
fcvm-09-984472 August 5, 2022 Time: 15:57 # 1

TYPE Review
PUBLISHED 11 August 2022
DOI 10.3389/fcvm.2022.984472

OPEN ACCESS

EDITED BY

Xiaoqiang Tang,
Sichuan University, China

REVIEWED BY

Jizhong Cheng,
Baylor College of Medicine,
United States
Ziheng Wu,
The First Affiliated Hospital of Zhejiang
University, China

*CORRESPONDENCE

Yiqing Li
qzg599@126.com
Weici Wang
weiciwang@gmail.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cardiovascular Metabolism,
a section of the journal
Frontiers in Cardiovascular Medicine

RECEIVED 02 July 2022
ACCEPTED 25 July 2022
PUBLISHED 11 August 2022

CITATION

Hu K, Guo Y, Li Y, Lu C, Cai C, Zhou S,
Ke Z, Li Y and Wang W (2022) Oxidative
stress: An essential factor
in the process of arteriovenous fistula
failure.
Front. Cardiovasc. Med. 9:984472.
doi: 10.3389/fcvm.2022.984472

COPYRIGHT

© 2022 Hu, Guo, Li, Lu, Cai, Zhou, Ke,
Li and Wang. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Oxidative stress: An essential
factor in the process of
arteriovenous fistula failure
Ke Hu1†, Yi Guo2†, Yuxuan Li1, Chanjun Lu1, Chuanqi Cai1,
Shunchang Zhou3, Zunxiang Ke4, Yiqing Li1* and
Weici Wang1*
1Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China, 2Clinic Center of Human Gene Research, Union
Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,
3Center of Experimental Animals, Huazhong University of Science and Technology, Wuhan, China,
4Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China

For more than half a century, arteriovenous fistula (AVFs) has been recognized

as a lifeline for patients requiring hemodialysis (HD). With its higher

long-term patency rate and lower probability of complications, AVF is

strongly recommended by guidelines in different areas as the first choice

for vascular access for HD patients, and its proportion of application is

gradually increasing. Despite technological improvements and advances in

the standards of postoperative care, many deficiencies are still encountered

in the use of AVF related to its high incidence of failure due to unsuccessful

maturation to adequately support HD and the development of neointimal

hyperplasia (NIH), which narrows the AVF lumen. AVF failure is linked to

the activation and migration of vascular cells and the remodeling of the

extracellular matrix, where complex interactions between cytokines, adhesion

molecules, and inflammatory mediators lead to poor adaptive remodeling.

Oxidative stress also plays a vital role in AVF failure, and a growing amount of

data suggest a link between AVF failure and oxidative stress. In this review, we

summarize the present understanding of the pathophysiology of AVF failure.

Furthermore, we focus on the relation between oxidative stress and AVF

dysfunction. Finally, we discuss potential therapies for addressing AVF failure

based on targeting oxidative stress.
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Introduction

For over half a century, arteriovenous fistula (AVFs) has been recognized as a lifeline
for patients requiring hemodialysis (HD) (1, 2). Globally, more than 2.6 million patients
suffered from end-stage renal disease (ESRD) in 2010, and this number is expected
to increase to 5.4 million over the next 20 years (3, 4). With its higher long-term
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patency rates and lower probability of complications, such
as infection and thrombosis, as well as lower long-term
mortality in comparison to other types of access, AVF is
strongly recommended by guidelines, with wide consensus
from experts in different areas as the first choice of vascular
access for HD patients, and its proportion of application
is gradually increasing. Furthermore, due to its safety and
reliability, AVF is also recommended for use in the pediatric
population (5).

Despite technological improvements and advances in
the standards of postoperative care, many deficiencies are
still encountered in the use of AVF related to its high
incidence of unsuccessful maturation and stenosis. It was
reported that in about 60% of cases, successful dialysis use
is not established within half a year following AVF creation
(6). AVF failure is characterized by a tight perianastomotic
stenosis, which leads to a narrower lumen and lower
blood flow (Figure 1). AVF stenosis is the consequence
of uncontrolled aggressive neointimal hyperplasia (NIH)
combined with failure of early outward remodeling and
subsequent excessive inward remodeling (7). Many studies
have demonstrated that several vascular biology pathways
may be responsible for this pathological change, including
inflammation, oxidative stress, hypoxia, and alterations in
hemodynamic shear stress (8–10).

There is substantial evidence that oxidative stress has
novel roles throughout the entire process of AVF maturation,
including preoperative underlying mechanisms, intraoperative
surgical injury, and postoperative hemodynamic changes
(11, 12). Oxidative stress is defined as dysregulation
between the production of reactive oxygen species (ROS)
and the endogenous antioxidant defense mechanisms,
the so-called “redox state.” When present at relatively
low concentrations, ROS tend to maintain stability in
the intracellular environment through the role of second
messengers. However, redundant ROS disrupt the redox
balance, which subsequently leads to DNA and protein
damage, lipid peroxidation, and irreversible cell damage and
death (13).

In this review, we summarize present understanding of
the pathophysiology of AVF failure. Furthermore, we focus on
the relationship between oxidative stress and AVF dysfunction.
Finally, we discuss potential therapies for addressing AVF failure
based on targeting oxidative stress.

Biology of arteriovenous fistula
maturation

Definition of maturation

Maturation is the vascular remodeling process that renders
AVF suitable for being routinely prescribed for dialysis. This

process should be monitored by an experienced vascular access
team for postoperative complications during the first 2 weeks.
Further investigation is required by 4–6 weeks to estimate
whether AVF maturing as expected (14).

However, there are currently no satisfactory clinical
criteria for defining AVF maturation. The arm-raising
test can reveal larger collateral veins or accessory veins
earlier, which are indicative of AVF maturation failure and
stenosis. In addition, more objective follow-up examinations
should be performed regularly, such as ultrasound Doppler
examinations and radiological examinations. The value of
shear stress and venous diameter can be used to accurately
predic functional changes after AVF creation (15–17).
According to the blood vessel diameter and hemodynamic
parameters, minimum standards for satisfactory arteriovenous
fistula maturation within 4 weeks have been established
(vessel diameter > 4 mm and blood flow > 400 ml/min)
(18–21).

Arteriovenous fistula maturation and
outward remodeling

Following the AVF creation process, the moderate
adaptation of the structure and function occurring near
the anastomosis area are essential for AVF maturation. Firstly,
a low-resistance circuit constructed by the inflow artery
and outflow vein through direct anastomosis or shunting
immediately triggers an increase in blood flow and violent
changes in wall shear stress (WSS), which remains relatively
stable for a certain period of time (22–24). The substantial
increase in the WSS leads to the initial venous lumen expansion
by mechanical stretching.

In addition to the short-term outward remodeling caused
by the direct change in blood flow pressure, the activation of
endothelial cells (ECs) caused by the significant increase in WSS
is also considered to play a vital role in the early remodeling
process (25). Ideally, the large amount of nitric oxide (NO)
produced by the activation of ECs simultaneously expands
the inflow artery and outflow vein, inhibits the development
of NIH and gradually restores WSS to the baseline level.
Furthermore, the excessively released NO not only directly
enhances the vasodilation effect but, through combination
with free radicals, is also converted to peroxynitrite, which
stimulates matrix metalloproteinases (MMP?2 and MMP?9)
(26–28). Appropriate upregulation matrix metalloproteinases
trigger extracellular matrix (ECM) degradation and decompose
the vascular middle layer elastic fibers, resulting in sustained
luminal expansion (28–30). In summary, the abovementioned
multiple biological mechanisms jointly facilitate the remodeling
of venous outflow and preserve a stable level of WSS
and luminal diameter at different periods for subsequent
regular dialysis.
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FIGURE 1

Schematic of creation of the AVF. (A) Creation of AVF with end-to-side technique. (B) Venography of the AVF; arrow shows the occlusion of the
arterial inflow (233). (C) Duplex ultrasound image shows fistula occlusion of the arterial inflow (234). (D) Hematoxylin and eosin staining shows
neointima formation in the venous outflow tract of AVF (235).

