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Introduction: Atherosclerosis (AS) is a common cardiovascular disease with a

high incidence rate and mortality. Endothelial cell injury and dysfunction are early

markers of AS. Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for

the development of AS. Ox-LDL promotes endothelial cell apoptosis and induces

inflammation and oxidative stress in endothelial cells. Small non-coding RNAs

(sncRNAs) mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs

(snoRNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs) and repeat-associated

RNAs. Studies have shown that small non-coding RNAs play an increasingly

important role in diseases.

Methods: We used ox-LDL to treat rat endothelial cells to simulate endothelial

cell injury. The expression changes of sncRNA were analyzed by small RNA high-

throughput sequencing, and the expression changes of piRNA, snoRNA, snRNA,

miRNA and repeat-associated RNA were verified by quantitative polymerase chain

reaction (qPCR).

Results: Small RNA sequencing showed that 42 piRNAs were upregulated and

38 piRNAs were downregulated in endothelial cells treated with ox-LDL. PiRNA

DQ614630 promoted the apoptosis of endothelial cells. The snoRNA analysis results

showed that 80 snoRNAs were upregulated and 68 snoRNAs were downregulated

in endothelial cells with ox-LDL treatment, and snoRNA ENSRNOT00000079032.1

inhibited the apoptosis of endothelial cells. For snRNA, we found that 20 snRNAs

were upregulated and 26 snRNAs were downregulated in endothelial cells with ox-

LDL treatment, and snRNA ENSRNOT00000081005.1 increased the apoptosis of

endothelial cells. Analysis of miRNAs indicated that 106 miRNAs were upregulated

and 91 miRNAs were downregulated in endothelial cells with ox-LDL treatment,

and miRNA rno-novel-136-mature promoted the apoptosis of endothelial cells. The

repeat RNA analysis results showed that 4 repeat RNAs were upregulated and 6 repeat

RNAs were downregulated in endothelial cells treated with ox-LDL.

Discussion: This study first reported the expression changes of sncRNAs in

endothelial cells with ox-LDL treatment, which provided new markers for the

diagnosis and treatment of endothelial cell injury.
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Introduction

Atherosclerosis (AS) is a common cardiovascular disease with
a high incidence rate and mortality (1, 2). It is the main cause
of coronary heart disease, myocardial infarction and peripheral
vascular disease. Endothelial cells play an important role in
maintaining the dynamic balance of the vascular system (3).
Their injury and dysfunction are early markers of AS. Stimulated
by hypertension, hyperlipidemia and other factors, the adhesion
molecules expressed by endothelial cells can promote the local
accumulation of oxidized low-density lipoprotein (ox-LDL), induce
a proinflammatory response, oxidative stress and endothelial cell
apoptosis, and finally lead to the formation of plaques (4, 5).
Elucidating the molecular mechanism of ox-LDL-mediated apoptosis
of vascular endothelial cells (VECs) is of great significance to develop
effective treatment methods for AS.

After LDL enters VECs, it combines with reactive oxygen
species in cells to form ox-LDL (6). Ox-LDL causes damage
to the structure and function of VECs, resulting in abnormal
apoptosis of VECs (7). It can act as an apoptosis-inducing signal
on the mitochondrial membrane, increase the permeability of
the mitochondrial membrane, release the apoptosis promoter in
mitochondria into the cytoplasm, improve the expression of the
apoptosis-promoting gene Bax in cells, and activate the apoptosis
initiating protease caspase-9, activating the downstream apoptotic
effector protease caspase-3 through a cascade reaction, which acts
on the cytoskeleton, resulting in apoptosis changes such as loss of
DNA repair function and activation of endonuclease (8, 9). Ox-
LDL passes through the gap between VECs to the subintima and
combines with extracellular reactive oxygen species to form ox-
LDL. At the same time, monocytes migrate through VECs to the
subintima under the action of excessive inflammatory factors and
are stimulated to turn into macrophages. The protective phagocytosis
of macrophages makes the ox-LDL under the phagocytosis intima
turn into foam cells, and the foam cells accumulate under the
intima of the tube wall to form early lipid stripes of AS lesions
(10–14). Therefore, elucidating the molecular mechanism of ox-LDL-
mediated dysfunction of VECs is of great significance to develop
effective treatment methods for AS.

