model still needed to be improved. In the study of

Bressman et al., found that the sensitivity and specificity of

ECG for left ventricular hypertrophy were 30.7 and 84.4% in a

cohort of 13,960 subjects using a computer-generated algorithm,

which is similar to the combination of the Sokolow-Lyon and

Framingham criteria (20). Peguero et al. proposed a new ECG

criteria involved measuring the amplitude of the deepest S wave

(SD) in any single lead and adding it to the S wave amplitude

of lead V4 (SV4), which outperformed Cornell voltage with

a significantly higher sensitivity (62 vs. 35%) in a relatively

small sample size (21). However, another study found that the

Cornell voltage carried the best AUC of 0.678 (sensitivity 33.1%,

specificity 88.8%), while Peguero Lo Presti criterion had an

AUC of 0.64 (sensitivity 42.3%, specificity 75.8%) in a cohort

of 2,134 patients (19). Current ECG criteria of LVH have low

sensitivity, limit the application of ECG in screening for LVH.

Recently, a few studies utilized machine learning techniques

for ECG and clinical characteristics to diagnose LVH. Lin et

al. used a support vector machine classifier as the machine

learning method for 31 clinical characteristics and 28 ECG

parameters to detect LVH, successfully achieving a specificity

of 73.3%, and a much better sensitivity of 86.7%, compared to

3.3 and 52.7% of the Cornell and Sokolow-Lyon voltage criteria

in a large sample of 2,196 males (12). Although this research

developed a method with high accuracy in a large sample size,

the patients included were only of youngermales, and this model

needed lots of clinical characteristics. Additionally, a machine-

learning technique called Bayesian Additive Regression Trees

was developed to predict LVH based on ECG and participant

characteristics, and the result showed a specificity more than

93% but a poor sensitivity of only 29.0% in a cohort of 4,714

participants from the Multi-Ethnic Study of Atherosclerosis

study (13). Khurshid et al. trained a CNN to predict cardiac

magnetic resonance (CMR)-derived LV mass using 12-lead

ECGs (LVM-AI) in the UKBiobank prospective cohort of 32,239

individuals. The results showed that the LVH discrimination

of LVM-AI was 0.653 (sensitivity 34%, specificity 96%) and

0.621 (sensitivity 41%, specificity 83%) in the independent

UK Biobank test set and Mass General Brigham, respectively.

However, low sensitivity was still limiting the application of

these models. On the other hand, the CNN-LSTM was able to

detect CAD ECG signals with a diagnostic accuracy of 99.85%

with blind-fold strategy (22). Our previous study showed the
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FIGURE 4

Receiver operating characteristic curve analysis of di�erent models according to gender and relative wall thickness (Model 1: Control-M vs.

concentric LVH-M; Model 2: Control-M vs. eccentric LVH-M; Model 3: Control-F vs. concentric LVH-F; Model 4: Control-F vs. eccentric LVH-F).

LVH-F, female patients with left ventricular hypertrophy; LVH-M, male patients with left ventricular hypertrophy; Control-F, female patients in

control group; Control-M, male patients in control group.

ECG DL diagnosis systems based on the CNN-LSTM have a

good performance to detect STEMI and predict culprit vessel

occlusion (16). On this basis, we developed a DL model of

LVH diagnosis that showed higher sensitivity than current

ECG criteria.

Moreover, previous work showed that female gender was

associated with lower sensitivity but higher specificity (20, 23).

Consistently, in our study, the LVH diagnosed by the DL model

was lower in female patients (50% sensitivity, 71% specificity),

compared to 72% of sensitivity and 60% of specificity for male

patients. Additionally, left ventricular geometry is associated

with ECG-defined left ventricular hypertrophy (24). An RWT

> 0.42 demonstrated an increased sensitivity and decreased

specificity for LVH (20). However, our models showed similar

sensitivity to predict eccentric and concentric hypertrophy

in female patients, and even higher sensitivity for eccentric

hypertrophy in male patients.

There are some advantages in our DL models based on

CNN-LSTM. First, the most common method of model training

is to manually set a parameter, and the optimal value is selected

after repeated experiments, which is inconvenient for clinical

application. In our model training stage, the grid search method

was used to search all possible parameter combinations of

each model. For each parameter, grid search algorithm can

extensively search the whole possible parameters space, and

these parameters searching can be done in parallel, regardless

of computing resource constraints, to reduce the training time.

Moreover, our DL model did not need additional preprocessing

for ECG data like removing noise, which may also perform

well with different sources of ECG. However, the accuracy

of our model still needed to be improved. Previous study

showed multiple patient characteristics were associated with

differences in sensitivity and specificity of LVH prediction by

ECG. Therefore, adding the baseline characteristics like age,

gender, body mass index, comorbidities to our model training

may improve its performance. On the other hand, the attention

module integrates channel information, obtains the importance

of features and allocates attention weight to make the network

pay attention to important features, so channel-wise attention

could be added to different convolution layers in order to

optimize the CNN-LSTMmodel. In terms of clinical application,

our DL model was established in a real-world ECG database,

in which all patients were included regardless of the admitting

diagnosis. In addition, LVH is a modifiable risk factor related

to systolic BP and regression of LVH may reduce subsequent

CV events (25). Therefore, it might be helpful in the better

management of hypertension. Besides, our CNN-LSTM model

is an end-to-end approach, it only utilized raw ECG data

input and built binary classification and multiclassification

without experts or experienced cardiologists. It could be able

to give primary diagnosis timely and reduce the workload

of doctors.
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Limitations

Some limitations of our study should be considered. Our

study was a single-center study, the models may have the

risk of generalizing poorly to other hospital systems and

other datasets. Besides, our ECG diagnostic models based

on CNN-LSTM have higher sensitivity at the expenses of

relatively lower specificity compared to currently commonly

used ECG diagnostic criteria. But ECG used as a screening

tool, the interpretation method with higher sensitivity is

more likely to identify more individuals with LVH who

need confirmation of the diagnosis with echocardiography

or MRI. Moreover, this study population mainly included

south China population. Therefore, more researches from

different regions and ethnic groups are necessary to confirm

these findings.

Conclusion

Our ECG diagnostic model based on the CNN-

LSTM has higher sensitivity than currently used ECG

diagnostic criteria. The performance of the model trained

for male patients was better than that for female patients.

Therefore, this CNN-LSTM model may be a simple and

effective screening tool of LVH in hypertensive patients and

general population.
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