Pathogenesis of arteriovenous
fistula failure

Definition of arteriovenous fistula
failure

As the number of patients with ESRD increases, the demand
for hemodialysis treatment is also growing. As the preferred
choice of vascular access for hemodialysis, AVF failure remains
a significant barrier to successful fistula use. While there are
some criteria to define successful AVF maturation, the clinical
definition of AVF failure is less clear due to confusion between
the various types and stages of failure. The development of
NIH or thrombosis near the fistula anastomosis is the major
cause of lumen narrowing and AVF failure. NIH-induced
failures include activation and migration of vascular cells
and remodeling of the ECM, where the complex interplay of
cytokines, adhesion molecules, and inflammatory mediators
results in poor adaptive remodeling.

Thrombosis

Hemodialysis access thrombosis is a multifactorial process
that usually marks short-term lumen blockage and loss of
function in the dialysis access. The German pathologist
Rudolf Virchow proposed three elements of thrombosis: blood
flow, blood vessel wall, and coagulation components. This is
commonly referred to as the three elements of Virchow (31).
Patients with ESRD are at risk of bleeding due to platelet
dysfunction and anticoagulants use during hemodialysis.
However, at the site of vascular access, dysfunctional platelets
can precipitate clot formation (32–35).

End-stage renal disease patients also have an increased
risk of thrombosis due to heightened systemic inflammatory

responses. Due to abnormal systemic metabolism, the balance
of prothrombotic and antithrombotic in the circulatory system
of ESRD patients is disrupted, which may be an important
factor for the increased risk of thrombosis in ESRD patients.
Several prothrombotic mediators were significantly elevated in
chronic kidney disease (CKD) patients. Elevation of fibrin and
inactivation of prothrombin directly lead to a hypercoagulable
state (36). Other soluble thrombosis-related proteins, including
soluble tissue factor, von Willebrand factor, and C-reactive
protein (CRP), are also involved in pro-coagulation. High levels
of phospholipid antibodies (caused by uremia) and high levels of
low-density lipoprotein can also exacerbate the hypercoagulable
state (37, 38).

In addition to cytokine-induced hypercoagulability,
systemic inflammatory states are further exacerbated by
endothelial dysfunction due to coagulation abnormalities.
One study showed that endothelial glycocalyx disruption
was observed in ESRD patient specimens, and that this also
contributed to an increased risk of thrombosis (39). Tissue
factor is an important procoagulant that activates the extrinsic
coagulation cascade, and uremic ECs also release small
extracellular vesicles, called microparticles, loaded with tissue
factor, which leads to increased thrombosis (40–42).

The dialysis process has also been shown to facilitate
the activation of platelets to induce a hypercoagulable state.
Semipermeable membranes used in a dialysis apparatus can
activate platelets, and multiple studies have shown that dialysis
can increase levels of circulatory p-selectin, von Willebrand
Factor, and D-dimer (43–45). In the hypercoagulable state,
platelet and leukocyte aggregation can induce atherosclerosis
and thrombosis. In addition to the inflammatory environment
of the circulatory system, repeated acupuncture injury during
dialysis can also cause inflammation of the lumen local
endothelium. Platelets can lead to enhanced adhesion through
the release of inflammatory mediators such as monocyte
chemoattractant protein 1 (MCP-1), vascular cell adhesion
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protein-1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-
1), interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α)
and ultimately form plaques or thrombosis.

Neointimal hyperplasia

As the most common scene, invasive intimal hyperplasia
is a major cause of vascular access failure (46–48). Stenosis
in HD occurs in the anastomotic appendages, especially
on the venous side. The pathogenesis of AVF vascular
access disorders is generally divided into upstream and
downstream events. Upstream events include the previous
uremia environment, hemodynamic changes caused by surgical
trauma, oxidative stress, hypoxia, and other initial factors
of vessel wall damage. Downstream events represent changes
in different cells in response to upstream vascular injury,
including endothelial disturbance, activation of different types
of cells, and proliferation. The development of NIH is a
complex process that requires endothelial activation, phenotypic
changes, and migration of vascular and immune cells, and the
proliferation of multiple cell types together leads to intimal
hyperplasia. The cell types involved include lymphocytes as well
as vascular smooth muscle cells (VSMCs) and fibroblasts. Local
histology is characterized by SMA-positive, vimentin-positive
myofibroblasts and secretory smooth muscle cells as well as a
minority of contractile smooth muscle cells (49–51).

There are several different hypotheses about the origin of
cells that cause NIH in AVF, including activation of adventitial
and medial cells located in the venous in situ vessel wall,
infiltration and migration of cells from adjacent arteries, and
differentiation of inflammatory cells transported locally from
the circulatory system. Different experimental AVF animal
models have been used to identify clear sources of cells that
promote neointima formation and have provided support for
these hypotheses. Using a porcine arteriovenous graft model,
Misra and colleagues initially demonstrated that the cells that
underwent early proliferation following arteriovenous graft
implantation, which led to venous stenosis, had originated
from the adventitia and media (52). Roy-Chaudhury and
colleagues also demonstrated in an AVF model that venous
tissue fibroblast differentiation contributes to the formation of
venous stenosis (53). Cheng et al. successfully bred RFP-Stop
flox/flox-GFP/Wnt1-Cre+ mice by crossing Wnt1-Cre and RFP-
Stopflox/flox-GFP transgenic mice (54), the biggest feature of
which is AVF surgery. In the crossed mice, anterior carotid
smooth muscle cells but not jugular smooth muscle cells were
labeled with green fluorescent protein (GFP). The authors found
that after AVF creation, nearly 50% of the intimal proliferative
cells showed GFP positivity by immunofluorescence staining,
confirming that the GFP-positive cells were derived from
smooth muscle cells of the inflow tract artery. The role of
cells from circulating blood has also been explored in recent

years. Castier et al. demonstrated that myeloid cells do not
promote NIH in AVF arteries (55). Misra et al. demonstrated
that monocyte involvement contributes to AVF remodeling and
stenosis through a monocyte depletion experiment (3).

Molecular mechanism of
arteriovenous fistula failure

Arteriovenous fistula have been recommended as the first
choice for HD by the National Kidney Foundation Kidney
Disease Outcomes Quality Initiative on account of the superior
long-term patency rates, fewer complications, and lower
financial burden (14, 56–58). However, less than 60% of AVFs
will be functional after 12 months (59–61). The pathogenesis
of AVF failure is caused by inflammation, uremia, hypoxia, and
shear stress changes (62–65). These factors cause upregulation
of cytokines, which broadly activate fibroblasts, smooth muscle
cells, immune cells, and platelets (Figure 2).

Inflammation

Inflammation occurs throughout the whole life cycle
of AVFs, including in the form of systemic inflammatory
homeostasis disorder in patients with ESRD as well as local
inflammatory responses resulting from surgical trauma at the
time of AVF establishment.

The local inflammatory response often manifests as
increased infiltration of local macrophages (CD68) and
lymphocytes (CD3), which are especially more prevalent
in uremic patients (66). These changes are evidenced by
upregulation in many inflammatory cytokines, such as IL-6,
IL-8, MCP-1 and plasminogen activator inhibitor-1 (PAI-1),
as well as some proliferate cytokines, such as transformative
growth factor-β (TGF-β) (67–69). Studies have shown that IL-6
and TNF-α play important roles in promoting early thrombosis
in AVF, and increases in CRP and fibrinogen also lead to
AVF failure (70, 71). Evidence from both experimental AVF
models and clinical samples demonstrate that the dominant
reason for the increase in inflammatory mediators is due
to the massive release of macrophage migration inhibitory
factor, which drives inflammatory cells to move toward the
neointima, which leads to vascular wall thickening (72–74).
Macrophage migration inhibitory factor induces changes in
the expression of downstream proteins by binding to CD74
receptor, chemokine receptor 2, and chemokine receptor 4 (73).
Changes in secreted protein brought about by inflammatory
cells result in upregulation of many cytokines, IL-8, MCP-1,
and vascular endothelial growth factor A (VEGF-A) through
extracellular signal regulation and the p38 mitogen-activated
protein kinase pathway (72). As a potent chemokine, MCP-1
plays a vital role in a variety of vascular diseases by promoting
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FIGURE 2

Molecular mechanism of AVF failure.

the migration and proliferation of monocytes and macrophages,
EC activation, and proliferation and phenotypic switching of
smooth muscle cells (75–78). MCP-1 is increased in expression
after mouse AVF creation and becomes a mediator of AVF
dysfunction and failure. In the mice AVF model, MCP-1
knockout resulted in significantly less NIH and improved
patency rates (79).