Small non-coding RNAs (sncRNAs) mainly include Piwi-
interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs),
small nuclear RNAs (snRNAs), microRNAs (miRNAs) and repeat-
associated RNAs (15). PiRNA is a type of small RNA with a length of
approximately 30 nucleotides isolated from mammalian germ cells,
and piRNA can play its regulatory role only when combined with
members of the piwi protein family (16). The effect of piRNA on the
growth and development of germ cells is regulated by gene silencing
caused by the piwi piRNA complex (17). However, because research
on piRNAs is still in the primary stage, some specific functions
and biogenesis of piRNAs are still being studied. SnoRNA is a
type of non-coding RNA with a length of 60-300 nucleotides that
widely exists in eukaryotic cells (18). It is responsible for the post-
transcriptional modification of other non-coding RNAs. SnoRNA can
combine with specific proteins to form complexes to exist stably in
cells. The main function of snoRNA is to guide the 2′-O-Ribose-
Methylation and pseudouridylation modification of rRNA (19).
SnRNA is a small molecule RNA containing approximately 50–200
nucleotides in the eukaryotic nucleus (20). The small ribonucleosome
(snRNP) formed by its binding with related proteins mainly plays

an important role in processing RNA precursors and removing
excess fragments (such as introns). To date, miRNAs have been
studied for more than 20 years, and their function involves the
occurrence of a variety of diseases. Traditionally, miRNA plays a
negative regulatory role in the cytoplasm by binding to the target
gene 3′-UTR to inhibit the translation or degradation of mRNA.
Studies have shown that sncRNA plays an increasingly important
role in epigenetic regulation and is involved in the regulation of
gene expression at many levels, such as gene transcription, post gene
transcription and mRNA translation (21, 22). They are closely related
to the diagnosis, treatment and prognosis of many human diseases
(23–25). However, even though several reports have studied the role
of miRNA in ox-LDL-induced endothelial injury (26, 27), until now,
no investigation of piRNA, snoRNA, snRNA and repeat-associated
RNA has been reported.

In this study, we used small RNA sequencing and quantitative
polymerase chain reaction (qPCR) to analyze the effect of ox-LDL on
the expression of sncRNAs in VECs and identified sncRNAs related to
ox-LDL-induced VEC dysfunction, thus providing a new therapeutic
target for the diagnosis and treatment of AS.

Materials and methods

Isolation and culture of rat aortic
endothelial cells

The rats were killed after cervical dislocation, and the whole rats
were soaked in 75% ethanol for disinfection. The chests were opened,
and the aortas were dissected in sterile PBS. After excision of the fat
and fibrous tissue of the vascular adventitia, the aortas were rinsed
with PBS to remove the blood and coagulation in the vascular cavity.
The aortas were then dissected into 1 mm3 arterial implants with a
very sharp scalpel and planted in a culture dish. The intimal surfaces
of the arterial grafts were contacted with the bottom of the culture
dish, and the planting density was approximately 1 piece/cm2. The
culture dish was placed in the incubator for 2 h. Culture medium
containing 25% fetal bovine serum was added from the top of the
tissue to slightly cover the intimal surface of arterial grafts. The
plate was transferred into an incubator for 24 h, and after 24 h, the
culture medium was changed. On the 3rd day, the endothelial cells
were fully grown, and fibroblasts were just about to grow. Then, the
arterial grafts were gently removed, and the culture medium was
changed every 2 days.

Ox-LDL treatment

The vascular endothelial cells were inoculated into the culture
plate, 2 ml of medium containing 100 µg/ml ox-LDL was added to
the culture plate for 12 h, and the cell samples were collected after
12 h of culture.

RNA extraction

The lysed sample was placed at room temperature for 10 min
to completely separate the nucleoprotein from the nucleic acid.
Chloroform (0.2 ml) was added to the lysed sample, and the mixture
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was violently shaken for 15 s and placed at room temperature for
3 min. Then, the mixture was centrifuged at 12,000 rpm, 4◦C, for
10 min. The upper aqueous phase was collected and mixed with
an equal volume of isopropanol. The mixture was placed at room
temperature for 20 min and then centrifuged at 12,000 rpm, 4◦C, for
10 min. The supernatant was discarded, and 1 ml of 75% ethanol was
added to wash the precipitate. RNA was purified after centrifugation
at 12,000 rpm and 4◦C for 3 min. Purified RNA was eluted in 30–50 µl
of RNase-free ddH2O.

