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The incidence of cardiovascular events is higher in the morning than in the

evening and di�ers between sexes. We tested the hypothesis that aortic

sti�ness, a compelling cardiovascular risk factor, increases in the morning

than in the evening in young, healthy individuals between 18 and 30 years

(H18–30) or in older individuals between 50 and 80 years, either healthy

(H50–80) or with type 2 diabetes (T2DM50–80). Sex di�erences were also

investigated. Carotid-femoral pulse wave velocity (cf-PWV) recorded via

Doppler Ultrasound, blood pressure and heart rate were checked at 6 a.m.

and 9p.m., at rest and during acute sympathetic activation triggered by

handgrip exercise. Cf-PWV values were lower in the morning compared to

the evening in all groups (p < 0.01) at rest and lower (p = 0.008) in H18–30

but similar (p > 0.267) in the older groups during sympathetic activation. At

rest, cf-PWV values were lower in young women compared to young men

(p = 0.001); however, this trend was reversed in the older groups (p < 0.04).

During sympathetic activation, the cf-PWV was lower in women in H18–30

(p = 0.001), similar between sexes in H50–80 (p= 0.122), and higher in women

in T2DM50–80 (p = 0.004). These data do not support the hypothesis that

aortic sti�ness increases in the morning compared to the evening within any

of the considered groups in both rest and sympathetic activation conditions.

There are di�erences between the sexes, which vary according to age and

diabetes status. In particular, aortic sti�ness is higher in older women than in

men with diabetes during acute stress.
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Introduction

Circadian variations in physiological functions allow

organisms to provide adequate physiological responses to

recurring daily needs (1). Circadian clocks have been shown to

be associated with cardiovascular functions (1, 2). Interestingly,

the incidence of stroke, myocardial infarction, arrhythmia, and

sudden cardiac death is higher in the morning compared to

the evening (1, 2). A 40% higher risk of heart attack, a 29%

increased risk of cardiac death, and a 49% increased risk of

stroke have been suggested in the early morning between 6 a.m.

and 12 a.m. (2). Endothelial function, an important index of

cardiovascular risk, is blunted in the early morning compared

to the evening (3, 4), whereas peripheral vascular resistance and

blood pressure (BP) are increased (5). Augmented sympathetic

activation in the morning may be a cardiovascular risk factor

(4, 5). Interestingly, overt sex differences in the prevalence and

severity of cardiovascular disease, as well as in sympathetic

neurovascular modulation, have been documented (6–8).

Cardiovascular disease has different symptomatology and

response to treatment in one sex compared to the other (6).

The incidence of acute cardiovascular events is higher in men

compared to women of reproductive age; however, this trend

starts reversing after menopause (9).

Among the possible contributors to the different incidence

of acute cardiovascular events in the morning compared to

the evening, as well as between sexes, greater aortic stiffness

might be involved. Aortic stiffness is a compelling predictor

of all-cause mortality (10). Aortic stiffness is an independent

predictor of fatal stroke in patients with essential hypertension

(11). Circadian variations of carotid-femoral pulse wave velocity

(cf-PWV), the gold-standard measure to assess aortic stiffness,

have been documented (4, 12, 13). Augmented aortic stiffness

increases the afterload, work, and oxygen demand of the heart,

as well as increases BP and pulse pressure (14). Augmented

sympathetic outflow to the heart and blood vessels in the

morning may also increase the risk of acute cardiovascular

events by augmenting cardiac afterload and pulse pressure and

reducing baroreflex sensitivity (5, 14).

The incidence of acute cardiovascular events normally

increases with aging. However, the presence of type 2 diabetes

(T2DM) increases such an occurrence (1, 15). T2DM leads

to changes in central autonomic control and deleterious

organ adaptations (15–17). High blood sugar and insulin in

individuals with T2DM determine early-functional changes

and remodeling of autonomic pathways controlling circulation,

affecting cardiac and vascular cellular targets and feedback

baroreceptor system sensitivity (15, 17, 18). Acute and chronic

high blood insulin levels in individuals with T2DM augment

sympathetic dominance, plasma catecholamines, and efferent

sympathetic drive to the heart (17, 19). Imbalanced autonomic

outflow toward the heart and vascular tissue has been associated

with several pathological states, including cardiac autonomic

neuropathy and deleterious cardiac remodeling in individuals

with T2DM (19, 20). T2DM-induced remodeling has been found

in vascular tissue and is associated with augmented arterial

stiffness, acute endothelial dysfunction, vascular hypertrophy

in small arteries, and impaired responsiveness to vascular

smooth muscle stimulants (21, 22). T2DM-induced changes in

the cardiovascular system have been suggested to blunt the

normal circadian rhythms of heart rate (HR) and BP, leading

to a high incidence of hypertension, myocardial infarction,

hospitalization, and death (19).