Tumor necrosis factor α is another important inflammatory
cytokine in NIH (80). In addition to mediating early immune
responses, VSMC and EC can also produce TNF-α through
an autocrine pathway in response to hypoxia, ROS, and local
inflammation accumulation. TNF-α promotes the production
of IL-1β and prostaglandin E2. TNF-α can induce fibroblast
proliferation and migration, and these changes are greatly
enhanced by insulin-like growth factors (81). Although it has
a pro-apoptotic effect, apoptosis can only occur when the
nuclear factor kappa B (NF-κB) signaling pathway is inactivated.
Therefore, TNF-α promotes the proliferation of smooth muscle
and fibroblasts in the AVF neointima by releasing inflammatory
factors rather than by causing apoptosis.

Oxidative stress

After establishment, AVFs are often exposed to an
environment of oxidative stress that involves multiple
factors, including pre-existing systemic inflammation and
intraoperative injury, and postoperative remodeling in ESRD
patients. Multiple studies have demonstrated that markers
of oxidative damage, including 8-hydroxy-2-deoxyguanosine
and 4-hydroxy-2-nonenal, are upregulated in AVF outflow
tract venous tissue (82). The increased synthesis and secretion
of ROS and the depletion of antioxidant substances lead
to the disruption of oxidative balance, which in turn
stimulates many signaling pathways that regulate various
processes, including the promotion of cell proliferation
and migration, and ECM secretion (11, 83). Luo et al.
study has shown that the expression of 4-hydroxynonenal
increased after downregulation of glutathione S-transferase
α4, while its overexpression reduced 4-hydroxynonenal
levels and inhibited SMC proliferation in mice with CKD,
playing a vital role in CKD-induced neointima formation
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and AVF failure (84). Sustained excess superoxide anion
rapidly oxidatively inactivates NO, which further leads to the
uncoupling of endothelial nitric oxide synthase (eNOS) to
produce superoxide, which is the main cause of endothelial
dysfunction due to oxidative stress (85). These stimuli
further increase lumen narrowing by increasing levels of
potential mitogens, including platelet-derived growth factor
(PDGF), endothelin 1, and the proliferation-stimulating factor
TGF-β (11).

Heme oxygenase (HO) is a rate-limiting enzyme that
promotes the catabolism of heme. HO exerts antioxidant, anti-
inflammatory, and anti-apoptotic functions in cells through
its downstream products (86–89). Recent studies have shown
that HO plays an important role in promoting extravascular
remodeling and preventing NIH (89). The expression of the
HO-1 gene was significantly upregulated in VSMCs after AVF
surgery in mice, which may be a protective effect stimulated
by oxidative stress. In HO-1 knockout mice, the outflow tract
vessel wall becomes thinner and there are increases in lumen
area, patency rate, and levels of the pro-inflammatory and
pro-oxidative mediator MCP-1 (90). We explain the specific
production pathways of oxidative stress and the corresponding
important molecules and signaling pathways in more detail in
the subsequent parts of this article.

Uremia

Before the creation of AVF, the inherent uremia in ESRD
patients increases inflammation and oxidative stress (91, 92).
Many inflammatory cytokines, including IL-6, TNF-α, and
TGF-β, are elevated in the serum of CKD patients. In addition,
mineral metabolism disorder in the blood of patients with
ESRD may also aggravate the vascular wall thickness. Uremia
has also been shown to affect vascular homeostasis through
such mechanisms as affecting the activity of cellular calcium
channels, increasing fibrosis, increasing insulin resistance, and
increasing vascular wall calcium phosphate deposition (93,
94). Vascular calcification may also affect AVF remodeling. In
clinical studies, elevated serum levels of CRP and sclerostin,
an osteogenic protein with increased expression specifically in
calcified VSMCs, were found to be independent predictors of
AVF failure (95). Other vascular calcification markers such as
fetuin-A, osteopontin, and bone morphogenetic protein-7 were
also associated with the development of AVF complications
in a cohort of dialysis patients (96). However, a prospective
clinical study came to the opposite conclusion (97). The study
concluded that serum concentrations of mineral metabolites in
patients were not substantially related to AVF failure. Since it
is possible that the concentration of minerals in the circulatory
system may not truly reflect the degree of cellular calcification,
the relationship between calcification and AVF failure requires

more advances in mechanism research to give us a more
definitive answer.

Inflammation-induced impaired platelet function and
endothelial wall dysfunction accelerate the development of
atherosclerosis. These complex synergistic changes further
contribute to the susceptibility to inward remodeling
after AVF placement.

Hypoxia

Apart from the sustained hypoxic background existing
in the circulatory system of patients with previous CKD,
hypoxia results from the damage to adventitia and the
dissection of vasa vasorum vessels during the creation of
AVF. Repeat needle sticks during cannulation for dialysis are
also thought to exacerbate hypoxic injury. Sustained hypoxia
promotes angiogenesis, inflammation, and proliferation,
resulting in NIH.

Among the various upregulated genes, increased levels of
hypoxia-inducible factor 1 α (HIF1α) have been confirmed,
which is shown to mediate NIH in both animal models and
human specimens (10, 98). Under normoxic conditions,
HIF1α hydroxylated by proline hydroxylase undergoes
ubiquitination by either the Von Hippel Lindau tumor
suppressor or E3 ubiquitin ligase and is ultimately degraded
(99). HIF1α expression is stabilized under hypoxic conditions
and affects many downstream molecular mechanisms that
lead to angiogenesis, inflammation, cell proliferation, and
collagen deposition (100). VEGF is recognized as one of
the most important downstream mediators of hypoxia.
VEGF acts primarily by binding to two receptors, VEGFR-1
and VEGFR-2. VEGFR-1 promotes endothelial growth by
activating tyrosine kinases. VEGFR-1 can also exacerbate
the local inflammation levels in AVF via macrophage
activation (101). As a tyrosine kinase receptor, VEGFR-
2 acts primarily through the phospholipase-cγ protein
kinase-c pathway. VEGFR-2 is more highly expressed in the
circulatory system and mainly plays a role in promoting the
proliferation and differentiation of ECs (101–103). VEGFR-2
can also promote VSMC proliferation through regulation
of extracellular signals and Akt signaling (104). Recent
studies have shown that downregulation of VEGF-A gene
expression can reduce IH formation during the setting of
AVF. The polymorphism of VEGF-A gene is also considered
to be an important factor affecting the occurrence of AVF
occlusion (105).

Apart from VEGF, PDGF is another important cytokine
activated by hypoxia. The platelet-derived growth factor family
includes PDGF and VEGF. Each growth factor can be produced
by a variety of cells, and its receptors are all tyrosine kinase
receptors. In vivo monocytes/macrophages are the main cells
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that synthesize PDGF. PDGF acts on phosphorylated platelet-
derived growth factor β receptor to prompt fibroblasts and
VSMCs to enter the cycle of division and proliferation.
Recent studies have demonstrated the function of PDGF in
regulating VSMC phenotype switching, vascular fibrosis, and
NIH (106, 107).

Hemodynamics

The increased magnitude of vessel WSS and the alteration
of flow patterns are likely to be the primary events after AVF
creation that promote AVF adaptation (108). In response to
dramatic hemodynamic changes after AVF creation, adaptive
remodeling is needed to return the WSS to a stable level.
In response to the hemodynamic changes, the AVF will
undergo adaptive remodeling to bring the WSS back to a
stable level. However, the presence of vascular lesions and
systemic abnormalities contributes to the failure of AVFs to
mature due to post-maturation venous stenosis and/or impaired
external remodeling. The influence of WSS on venous inward
remodeling mainly comes from two aspects: one is the direct
effect of WSS upregulation on adjacent cells, and the other is
the influence of disturbed hemodynamic near the anastomosis.