Small RNA sequencing

A Qubit RNA detection kit was used to accurately quantify total
RNA to determine the amount of total RNA added to the library
construction. The 3′ end of RNA was connected to the connector
with T4 RNA ligase 2. The 5′ end of RNA was connected to the
connector with T4 RNA ligase 1. The connecting product was
reverse-transcribed to obtain the cDNA strand of the connecting
product. In this step, the small RNA library was reverse-transcribed
into DNA. The reverse transcription product was amplified by PCR to
obtain the final library product. The NextSeq 550 (Illumina) system
was used for sequencing analysis. Raw reads were obtained after
sequencing and then filtered, spliced and decontaminated to obtain
clean reads, which were compared with the reference genome for
subsequent information analysis. The data were removed with the
original program. Clean data were obtained by removing low-quality
sequences using the trimmatic program. The FastQC program was
used to count the data volume of clean data. Fragments larger than
15 nucleotides were retained for subsequent analysis. The Bowtie
program was used to compare clean data to the non-coding RNA
database and genome. The edgeR program was used to analyze the
differences in non-coding RNA expression. The databases used in this
study were list as follow: PiRNABANK (piRNA), miRbase (miRNA)
and Ensembl database (snoRNA and snRNA). As for repeat RNA
were analyzed by RepeatMasker. The differentially expressed small
RNAs are listed in Supplementary Table 1.

qPCR

Total RNA was extracted from vascular endothelial cells by
TRIzol. The EZ-press microRNA Reverse Transcription Kit was used
for miRNA and piRNA reverse transcription. PrimeScript RT Master
Mix was used for snoRNA and snRNA reverse transcription. SYBR
Premix Ex Taq was used to detect the expression of sncRNA in
VECs. U6 was used as the internal control. The relative expression
of sncRNA was calculated by the 2−11Ct method. The primers used
are listed in Supplementary Table 2.

SncRNA overexpression and knockdown

For piRNA and miRNA overexpression and knockdown, piRNA
and miRNA mimics were used for overexpression, and piRNA and
miRNA inhibitors were used for knockdown. The piRNA and miRNA
mimics and inhibitors were designed and synthesized by General
Biosystems (Anhui) Co., Ltd. A total of 50 µl of Opti MEM and
0.2 nmol of RNA were gently mixed to obtain RNA diluent. A total

of 50 µl of Opti MEM and 2.0 µl of Lip2000 were gently mixed to
obtain Lip2000 diluent, and the Lip2000 diluent was then incubated
at room temperature for 5 min. RNA diluent and Lip2000 diluent
were mixed and incubated for 20 min at room temperature to form
the RNA-Lip2000 complex. RNA-Lip2000 complex was added to the
incubated cells, and the culture plate was then gently shaken. Cells
were incubated in a 37◦C CO2 incubator for 4–6 h, and then the
medium was changed and cultured for 18–48 h.

For snRNA and snoRNA overexpression, the target sequences of
snRNA and snoRNA were cloned into the pLVX vector to construct
lentivirus, which was used to transfect endothelial cells.

Flow cytometry

Rat aortic endothelial cells were treated with ox-LDL for 12 h and
then subjected to the indicated treatment. After that, cell apoptosis
was measured using an Annexin V-FITC/propidium iodide kit (BD
Biosciences) according to the manufacturer’s protocol. Apoptotic
cells were observed using a flow cytometer. CellQuest software was
used to analyze the apoptotic rate.

Statistical analysis

All data are presented as the mean ± S.D. of three independent
experiments. T-tests and ANOVA were used to compare two groups
by Excel 2017; p < 0.05 was considered a significant difference, and
P < 0.01 was considered highly statistically significant.

Results

Differential expression of piRNA in rat
endothelial cells with ox-LDL treatment

PiRNA is involved in transposon silencing, spermatogenesis,
genome rearrangement, epigenetic regulation, protein regulation and
reproductive stem cell maintenance (28). However, the regulatory
effect of piRNAs on endothelial cell injury is unknown. Small RNA
sequencing showed that 42 piRNAs were upregulated and 38 piRNAs
were downregulated in ox-LDL-treated endothelial cells compared to
NC cells (Figures 1A–C). We used PCA to show the relationship
between piRNA expression and ox-LDL treatment. The obtained
results showed that piRNA expression distinguished the ox-LDL
group and NC group (Figure 1D). Next, we used qPCR to verify
the small RNA sequencing results of piRNA. The qPCR results
showed that compared with the NC group, the expression of 12
piRNAs in the ox-LDL group increased, and the expression of
piRNA DQ602402 increased most significantly (Figure 1E). On the
other hand, the expression of piRNA DQ606544 and DQ749693
was significantly decreased in the ox-LDL group compared to
the NC group (Figure 1F). The expression of piRNA DQ614630
in endothelial cells was increased or knocked down by piRNA
DQ614630 mimics or inhibitors (Supplementary Figure 1A). piRNA
DQ614630 overexpression promoted the apoptosis of endothelial
cells induced by ox-LDL, and piRNA DQ614630 knockdown
inhibited the apoptosis of endothelial cells induced by ox-LDL
(Figures 1G, H).
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FIGURE 1