This study aims to compare circadian and sex differences

in aortic stiffness in young, healthy individuals, old healthy

individuals, and old individuals with T2DM at rest and during

sympathetic activation. As the incidence of acute cardiovascular

events is higher in the morning compared to the evening, it

is hypothesized that aortic stiffness, assessed via cf-PWV, is

greater in the morning compared to the evening. Moreover, it is

hypothesized that cf-PWV is lower in young women compared

to young men and that such sex differences disappear in the

older groups. The endothelial function is blunted at 6 a.m.

compared to at 9 p.m., suggesting increased cardiovascular

risk during that morning time (3). Therefore, the cf-PWV

assessment in our study has been performed according to such a

timing schedule.

Materials and methods

The cf-PWV assessment was performed on 90 participants.

The subjects were a random sample of the population of

Northern Italy and were enrolled through recruitment flyers

scattered around the cities. Subjects were divided into three

groups as follows: 30 healthy individuals from 18 to 30 years

old (H18-30), 30 healthy individuals from 50 to 80 years old

(H50–80), and 30 individuals with T2DM from 50 to 80 years old

(T2DM50–80). All groups were sex-balanced. All participants

met common inclusion (>18 years old) and exclusion criteria

(chronic hypertension, atrial fibrillation, cardiac valve disease,

not in sinus rhythm, pacemaker-dependent, known significant

carotid or femoral artery stenosis, an impalpable arterial pulse

at the site of measurement, use of beta-blockers and ACE-

inhibitors, pregnancy or presumed pregnancy). The specific

inclusion criteria for healthy young and elderly subjects

consisted of having fasting blood glucose lower than 100 mg/dL

and being free of any cardiovascular, metabolic, neurological, or

respiratory disease. The specific inclusion criteria for subjects

with T2DM consisted of having been diagnosed with T2DM for

at least 1 year. Specific exclusion criteria for subjects with T2DM

consisted of severe autonomic neuropathy, pre-proliferative and

proliferative retinopathy, and renal failure (23). The experiment

was performed at the Cardiovascular Physiology Laboratory,

School of Sports Science, University of Verona. We followed the

recommendations regarding themanagement of the participants
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and laboratory presented in the study byOtto et al. (3). Complete

silence was present in the laboratory throughout the tests. The

laboratory temperature was set to 25◦ C. Participants were

instructed not to consume caffeinated foods or drinks for

24 h and not to smoke for 8 h prior to testing. Participants

were recommended to have at least 8 h of sleep. Participants

visited our laboratory three times (preliminary visit; morning

measures; and evening measures). Experiments were performed

at 6 a.m. and 9 p.m., as previously done by Otto et al. (3).

For each group, 50% of the subjects performed the second

and third sessions on the same day. In contrast, the other

subjects performed the second and third sessions in the evening

and the following morning, respectively. The sample size was

calculated according to the primary endpoints of our study,

which were the circadian and sex differences in cf-PWV within

each group. The information on changes in systolic BP, diastolic

BP, and HR has a secondary role within our study and plays an

exploratory role. The number of subjects was initially calculated

through an a priori analysis of sample size (GPower 3.1.9.7;

Universität Düsseldorf, Germany) using data on circadian

and sex differences in cf-PWV at rest retrieved in previous

investigations. The analysis was repeated after having collected

data from 10 participants (five men and five women) within

each group to evaluate any possible sample size adjustment to

achieve a statistical power >80% at rest and during sympathetic

activation. It was obtained that (H18–30: n = 10 and 12;

H50–80: n = 16 and 20; T2DM50–80: n = 18 and 22; the

number of subjects at rest and during sympathetic activation,

respectively) were needed to assess circadian differences in cf-

PWV, while (H18–30: n = 16 and 20; H50–80: n = 22 and 26;

T2DM50–80: n = 24 and 28; the number of subjects at rest

and during sympathetic activation, respectively, to be equally

divided between men and women) were needed to assess sex

differences. The sample size of 30 individuals per group we

recruited is greater than that suggested by statistical analysis and

close to or greater than that of similar previous investigations

(4, 12, 13). The study was approved by the University of Verona

Ethics Board (3293CESC) and conducted in accordance with the

Declaration of Helsinki. Informed oral and written consent was

obtained from all participants before starting any test.