The elevation of WSS upregulates local inflammatory factors
such as Il-1β, TNF-α, and interferon-γ (IF-γ) (109, 110).
In addition, WSS has been shown to induce negative cell
remodeling proliferation through VEGF-A, MMP2, MM9, and
ICAM-1. WSS activates vascular endothelial cadherin and
platelet endothelial cell adhesion molecule-1 (PECAM-1) by
altering the mechanical tension state of cells, further inducing
cell shape changes that alter cell migration ability (111–113).
Persistent WSS also affects vasodilation by affecting HO and
reducing NO synthesis (114).

Normally, vessels experience unidirectional stable laminar
flow, but the chaotic, disorderly oscillatory flow generated by
the vessel wall near the AVF anastomosis leads to the activation
of a series of downstream pathways. These pathways directly
or indirectly induce ECs to selectively express atherogenic and
thrombogenic genes (115).

Oscillating WSS interacts with mechanical pressure
receptors via the EC surface, resulting in increased EC
autocrine proliferative pathways, upregulation of mitogen-
activated protein kinases, nuclear translocation of NF-κB, and
downregulation of Kruppel-like factor 2 (KLF2) expression and
induced EC proliferative, pro-inflammatory and pro-oxidative
state transitions (116). The disturbance of blood flow can also
stimulate VSMC migration and proliferation, accelerating NIH
development (117, 118).

Use of an external support device, VasQ (fixed metal stent
near the anastomosis), to create an AVF has been reported
to improve fistula maturity and patency by reducing flow
disturbance around the anastomosis (119).

Sources of oxidative stress in
arteriovenous fistula failure

Definition of oxidative stress

Oxidative stress is stonewalled by the universal definition
of an imbalance between oxidants and antioxidants. When
subjected to various harmful stimuli, the body produces
excessive ROS with the depletion of antioxidants. The
accumulation of free radicals eventually leads to tissue damage
and various diseases. ROS are a group of oxygen reduction
products that can be generated by enzymatic and non-enzymatic
systems and (120). Although oxidative stress routinely plays a
novel role in the regulation of diverse cellular functions and
biological processes, uncontrolled ROS may mediate varying
degrees of tissue and cellular damage.

Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase, mitochondrial enzymes, xanthine oxidase,
lipoxygenase, myeloperoxidase, and unconjugated eNOS
are major contributors of ROS generated in blood vessel
systems. The ROS products mainly include superoxide anion
(O2

−), hydroxyl radical, and reactive nitrogen species (RNS) in
the form of free radicals, and the non-radical form of hydrogen
peroxide (H2O2). Oxygen-related reduction products often exist
in the form of free radicals due to the presence of an unpaired
electron. Because of their strong chemical reactivity, these
substances often produce irreversible cell damage in addition
to mediating biological behavior. Hydrogen peroxide, which is
a stable two-electron reduction product and not a free radical,
often acts as a small molecule second messenger to activate
downstream signaling pathways. Numerous studies have shown
that oxidative stress is a key pathophysiological pathway in the
progression of atherosclerosis, lower extremity ischemia, and
other cardiovascular diseases (121, 122). Specimens from the
outflow tract veins of patients with AVF and basic research in
recent years have confirmed that ROS is an important cause of
AVF failure and neointima production.

Reactive oxygen species mediated
cellular signaling

This functional protein network exists under the regulation
of redox signaling, resulting in subsequent changes in
signal outputs, enzyme activity, gene transcription, and other
processes. The main mechanism of ROS-mediated cellular
signaling is achieved by efficiently oxidizing thiolals in target
proteins (123). It’s reported that about 20% of all thiolals in the
cellular cysteine proteome are susceptible to oxidation (124).
Cysteine, which is highly sensitive to redox response, widely
distributed in a variety of regulatory sites such as cytoskeletons,
enzymes, receptor membrane proteins, transcription factors,
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and nuclear proteins (125). Due to the rapid development
of proteomics, the protein oxidation network of cysteine has
been greatly supplemented. We attempt to shed light on the
important biological effects of oxidative stress by briefly present
several classic examples of oxidative signaling regulation.

The Nrf2-Keap1 system is a thiol-based physiological
sensor effect device that responds to oxidative stress and
maintains redox homeostasis (126). Under normal physiological
conditions, Keap1 binds tightly to Nrf2 in the cytoplasm
and promotes Nrf2 ubiquitination and subsequent degradation
processes. ROS acts on the multiple easily oxidizing cysteine
residues contained in KEAP1 and causes conformational
changes in KEAP1, thereby preventing NRF2 ubiquitination
and promoting its nuclear transposition to initiate the
expression of antioxidant defense proteins (127). In addition,
the transcription factor nuclear factor-κB (NF-κB) is susceptible
to redox regulation and controls inflammation as well as
multiple biological processes like cell proliferation, cell death
(128). On the one hand, intracellular ROS can regulate the
oxidation and activation of NF-κB inhibitor (IκB) kinases to
the negative NF-κB signaling pathway. On the other hand,
due to the presence of oxidizable cysteine in the DNA binding
region of NF-κB, ROS can directly activate the NF-κB signaling
pathway (129). Hypoxia-inducible factor (HIF) is a major
regulatory transcription factor in response to lower oxygen
levels, including HIF-1, HIF-2, and HIF-3 (130). An important
part of the cell response to hypoxia is ROS, which increases the
stability of HIF-1. HIF prolyl hydroxylases (PHD), which sense
oxygen availability and drive HIF hydroxylation, are inhibited
by ROS both in hypoxia and normoxia (131). In turn, HIF-1
increases NOX expression, thereby promoting intracellular ROS
production (132). The profound role of ROS is also reflected in
the response to pressure sensors. For instance, the forkhead box
protein O (FOXO) family is an important class of transcription
factors that help maintain homeostasis in cells by integrating
redox signaling. Similar to other regulatory modalities, direct
oxidation of cysteine in members of the FOXO family leads to
alter in downstream genes (133) (Figure 3).

Preoperative inflammatory
environment

Prior to the establishment of AVF, systemic changes
associated with CKD lead to a surge in inflammation and
oxidative stress in the circulatory system, which are present
at all stages of AVF. The etiology of CKD is complex and is
characterized by renal unit loss, decreased glomerular filtration
rate, and irreversible changes in renal function and structure
(134). On the one hand, elevated intracellular ROS levels cause
the oxidation of lipids, DNA, and proteins, which plays an
important role in CKD disease progression. On the other
hand, oxidative stress levels in damaged kidneys can be further

upregulated through mitochondrial energy metabolism and
enzyme systems such as xanthine oxidase, peroxidase, nitric
oxide synthase, and NADPH-oxidases (NOX) (135–137).

The production of ROS in mammalian cells mainly depends
on organelles, including mitochondria and endoplasmic
reticulum, and enzyme systems involving peroxidase, NADPH,
and nitric oxide synthase (138). Mitochondria and NOX family
oxidases are major contributors of ROS in kidneys (139, 140).
Kidneys need a lot of energy to regulate the body’s water,
electrolyte, and acid–base balance and for the maintenance
of activities essential for life and normal operation. The
reabsorption function of active transport in renal tubules is
mainly driven by large amounts of adenosine triphosphate
that are provided by mitochondria and double-membraned
organelles (141). These organelles also regulate many cellular
processes, such as cell proliferation, signaling, and cell
death (142).

Therefore, mitochondrial dysfunction can have profound
effects on kidney cell function. The essence of redox reactions
is the gain or loss of electrons or the movement of shared
electron pairs. Electrons are transferred between reducing
agents and oxidants, and a stable reduction product is eventually
formed. Mitochondria produce adenosine triphosphate through
electron transfer via respiratory chain polymeric complexes in a
process termed oxidative phosphorylation (142). In this process,
the Nox4 subunit of NOX produces anionic superoxide via
one-electron reduction of oxygen. The superoxide produced
in the early stage is converted to H2O2 by the action of
superoxide dismutase in the mitochondria and cytoplasm.
In the oxidative phosphorylation chain, superoxide can be
produced by oxygen electron loss in complexes I, II, and III
(143, 144). Complex III produces ROS on both sides of the
mitochondrial intima, whereas complexes I and II produce
ROS only in the stroma (144). In addition, Nox2 increases
mitochondrial ROS production through anti-electron transfer
as a result of mitochondrial interactions with O2 derived
from NOX (144). It has been reported that the impaired
mitochondria can promote proinflammatory cytokines and
chemokines through the release of ROS, cardiolipin and other
harmful molecules, thereby inducing persistent kidney injury
(145). Mitochondrial dysfunction in cisplatin-induced renal
injury was due to inhibition of the activity of respiratory chain
complexes I-IV, leading to ROS generation and a decrease
in ATP production (146). Increased mitochondrial reactive
oxygen species production has also been monitored in mice with
diabetic nephropathy (147).

As CKD progresses, ROS levels increase, antioxidant levels
decrease, and the oxidative balance is disrupted. Several studies
have confirmed elevated levels of ROS in the blood of patients
with CKD and animal models of kidney injury (148, 149).
Antioxidants, including superoxide dismutase, glutathione,
vitamin C, vitamin E, and the plasma sulfhydryl group,
are significantly decreased due to overconsumption (150). In
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FIGURE 3

ROS mediated cellular signaling pathways. ROS, reactive oxygen species; NRF2, nuclear factor erythroid 2-related factor; KEAP1, Kelch-like
ECH-associated protein 1; IkB, I-kappa B proteins; NF-κB, nuclear factor kappa B; PHD, prolyl hydroxylases; HIF, hypoxia-inducible factor;
FOXO, forkhead box protein O; ER, endoplasmic reticulum. This figure was generated in Biorender (https://Biorender.com).

addition, nuclear factor erythroid 2-related factor (Nrf2), the
upstream transcription factor of antioxidant products, was
found to be downregulated in CKD patients (151).

Intraoperative injury

Mechanical damage to the vein wall during surgery as well
as pulling effects may cause local vessels to produce more
ROS. Many studies have confirmed that ROS content in the
outflow tract significantly increases in the short term after AVF
surgery, and this process occurs prior to inward remodeling
(152, 153). Alan Dardik and colleagues performed a gene chip
microarray study on a mouse model of inferior vena cava
and aorta shunting (7 days after surgery), demonstrating a
high degree of early response regulation to injury after AVF.
Microarray analysis showed that the different enriched genes
are related to oxidative phosphorylation, mitochondrial long
chain fatty acid β-oxidation, and mitochondrial unsaturated
fatty acid. Beta-oxidation indicates that oxidative stress occurs
in the early stage after AVF creation (154). In addition, cross-
talk between factors of hypoxia and oxidative stress may play a

more pronounced role in this process. In vascular anastomosis,
the complete separation of long perivascular tissues is necessary.
In addition to the transient interruption of blood flow during
surgery, the rupture of trophoblast vessels in the venous wall
leads to prolonged and irreversible hypoxia, which reduces the
O2 concentration in the venous wall (155, 156). The venous
vessels are in a low-flow and low-oxygen partial pressure
environment for a long time before surgery (pO2 was about 35–
45 mmHg). The establishment of an outflow canal can bring a
large volume of blood to the vein, increasing the oxygen partial
pressure up to levels in the arteries. It has been demonstrated
that arterial oxygen levels stimulate NIH in veins through an
ROS-dependent mechanism (157). All of the above conditions
can cause oxidative stress through ischemia/reperfusion and
stimulate the transmission of downstream signaling pathways.

Postoperative hemodynamic changes

Arteriovenous fistula stenosis mainly occurs in the venous
outflow tract near the anastomotic area. Local venous blood
walls, in contrast to arteries, experience disrupted blood flow
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and can cause a range of gene expression changes and oxidative
stress (135, 158). In an experimental study, WSS was shown
to regulate several active species produced by the vessel wall
under stable laminar flow conditions, keeping ECs and adjacent
VSMCs in a relatively stable state. Continuous laminar flow
of WSS within the normal physiological range and in the
same stable direction activates downstream signaling pathways,
inducing the expression of atheroprotective and antithrombotic
genes with antioxidant, anti-inflammatory, anticoagulant, and
antiapoptotic functions.

Kruppel-like factor 2 is one of the most important protective
transcription factors regulated by WSS, and its main target
is EC (159). The mechanism by which shear force increases
KLF2 expression is associated with the activation of calmodulin-
dependent kinase and subsequent phosphorylation of histone
deacetylase 5 (160). Compared with steady state flow, pulsed
fluid also upregulates KLF2 expression. KLF2 expression has
been reported on the inner surface of thoracic aorta branches
exposed to low WSS and not in outer surfaces exposed to high
flow and high WSS (161).

Compared with unidirectional laminar flow, reciprocating
WSS acts on EC to promote vascular atherosclerosis and
increases the risk of thrombosis by enhancing the expression
of pro-oxidative, pro-inflammatory, pro-coagulant, and other
genes (162). KLF2 regulates endothelial function by regulating
the eNOS/NO pathway. It has been confirmed that KLF2
upregulation in EC increases cell viability, decreases superoxide
production of O2

− and ONOO−, and increases NO levels
and eNOS activity. In addition, KLF2 can also promote eNOS
uncoupling and regulate the production of antioxidant stress
proteins by activating Nrf2/HO-1 (163).

In addition to influencing the release of NO and increasing
the accumulation of ROS, a recent study suggested that WSS-
induced inward remodeling is associated with heme HO (90).
Studies have shown that heme-degrading enzymes are related
to the patency of AVF (164). Heme degradation mainly
includes two types: inducible HO-1 and constitutive HO-2. HO
exerts vasodilatory, antioxidant, and anti-inflammatory effects
through the production of carbon monoxide and biliverdin in
addition to the release of ferrous iron from heme. Under the
action of different modes of WSS, including high-intensity and
low-intensity modes, the pathways and expression levels of HO-
1 vary (89). HO-1 induced by high flow lies downstream of NO
and mitochondrial-derived hydrogen peroxide. On the contrary,
decreased HO-1 expression occurs in low-flow mode, which
affects macrophage infiltration and superoxide production in
the vascular wall. The result of a recent study in a mouse model
of carotid artery injury suggests that HO-1 induced by NF-κB
activation has vascular protective effects (164).

It was shown by the same study that HO-2 deficiency is
associated with increased NIH. These in vivo studies suggest that
the HO enzyme plays a fundamental role in promoting external
remodeling and preventing NIH.

Consequences of oxidative stress
in arteriovenous fistula failure

Oxidative stress and outward
maturation

Outward maturation of AVF is a product of tube diameter
enlargement and wall thickening and is considered to be an
adaptive process that is triggered by sudden increases in blood
pressure and shear stress and an environment with high partial
pressure of oxygen. Vessel wall thickening is a process of vessel
wall adaptation to pressure and is suitable for repeated puncture
during subsequent dialysis. This process involves thickening all
vascular layers through ECM deposition and cell proliferation
and migration (165–167). A variety of cells are involved in vessel
wall thickening, including VSMCs, adventitial fibroblasts, and
bone marrow-derived progenitor cells (49, 55).

The outward remodeling of AVF is dependent on ECM-
regulated synthesis, secretion, and degradation (168). Cells
regulate ECM remodeling by degrading elastin and collagen
through the secretory MMP family. ECM is a dynamic
network structure existing between cells that is composed of
macromolecular substances such as collagen, proteoglycans,
and glycoproteins. These macromolecules can bind to specific
receptors on the cell surface and alter gene expression through
the direct binding of receptors connected to the cytoskeleton
or triggering a signal transduction cascade in the cell, resulting
in cell adhesion, migration, proliferation, and differentiation
(169). Different tissues have different types and contents of
ECM components. Among these, collagen mainly provides the
basic framework and strength for tissue, and proteoglycan and
hyaluronic acid are mainly involved in the maintenance of
water levels and status and mechanical properties in addition
to establishing and maintaining the concentration gradient
of signaling molecules to ensure the development, form, and
structure of tissue features (170).