Experimental protocol

At the preliminary visit, our medical team assessed whether

participants met the inclusion or exclusion criteria through

physical examination, cardiovascular screening, and medical

history review. Moreover, subjects completed two maximal

handgrips (Saehan SH5001, Germany) contractions with their

left hand to assess their maximum voluntary contraction. Each

contraction lasted approximately 3 s and was separated by 4m

of rest. In the second and third sessions, participants laid supine

on an ambulatory bed throughout the experiment. Participants

were told to stay relaxed, breathe regularly, and not to speak

throughout the experiment. Participants were suited with the

electrocardiograph of the pulsed Doppler ultrasound machine

(LOGIQ S7 pro, GE, Milwaukee, USA), as well as with a beat-

by-beat finger BP and HR monitoring system (Finapres Medical

System BV, The Netherlands) on the third medial phalanx of

the right hand. After 10m of supine and quiet rest, 3 BP

measurements were taken using the Riva-Rocci method on

the left arm and averaged to obtain systolic and diastolic BP

values to calibrate the Finapres device. After further 10m, the

experiment started.

The protocol consisted of 5m of rest followed by 5m of

acute sympathetic activation triggered by handgrip exercise at

30% of maximum voluntary contraction (24). The cf-PWV,

systolic and diastolic BP and HR were measured during the

last minute of each condition. The cf-PWV assessment was

performed on the right side of the body, following the previously

indicated user procedures guidelines (25). Details about the

cf-PWV assessment via Doppler Ultrasound are reported in

our previous paper (26). Briefly, scanning of the carotid artery

at the supraclavicular level followed by another scan of the

common femoral artery in the groin were performed. Measures

were performed in B-mode with a pulsed Doppler Ultrasound

with a Linear Array (6.6 MHZ) probe synchronized with ECG.

The pulse transit time calculation was performed offline using

the software installed on the ultrasound scanner. The software

required manually placing the first cursor at the R peak of the

ECG signal and a second cursor at the foot of the Doppler flow

to return the time elapsed between the two points. The foot of the

Doppler flow wave identifies the point where the steep rise of the

waveform starts, as previously shown by Calabria et al. (27). The

R-to-flow wave times at the carotid and femoral arteries were

calculated on 15 consecutive cardiac cycles and then averaged

to obtain the mean carotid and femoral pulse transit times,

respectively. The carotid-femoral pulse transit time was then

calculated as the absolute value of the difference between the

mean carotid and femoral pulse transit times. The pulse transit

distance was calculated as 0.8 times the length from the common

carotid artery to the common femoral artery at the groin (25).

Finally, the cf-PWV was calculated as pulse transit distance

divided by carotid-femoral pulse transit time.

Statistics

Within each group, circadian variations in cf-PWV, systolic

BP, diastolic BP, and HR at rest were identified via a paired t-

test by comparing the data collected in the morning vs. evening.

The average value between the morning and evening values of

the previous variables at rest was then calculated for each subject

to assess sex differences. Within each group, sex differences in

cf-PWV, systolic BP, diastolic BP, and HR at rest were identified

via an unpaired t-test by comparing the data collected in themen
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TABLE 1 Characteristics of the subjects (n = 30), sex balanced within each group.

H18-30 H50-80 T2DM50-80 H18-30 vs.

H50-80

H50-80 vs.