Multiple studies show that oxidative stress plays a vital
role in ECM metabolism and remodeling (171–173). The TGF-
β1/Smad3 signaling pathway is one of the most important
mechanisms regulating tissue fibrosis. ROS can promote ECM
remodeling and fibrosis by activating the TGF-β1/Smad3
pathway, increasing connective tissue growth factor and MMP-
2 expression (171). ROS can promote MMP-2 expression
by activating the PI3-kinase/Akt signaling pathway, thereby
activating bone marrow mesenchymal stem cells to synthesize
ECM (172). Both Ras- and mitogen-activated protein kinase
(MAPK)/ERK can activate extracellular regulated protein kinase
(ERK). Activated ERK is translocated into the nucleus and
participates in the regulation of transcription factor and
cyclin expression, resulting in the proliferation and phenotypic
changes in hematopoietic stem cells. Studies have shown that
oxidative stress can inhibit the expression of insulin-like growth
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factor-1 by activating the MAPK/ERK signaling pathway and
reducing ECM proteoglycan production in chondrocytes (174).
In addition, ROS can upregulate TGF-β1 by activating the
MAPK/ERK signaling pathway, stimulating the expression
and secretion of MMP-9 in VSMCs, and regulating ECM
metabolism (175). The Nrf2/ARE signaling pathway is an
important response mechanism when the body suffers oxidative
damage. In the state of oxidative stress, the activation of
the Nrf2/antioxidant reactive element (ARE) pathway can
inhibit the TGF-β/Smad signaling pathway and the decreased
expression of collagen type I, fibronectin, tissue inhibitors of
metalloproteinases (TIMPs), and PAI-1 (173).

During AVF outward remodeling, ECM synthesis, secretion,
expression, and deposition occur at different time stages (176).
Early ECM degradation after AVF formation coincides with an
early increase in MMP and TIMP-1 expression. After 1 week,
expression of many collagen subunits increases and MMP
expression patterns are altered. Three weeks after surgery,
later stages of remodeling are characterized by decreased
expression of MMPs and increased expression of non-collagen
matrix proteins (176). In AVF, the MMP family is the main
factor regulating ECM degradation, with MMP-2 and MMP-9
upregulated in the early stage, and the increase in MMP-2 and
TIMP in serum is an important indicator for predicting AVF
maturation (68, 69). Conversely, matrix deposition is primarily
regulated by TGF-β. TGF-β is produced by a variety of cells
in the vessel wall, including endothelial, smooth muscle, and
inflammatory cells, and can act by increasing ECM deposition,
which significantly promotes thickening of the vessel wall (177).

Oxidative stress and inward
remodeling

Inward remodeling of AVF refers to narrowing of the
venous outflow tract due to aggressive intimal hyperplasia. The
outflow vein is often stimulated by various factors, including
hemodynamics, hypoxia, and oxidative stress at an early stage.
The thickened venous wall is composed of matrix proteins and
proliferating cells, called intimal hyperplasia. In the later stages
after the establishment of AVF, the intimal hyperplasia is often
not suppressed. Excessive intimal hyperplasia leads to stenosis
of the lumen, and reduced blood flow renders the AVF unusable
for dialysis. In extreme cases, stenosis can lead to complete
occlusion of the blood vessel or even thrombosis. Pathological
sectioning has shown that various cells, including ECs, VSMCs,
adventitial fibroblasts, and inflammatory cells, are involved in
NIH (49). The effects of oxidative stress on ECs, VSMCs, and
fibroblasts have been extensively discussed (Figure 4).

The endothelium is the single layer of cells that coats
the lining of the blood vessel lumen. ECs play a role in
maintaining vascular homeostasis by regulating vascular tone
and inflammatory responses and promoting angiogenesis.

Endothelial activation, often the initial state of vascular injury,
is characterized by the activation of inflammatory genes and
downstream pathways. This ultimately leads to decreased
NO production or bioavailability, impaired vasodilation, and
other endothelial phenotypic changes collectively referred to as
endothelial dysfunction.

The imbalance between ROS generation and the
antioxidant defense system is one of the main causes of EC
dysfunction, which is implicated in the development of various
cardiovascular diseases such as atherosclerosis and thrombosis.
Studies have shown that oxidative stress mediates EC activation
by affecting the production and secretion of cytokines (178, 179)
(Figure 5). In ECs, NO is a major factor in maintaining vascular
homeostasis. The initial state of endothelial dysfunction
involves a decrease in NO bioavailability. After oxidative stress,
superoxide anions combine with NO to generate peroxynitrite
ONOO− (180). Peroxynitrite can promote protein nitration,
leading to EC dysfunction and even death (181, 182). In the
cardiovascular system, superoxide anion is often produced by
enzymes such as NOX, xanthine oxidase, and unconjugated
eNOS. Furthermore, the mitochondrial respiratory chain
provides contributes significantly to the production of oxidative
stress-related chemical substrates.

Following AVF creation, increased arterial flow directly
leads to passive vasodilation and endothelial cell synthesis
of NO (183, 184). NO is a gaseous small-molecule signal
that is mainly produced by eNOS in ECs. Due to its anti-
inflammatory, antithrombotic, and antiproliferative properties,
NO plays an important role in the development of adaptive
venous wall remodeling.

The expression of both eNOS and inducible nitric oxide
synthase (iNOS) was significantly increased in the outflow
tract of AVF, and the inhibition of eNOS results in increased
inflammatory factors such as MCP-1 and IL-8, which exacerbate
NIH (69). Endothelin-1 is an inflammatory mediator that
promotes vasoconstriction and EC proliferation. Endothelin-1
expression was found to be upregulated in the vein wall, in the
NIH region of AVF, and in the plasma of CKD and hemodialysis
patients after endothelial activation (68). In addition, the
expression of both p-selectin and e-selectin is upregulated early
in AVF formation, promoting immune cell adhesion, and the
expression of p-selectin decreases after 1 month. VCAM-1 is
highly expressed in thrombosed and stenotic AVFs (71).

Typical sources of NIH proliferating cells are smooth
muscle α-actin-positive VSMCs and fibroblasts. EC and VSMC
injury, hemodynamic stress, and mechanical damage lead to
the migration of VSMCs from the media to the intima and
their differentiation into cells with a secretory phenotype
(myofibroblasts). Fibroblast precursors in the adventitia of
veins are able to sense sudden changes in the mechanical
force generated by arterial flow, thereby rapidly adjusting their
patterns of gene expression, secreting MMPs and collagen,
and migrating to the intima. Cell proliferation is one of
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FIGURE 4

Different stages of outflow vein remodeling.

the important markers to measure the phenotypic transition
of VSMCs (185). Numerous literature reports indicate that
ROS promotes VSMC proliferation (186–188). In addition,
ROS can also indirectly produce pro-proliferative effects on
VSMC by mediating hormone and growth factor release.
Studies have found that H2O2 can promote the proliferation of
bradykinin, angiotensin-II, and growth factors such as PDGF
and thrombin (189, 190). O2 mediates plasminogen urokinase-
induced proliferation of VSMCs (191). Furthermore, ROS
mediates bradykinin-induced VSMC proliferation and collagen
production (192). In addition, the antioxidant N-acetylcysteine
inhibits VEGF-induced VSMC proliferation and migration
(193, 194). The nitroxide inhibitor Roebulin can attenuate the
proliferation of VSMCs, indicating that NOXs play an important
mediating role in the VSMC migration signaling pathway (195).
The mechanism of PDGF-induced VSMC proliferation and
migration has been widely discussed (196), and appears to
mainly involve ROS binding and operate through PDGF-β
receptors (197). α and β receptors are almost always expressed
in VSMCs (198). PDGF-mediated migration signaling cascades
are known to include MAPKs ERK1/2, Jun-N-terminal kinase
(JNK), and p38 (199).

A number of growth factors are upregulated after AVF
creation, including VEGF, PDGF, basic fibroblast growth factor,
and insulin-like growth factor-1, among others (11, 156,
200). These processes are closely linked with oxidative stress
generation. In animal experiments using p47phox (subunits
of NADPH) knockout AVF rats, it was found that decreasing

the oxidative stress production can result in reductions in the
proliferation of smooth muscle cells in the lumen and secretion
of inflammatory factors and improve the patency rate (201).
One week after AVF production, the expression of adhesion
molecule β-catenin and proto-oncogene c-Myc increases due to
the decrease in levels of adhesion molecule N-cadherin, which is
linked to VSMC proliferation (202). In addition, local oxidative
stress can also be alleviated by inhibiting the Notch signaling
pathway, which results in decreased migration and proliferation
of smooth muscle cells (54).

Oxidative stress in endovascular
interventions treating
arteriovenous fistula failure

Endovascular intervention for
arteriovenous fistula failure

Arteriovenous fistula has been recognized as the primary
and optimal hemodialysis vascular access option for ESRD
patients requiring renal replacement therapy (203–205). Despite
being widespread, there are undeniable limitations associated
with the use of AVFs in hemodialysis. In a 2008 clinical
trial, investigators found that more than 60% of fistulas did
not mature, and failure to mature means they are defined
as unfit for dialysis (6). The vast majority of arteriovenous
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FIGURE 5

Source and consequences of imbalance oxidative stress in AVF.

fistulas fail due to immaturity or NIH. Traditional surgical
revision is the most direct way to treat dialysis access stenosis.
However, percutaneous transluminal angioplasty is the current
standard for the treatment of arteriovenous stenosis due to
its reduced invasiveness and the convenience of multiple
treatments (206, 207). The principle of all endoluminal repair
of AVF is to expand the lumen and increase the volume, mainly
including balloon-assisted maturation (BAM), stent placement,
and cutting balloon angioplasty.

The BAM technique uses balloon angioplasty to repeatedly
inflate the vein wall to dilate the diameter of the fistula
to facilitate smooth dialysis (208, 209). The most common
complication after balloon dilation remains restenosis due to
postoperative intimal hyperplasia, and although this is more
common in arteries, veins may respond similarly to angioplasty,
especially in the inflammatory setting of renal failure.

Although evidence from long-term large data volumes is
lacking, several short-term studies have shown positive results.
One report mentioned that 85% of 53 patients experienced
secondary patency within 1 year of BAM (208). Miller et al.
found that of 122 immature fistulas using BAM, dialysis after
treatment was possible in 118 cases, with a secondary patency
rate of 75% after 1 year (210). Gallagher and colleagues
performed 185 BAMs on 45 patients (an average of 3.7 BAMs per
patient), resulting in 37 patients with usable dialysis access (211).

Stenting is another tool for the management of refractory
dialysis access strictures. Multiple studies have reported
substantial improvements in primary and secondary patency
rates for fistulas and grafts after stenting. A prospective
multicenter randomized trial testing polytetrafluoroethylene-
covered self-expanding nitinol stents showed higher patency
rates in the stent-graft group than in the balloon angioplasty
alone group after 6 months (212). A meta-analysis of 10 studies
showed that after 6 months, patients who received nitinol stents
had improved initial patency rates compared with those who
received angioplasty (213).

Cutting balloon angioplasty, wherein a balloon with several
small blades is axially mounted on the outer surface of the
cutting balloon, is used to dilate the stenosis, which causes
trauma to the vessel wall similarly to BAM. It can be used
for balloon expansion while cutting the proliferative part of
the vascular disease site (214). Several studies have reported

significant improvements in vascular patency after 6 months of
use (215–217).

Oxidative stress in endovascular
interventions

Oxidative stress largely affects the pathogenesis and
outcome of various cardiovascular diseases. Endovascular
interventions, including balloon angioplasty and stenting, are
associated with increased levels of ROS in the vessel wall and
altered endothelial and smooth muscle cell function. These
changes lead to restenosis and thrombosis of blood vessels.

Several studies have discussed the mechanism of ROS
generation by endovascular intervention. The mechanism of
ROS generated by interventional therapy is largely similar, and
they all lead to the accumulation of ROS after damage to ECs,
vascular elastic lamina, and vascular media through mechanical
stress or damage. Shortly after injury, O2

− levels in the vessel
wall are elevated and colocalize with VSMCs (218, 219). NOX-
mediated O2

− production was observed in the adventitial layer
of vessels, revealing an important potential role of fibroblasts
in ROS production (220). In addition, the researchers found
that the expressions of Nox1, Nox4, gp91phox, and p22phox
were significantly upregulated after carotid balloon injury in
rats (218). Balloon angioplasty can rapidly induce p38 mitogen-
activated protein kinase, which is also activated by ROS and
is involved in VSMC hypertrophy and NIH (221). Mechanistic
studies on the increased oxidative stress after stent placement
have also been reported. The expression of two NOX subunits,
p22phox and gp91phox, was increased after stenting in the
rabbit carotid artery, resulting in higher ROS production (222).

In addition, ROS resulting from interventional therapy can
affect the state of smooth muscle and the diastolic function of
blood vessels through endothelial dysfunction. The severity of
endothelial disorder tends to be closely related to the type of
surgery. Compared with balloon angioplasty, stent placement
tends to result in more severe endothelial damage (223).
Endothelial dysfunction is a proinflammatory and procoagulant
state of ECs after various physicochemical stimuli, characterized
by altered expression of adhesion molecules on the EC surface
and the recruitment of various immune cells (224). Several
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studies have shown that oxidative stress plays a key role in
mediating endothelial dysfunction (85, 178, 179). In ECs, NO
is a major factor in the maintenance of vascular homeostasis.
The initial stage of endothelial dysfunction is accompanied by
reduced NO production, increased dissociative consumption,
or reduced bioavailability. Superoxide anion usually reacts with
NO to form peroxynitrite ONOO (225, 226). Peroxynitrite, in
turn, promotes protein nitration, leading to EC dysfunction and
death (182, 227).

Oxidative stress as a therapeutic
target in arteriovenous fistula
failure

The disruption of oxidative homeostasis is the result of
excess production of ROS not counteracted by the intrinsic
antioxidant defense system, which largely contributes to
endothelial dysfunction, cellular proliferation, and AVF failure.
Targeting oxidative stress for the treatment of AVF failure
has been extensively studied in preclinical settings and has
shown highly promising results in clinical studies, which
are summarized in Tables 1, 2. These studies all achieved
similar results in increasing patency rates and reducing intimal
hyperplasia, focusing on three different approaches to target
oxidative stress in AVF failure: (1) inhibiting endogenous

oxidative stress production and (2) increasing endogenous
antioxidant capacity, both directly, or indirectly via (3)
supplementing exogenous antioxidants.

The initial discussion of AVF came from the discovery
of increased oxidative stress and growth factor expression
following AVF failure in human specimens (11). The study
found that the oxidative stress marker 4-hydroxy-2,3-nonenol
colocalized with TGF-β, a growth factor known to promote
intimal hyperplasia. For the first time, the potential of oxidative
stress as a therapeutic target in dialysis access failure was
revealed. Subsequent experimental animal studies focused on
the effects of oxidative stress on AVF by uncoupling NOX
or NOS. There are many important ROS-generating systems
in the blood vessel wall, among which NOX is one of the
most important. NOX triggers eNOS uncoupling, elevates
xanthine oxidase activity, and enhances mitochondrial ROS
production (228–230). Stephanie Lehoux and colleagues were
the first to report that neointima is suppressed and AVF
patency is improved in mice lacking the NOX p47phox (201).
In addition, they also explored the effects of endogenous
ROS and NO on the activity and expression of MMPs. The
generation of ROS through NOS uncoupling has also been
investigated as a possible target for addressing AVF failure.
Tsapenko and colleagues reported an increase in the production
of peroxynitrite, a product of superoxide anion interaction
with nitrogen oxide (153). Under pathological conditions, NOS
activity is uncoupled, resulting in increased superoxide anion

TABLE 1 Antioxidant therapies in AVF failure.