T2DM50-80

Men Women Men Women Men Women

Age (years) 23.0 (4.0) 23.4 (3.1) 66.1 (7.1) 66.9 (7.4) 67.3 (7.5) 66.5 (8.1) p < 0.001 p= 0.964

Weight (Kg) 73.6 (7.1) 57.2 (8.1)* 76.5 (10.0) 70.3 (9.4) 86.1 (14.9) 79.4 (22.0) p= 0.049 p= 0.101

Height (m) 1.80 (0.05 1.67 (0.07* 1.71 (0.05 1.61 (0.05* 1.77 (0.2 1.59 (0.07* p= 0.32 p= 0.805

BMI (Kg/m2) 22.6 (1.6 20.5 (2.1* 26.2 (2.9 27.1 (4.2 27.6 (5.2 31.2 (7.7 p < 0.001 p= 0.159

#Systolic BP (mmHg) 122.9 (7.4) 107.9 (9.3)* 136.9 (9.4) 128.6 (13.2) 144.4 (13.7) 140.2 (11.4) p < 0.001 p= 0.02

#Diastoli c BP (mmHg) 68.4 (5.5) 67.2 (8.3) 81.0 (4.6) 78.1 (6.9) 82.4 (8.9) 82.6 (8.9) p < 0.001 p= 0.34

#HR (bpm) 68.3 (7.6) 68.2 (11.2) 62.2 (8.5) 59.6 (8.2) 63.5 (7.2) 68.0 (6.0) p < 0.01 p= 0.13

#cf-PWV (m/s) 7.3 (1.0) 6.1 (0.5)* 7.7 (1.0) 8.8 (1.2)* 7.8 (0.9) 8.9 (1.4)* p <0.001 p < 0.001

*Compared to men; #Average value between morning and evening measure at rest. Data are reported as mean (SD).

vs. women. Rest and sympathetic activation were considered two

independent conditions. Thus, statistical analyses were repeated

with the data collected during sympathetic activation. The

analysis of covariance required to assess the effects of systolic

BP, diastolic BP, and HR on cf-PWV in the morning compared

to the evening and in men compared to women was performed

with MATLAB (MathWorks, USA). Significance was set at p

< 0.05. GraphPad Prism 8 (GraphPad Software, San Diego,

United States) was used for statistical analysis and graphs.

Results

Characteristics of the subjects

Table 1 shows the characteristics of the subjects. The mean

age in H50–80 was similar to that in T2DM50–80. Body

weights and BMIs were lower in H18–30 compared to H50–

80 but similar in H50–80 compared to T2DM50–80. The mean

duration of T2DM from diagnosis in the T2DM50–80 group was

6.2± 4.8 years.

Circadian variations

As reported in Figure 1 and Table 2, cf-PWV values were

lower in the morning compared to the evening in all groups

at rest, while they were lower in H18–30 and similar in H50–

80 and T2DM50–80 during sympathetic activation. Circadian

differences in cf-PWV disappeared after adjusting for systolic

BP, diastolic BP, and HR in all groups, both at rest and during

sympathetic activation. Systolic BP values at rest were higher in

the morning compared to the evening in H50–30 and similar in

the other groups, while there were no circadian differences in

all three groups during sympathetic activation. Diastolic BP was

higher in the morning compared to the evening in H50–80 and

T2DM50–80 but similar in H18–30 at rest, while no circadian

differences were observed during sympathetic activation. HR

was lower in the morning compared to the evening in H50–

80 and T2DM50–80 but similar in H18–30 at rest, while it was

similar in H18–30 and T2DM50–80 but lower in H50–80 during

sympathetic activation.

Sex di�erences

As reported in Figure 2 and Table 3, at rest, cf-PWV

values were lower in young women compared to young men.

However, this trend was reversed in the older groups. During

sympathetic activation, the cf-PWV was still lower in young

women but similar between sexes in H50–80 and higher in

women compared to men in T2DM50–80. Sex differences in cf-

PWV did not change after adjusting for systolic BP, diastolic

BP, and HR in all groups, both at rest and during sympathetic

activation. At rest and during sympathetic activation, systolic BP

values were higher in the morning compared to the evening in

H18–30 and similar in H50–80 and T2DM50–80. At both rest

and sympathetic activation conditions, diastolic BP andHRwere

similar in the morning compared to the evening in all groups.

Discussion

We investigated circadian variations and sex differences

in aortic stiffness assessed via cf-PWV in young healthy

individuals, old healthy individuals, and old individuals with

T2DM. Measures were performed in the early morning and

the evening, at specific times when endothelial function, a

compelling index of coronary artery disease and cardiovascular

risk, is significantly different (3). Data were collected at rest

and during sympathetic activation triggered by a standardized

external stressor. Specifically, the static handgrip exercise

we used to activate the sympathetic nervous system has
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FIGURE 1

Circadian variations (morning: empty bars; evening: filled bars) of cf-PWV, systolic AP, diastolic AP, and HR across the 3 groups at rest and during

sympathetic activation (mean, Q1/4, Q3/4, and minimum and maximum values).
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TABLE 2 Circadian changes in cf-PWV at rest and during sympathetic

activation within each group.

Cf-PWV

(m/s)

Morning Evening p-value Adjusted

p-value

Rest H18-30 6.5 (0.8) 6.8 (1.0) p= 0.03 p > 0.19

H50-80 7.9 (1.6) 8.5 (1.3) p= 0.01 p > 0.28

T2DM50-80 8.0 (1.4) 8.6 (1.2) p= 0.003 p > 0.18

Sympathetic H18-30 6.8 (1.0) 7.2 (1.1) p= 0.01 p > 0.19

activation H50-80 8.2 (1.4) 8.7 (1.4) p= 0.39 p > 0.43

T2DM50-80 8.4 (1.5) 8.7 (1.1) p= 0.27 p > 0.31

Data are reported as mean(SD). The p-value was adjusted for systolic BP, diastolic BP,

and HR.

been shown to reliably increase muscle sympathetic nerve

activity (28) and peripheral vasoconstriction (24). It has

been used in previous studies to evaluate the role of the

sympathetic nervous system in regulating aortic stiffness (29,

30). Augmented aortic stiffness is an independent risk factor

for cardiovascular events (10, 11). Chronically, augmented

aortic stiffness can induce deleterious remodeling of the heart

and vessels due to the greater cardiac afterload, leading to

conditions such as heart failure and end-organ damage (10, 11,

31). Increased sympathetic outflow resulting from aging and

disease can further increase aortic stiffness and contribute to

deleterious cardiovascular effects (31). Interestingly, increases

in sympathetic outflow have been associated with cardiac

compensatory mechanisms in the presence of impaired cardiac

hemodynamics due to cardiovascular disease (31). The focused

study of the effects of the sympathetic nervous system on

the heart has allowed us to identify relevant indices of

myocardial dysfunction that may have prognostic implications

in cardiovascular disease (31).

Circadian variations

Contrary to our working hypothesis, at rest, the cf-PWV

was lower in the morning compared to the evening within all

the experimental groups. A previous study showed that aortic

stiffness is generally lower at night (mean value from 6.30 p.m.

to 6 a.m.) than during the day (mean value from 6.30 a.m. to

6 p.m.) in healthy middle-aged subjects of both sexes (13).

When specific times of the day were chosen, however, another

study showed that circadian variations in cf-PWV are similar

in healthy young individuals and healthy elderly people at

9 a.m. compared to 5 p.m. (12). A study performing circadian

comparisons at specific times when the endothelial function is

blunted, as evinced by impaired brachial artery flow-mediated

vasodilation in the morning, showed that cf-PWV is lower

in old individuals with hypertension at 7 a.m. compared to

9 a.m. (4). To the best of our knowledge, no previous studies

have performed such investigations in healthy young subjects,

healthy older individuals, or older people with T2DM. Overall,

the lower values of cf-PWV in the morning compared to the

evening we found within all these groups at rest agree with

most previous studies. Hence, aortic stiffness appears not to

be increased in the morning at specific times while endothelial

function has been suggested to be blunted. Moreover, lower

resting cf-PWV in the morning is present in groups dissimilar in

age and the presence of T2DM. At present, no study has assessed

circadian variations in cf-PWV during sympathetic activation.

The circadian variations in cf-PWV observed at rest did not

change during sympathetic activation in H18–30, while they

disappeared in H50–80 and T2DM50–80, in which cf-PWV

values became similar in the morning compared to the evening.

Thus, aortic stiffness appears not to be increased in the morning

compared to the evening, even in the presence of sympathetic

activation within any of the three groups examined. The cf-

PWV is dependent on BP and HR (32). Thus, normalization

of BP and HR was performed to identify changes in arterial

stiffness independently of confounding factors. Interestingly,

circadian variations in cf-PWV disappeared after adjusting for

BP and HR in all groups, suggesting that circadian changes

in aortic stiffness may largely be explained by variations in

these variables between morning and evening. Furthermore,

when present, circadian changes in cf-PWV were small (<0.6

m/s); therefore, it is of little concern from a clinical point

of view. Similarly, the mean value of cf-PWV reached during

sympathetic activation was only slightly increased compared

to that at rest (<0.4 m/s). Circadian variations in BP and

HR were absent in H18–30 but present in H50–80. BP was

higher, and HR was lower in the morning compared to the

evening in H50–80. Overall, the T2DM50–80 group showed

similar circadian differences compared to those observed within

the H50–80 group, except for a lack of circadian change in

systolic BP.