Mechanism Target Treatment Model Results References
Inhibition of the source of
reactive oxygen species (ROS)

Nuclear factor kappa B Pyrrolidine
dithiocarbamate
administration

Human umbilical vein
endothelial cells,
arteriovenous fistulas
(AVF) mice

Blocked ROS production
in vitro, slowed vessel
remodeling

(236)

Monoamine oxidases Incubation with
clorgyline or selegiline

Fragments of brachial
artery collaterals harvested
from end-stage renal
disease patients

Reduced ROS level and
improved maturation and
long-term patency of fistula

(237)

NADPH oxidase p47phox knockout AVF mice Reduced ROS and delayed the
vessel remodeling process

(201)

NADPH oxidase
HMG-CoA reductase

Rosuvastatin
administration

AVF rats with diabetes
mellitus

Improved luminal dilation and
blood flow by suppressing the
levels of superoxide anions and
proinflammatory activities

(238)

Improved blood flow and
endothelial function by
attenuating activity of
proinflammatory genes and
generation of superoxide anions

(239)

Improving endogenous
antioxidant capacity

Superoxide dismutase,
heme oxygenase-1, and
catalase

Protandim medium
addition

Human saphenous veins
cultured ex vivo

Reduced levels of superoxide,
blocked intimal hyperplasia and
reduced cellular proliferation

(240)

Heme oxygenase-1 (HO-1) HO-1 gene knockout AVF mice Easier restenosis, accelerated
neointimal hyperplasia, and
increased vasculopathic gene
expression in HO-1−/− AVF
mice

(90)

Supplementation of exogenous
antioxidants

ROS Tempol
administration

AVF rats Decreased neointima formation
in the juxta-anastomotic venous
segment and improved AVF
blood flow

(153)
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TABLE 2 Antioxidant therapies in AVF failure.

Mechanism Target Treatment Patients (n) Trial ID/testing status Results References

Inhibition of ROS
producers

NADPH oxidase
HMG-CoA
reductase

Atorvastatin p.o. 40 mg/d for 3 days Undergoing coronary artery
bypass grafting (21)

NCT01013103, completed Reduced O2
− generation in saphenous

vein grafts used for coronary artery bypass
grafting surgery

(241)

Rosuvastatin p.o. 5 mg once daily for
4 weeks

Arteriovenous fistula in
diabetic patients with chronic
renal failure (30)

NCT01863914, completed (238)

Lysyl oxidase D-Penicillamine (25 µM) in combination
with ascorbic acid (10.0 µM)

Arteriovenous fistula
occlusion (10)

NCT03106948, recruiting

Improving
endogenous
antioxidant
capacity

Heme
oxygenase-1

Determination of length polymorphism of
(GT)n repeats in HO-1 gene promoter

Hemodialysis (HO-1
genotyping: S/S: 148, S/L:
297, L/L: 158)

Completed Longer length polymorphism of (GT)n
repeats in the HO-1 gene was correlated
with a higher frequency of pathway failure
and poorer AVF patency

(232)

Determination of length polymorphism of
(GT)n repeats in HO-1 gene promoter
and far-infrared therapy

Hemodialysis (HO-1
genotyping: S/S: 55, S/L: 116,
L/L: 68)

ACTRN12610000704099, completed The lowest incidence of AVF malfunction
in S/S group

(242)

Supplementation
of exogenous
antioxidants

ROS Ascorbic acid i.v. 300 mg,
600 mg × 3 week for 3 months

Post-angioplasty of
hemodialysis (31)

NCT03524846, completed Might attenuate restenosis after
angioplasty

(243)

Coenzyme Q10 dose-escalation p.o. 300,
600, 1200 and 1800 mg daily, each for
14 days

Chronic hemodialysis (15) NCT00908297, completed Improved mitochondrial function and
decreased oxidative stress

(244)

α-Lipoic acid administration 600 mg/d Diabetic patients on
hemodialysis (30)

Completed Showed anti-inflammatory and
antioxidant activity, improved anemia,
controlled blood glucose and reduced
cardiovascular risk

(245)

Combination of tocopherols (666 IU/d)
plus α-lipoic acid (600 mg/d) over
6 months

Maintenance hemodialysis
therapy (160)

NCT00237718, completed Safe and well tolerated but no effect on
biomarkers of inflammation and oxidative
stress or the erythropoietic response

(246)

Vitamin C i.v. plus a vitamin E-coated
dialyzer

Chronic hemodialysis with
anemia and atherosclerosis
(20)

Completed Palliated oxidative stress such as hemolysis
and lipid peroxidation

(247)

Combination of atorvastatin (once daily
40 mg) and a-tocopherol (once daily 800
IU)

End-stage renal disease with
maintenance hemodialysis
therapy (11)

Completed Decreased plasma total cholesterol,
triglycerides, low-density lipoprotein
(LDL), apoB and oxLDL and had good
impacts on in vitro LDL oxidizability

(248)

Folic acid 10 mg supplementation Uremia with arteriovenous
fistula failure (100)

ChiCTR-IPR-17013111, not yet
recruiting

Coenzyme Q10 400 mg Maintenance hemodialysis
therapy over 3 months (30)

ChiCTR1900022258, not yet
recruiting

The information was obtained from clinicaltrials.gov.
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production. In fact, NOS decoupling is closely related to vascular
diseases such as heart failure and atherosclerosis. To test the
evidence for this uncoupling, the authors demonstrated that
the ratio of tetrahydrobiopterin to dihydrobiopterin, a reliable
marker for NOS uncoupling, was significantly reduced in the
venous segment of the AVF. These findings suggest that the
overproduction of targeted ROS has a profound impact on
failure to treat AVF.

In addition to suppressing oxidative production, some
experimental studies have shown that increasing the
endogenous antioxidant capacity can improve AVF patency.
The findings of Nath and colleagues detail the role of
endogenous antioxidant stress kinases in AVF dysfunction.
After AVF creation, an increase in the expression of the
antioxidant enzyme HO-1 is induced due to an increase in
superoxide anion (153). HO-1 catalyzes the decomposition
of heme into equal amounts of iron, carbon monoxide,
and biliverdin (231). Biliverin reductase activity further
reduces biliverdin to bilirubin. Both bile pigments can
scavenge peroxyl free radicals, while carbon monoxide can
cause vasodilation. Thus, induction of HO-1, as an adaptive
response to injury, is critical for protection from AVF
dysfunction. Earlier, a study by Juncos et al. showed that
HO-1 production could be induced in a mouse model of
AVF (90). In HO-1−/− mice, AVF exhibited lower patency
rates. Furthermore, longer GT repeats are shown to be
closely associated with reduced HO-1 expression and AVF
pathway failure in patients with HO-1 gene polymorphisms,
again highlighting the important role of oxidative stress in
AVF (232).

Following these inspiring results from therapeutic studies
involving increased endogenous antioxidant enzymes, several
experimental studies attempted to explore the effects of
exogenous antioxidant supplementation on AVF. Tempol is a
widely used free radical scavenger with powerful antioxidant
properties. Nath and colleagues reported that the use of tempol
significantly improved the AVF patency and permeability
and, at high doses, also increased blood flow to the
AVF (153).

Conclusion

There is increasing evidence that multiple upstream
and downstream effects at different time periods in AVF
maturation trigger increased oxidative stress and mediate
intimal hyperplasia. At present, excellent preliminary results
have been achieved in animal experiments for the treatment
of AVF stenosis against oxidative stress. Preclinical studies
have also shown promising results through various antioxidant
strategies; however, these beneficial effects have unfortunately
not been translated into positive outcomes for advancing clinical
treatment. The main reason for this is that the antioxidative

stress drugs used in clinical research often lack specificity. In
addition, the systemic modalities previously tested for AVFs
often fail to produce sufficient local antioxidative stress effects.
We expect more periadventitial drug delivery systems to show
favorable prospects in AVF treatment.

The role of oxidative stress in AVF formation may
appear to be a double-edged sword, but its positive effects
are often overlooked. On the one hand, much evidence
points to the negative effects of oxidative stress on AVF
maturation by causing endothelial dysfunction and stimulating
the proliferation and migration of smooth muscle cells and
fibroblasts. On the other hand, the massive production
of oxidative stress in the early stage of AVF formation
also plays an undeniably important role in AVF outward
remodeling and maturation. Perhaps the research on AVF
should go deeper into the change law of oxidative stress
in the whole process to understand the changing role of
oxidative stress generation in different stages from maturation
to inward remodeling of AVF. Likewise, research should
delve into the outcomes of modulating antioxidant stress at
different time points.
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