Sex di�erences

At rest, our cf-PWV data suggest that aortic stiffness is

lower in women compared to men in young individuals and

that this trend was reversed in older individuals without and

with T2DM. Our data are consistent with previous literature

suggesting that aortic stiffness is lower in young women than

in young men after puberty and that women experience a

more rapid increase in artery stiffening with aging (33). Among

the causes, a key role for estrogen in the aging-associated

increases in aortic stiffening in women has been suggested

(33). The higher cf-PWV values in women with T2DM than

in men with T2DM also agree with previous studies. Indeed,

increases in cf-PWV have been suggested to occur mainly in

women with T2DM rather than in men with T2DM (34).

During sympathetic activation, the cf-PWV was still lower in
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FIGURE 2

Sex di�erences (men: empty bars; women: filled bars) in cf-PWV, systolic AP, diastolic AP, and HR across the three groups at rest and during

sympathetic activation (mean, Q1/4, Q3/4, and minimum and maximum values).
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TABLE 3 Sex di�erences in cf-PWV at rest and during sympathetic

activation within each group.

Cf-PWV

(m/s)

Men Women p-value Adjusted

p-value

Rest H18-30 7.2 (0.7) 6.1 (0.5) p= 0.001 p < 0.001

H50-80 7.7 (1.0) 8.8 (1.2) p= 0.025 p < 0.04

T2DM50-80 7.8 (0.9) 8.9 (1.4) p= 0.041 p < 0.05

Sympathetic H18-30 7.6 (1.0) 6.4 (0.6) p= 0.001 p < 0.03

activation H50-80 8.0 (1.1) 9.0 (1.1) p= 0.122 p > 0.08

T2DM50-80 7.9 (1.4) 9.2 (1.2) p= 0.004 p < 0.01

Data are reported as mean(SD). The p-value was adjusted for systolic BP, diastolic BP,

and HR.

women compared to men in young individuals. However, cf-

PWV values became similar between the sexes in H50–80 and

persisted higher in women compared to men in T2DM50–80.

Overall, these findings suggest that aortic stiffness is higher at

rest and similar under stress conditions in women compared

to men in old healthy individuals and higher in women in

both rest and stress conditions in old individuals with T2DM.

Sex differences in cf-PWV persisted after adjusting for BP and

HR, suggesting that a different aortic stiffness between sexes is

independent of the diverse BP and HR values in men compared

to women. Other factors could be responsible for different

aortic stiffness between the sexes at different ages, including

differences in themechanical proprieties of the vessel or different

sympathetic neurovascular transduction (7, 8). Systolic BP was

higher in men than in women in H18–30 but similar in

H50–80 and T2DM50–80. Although women show lower BP

values compared to men at a young age, they display a steeper

increase in BP than men, which starts in the third decade and

continues through the life course, even if corrected for multiple

cardiovascular disease risk factors (35). This may nullify sex

differences in BP in adulthood that are otherwise present at a

young age.

Conclusion

Cf-PWV values were lower in the morning compared to

the evening within all groups at rest, while they were lower

in H18–30 and similar in H50–80 and T2DM50–80 during

sympathetic activation. Hence, aortic stiffness appears not to be

increased in the morning compared to the evening at specific

times when the endothelial function has been suggested to be

blunted, regardless of the presence of a stressful condition.

At rest, cf-PWV values were lower in young women than in

young men. However, this trend was reversed in the older

groups. During sympathetic activation, the cf-PWV was still

lower in young women but similar between the sexes in H50–

80 and higher in men in T2DM50–80. Thus, older women have

greater aortic stiffness than older men at rest, regardless of

T2DM. While healthy older women show similar aortic stiffness

values compared to their male counterparts during acute stress,

older women with T2DM may have greater aortic stiffness than

men with T2DM.
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