Differential expression of piRNAs in rat endothelial cells treated with ox-LDL. Heatmap (A), MA map (B), and volcano map (C) show the expression of
piRNA in rat endothelial cells with ox-LDL treatment, n = 3. (D) PCA showed the expression of piRNA in rat endothelial cells with or without ox-LDL
treatment, n = 3. (E) qPCR detected the expression of piRNA in rat endothelial cells with or without ox-LDL treatment. (F) qPCR detected the expression
of piRNA in rat endothelial cells with or without ox-LDL treatment. (G) Flow cytometry analysis of cell apoptosis after treatment with piRNA DQ614630
mimics and piRNA DQ614630 inhibitors. (H) Quantification of normal cells according to flow cytometric analysis. For the statistical analysis, three
independent experiments were conducted. *p < 0.05, **p < 0.01.

Differential of snoRNA in rat endothelial
cells with ox-LDL treatment

Research on snoRNA has developed rapidly, and recent studies
have shown that snoRNA is also involved in genetic diseases, human
variation, hematopoiesis, metabolism and cancer (19). Small RNA
sequencing showed that 80 snoRNAs were upregulated and 68
snoRNAs were downregulated in ox-LDL-treated endothelial cells
compared to NC cells (Figures 2A–C). The results of PCA indicated
that snoRNA expression can distinguish the ox-LDL group and NC
group (Figure 2D). qPCR analysis showed that compared with the
NC group, the expression of 20 snoRNAs in the ox-LDL group
increased, and the expression of snoRNA ENSRNOT00000079223.1
increased most significantly (Figure 2E). On the other hand,
qPCR showed that the expression of ENSRNOT00000079032.1
was decreased in the ox-LDL group compared to the NC group
(Figure 2F). The expression of snoRNA ENSRNOT00000079032.1
in endothelial cells was increased by transfection with lentivirus

and detected by qPCR (Supplementary Figure 1B). snoRNA
ENSRNOT00000079032.1 overexpression inhibited the apoptosis of
endothelial cells induced by ox-LDL (Figures 2G, H).

Differential expression of snRNA in rat
endothelial cells with ox-LDL treatment

SnRNA includes a large group of non-coding RNAs with large
differences, and these non-coding RNAs are mainly involved in
the selective splicing of mRNA precursors and the processing of
ribosomal RNA (29). We analyzed the expression changes of snoRNA
in rat endothelial cells treated with ox-LDL. Small RNA sequencing
showed that 20 snRNAs were upregulated and 26 snRNAs were
downregulated in ox-LDL-treated endothelial cells (Figures 3A–C).
PCA indicated that snRNA expression can distinguish the ox-
LDL group and NC group (Figure 3D). We used qPCR to verify
the small RNA sequencing results of snRNA. The qPCR results
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FIGURE 2

Differential expression of snoRNA in rat endothelial cells treated with ox-LDL. Heatmap (A), MA map (B), and volcano map (C) show the expression of
snoRNA in rat endothelial cells with ox-LDL treatment, n = 3. (D) PCA showed the expression of snoRNA in rat endothelial cells with or without ox-LDL
treatment, n = 3. (E) qPCR detected the expression of snoRNA in rat endothelial cells with or without ox-LDL treatment. (F) qPCR detected the
expression of snoRNA in rat endothelial cells with or without ox-LDL treatment. (G) Flow cytometry assay of cell apoptosis after treatment with
pLVX-ENSRNOT00000079032.1. (H) Quantification of normal cells according to flow cytometric analysis. For the statistical analysis, three independent
experiments were conducted. *p < 0.05, **p < 0.01.

showed that compared with the NC group, the expression of
25 snRNAs in the ox-LDL group increased, and the expression
of snRNA ENSRNOT00000081005.1 increased most significantly
(Figure 3E). The expression of snRNA ENSRNOT00000081005.1
in endothelial cells was increased by transfection with lentivirus
and detected by qPCR (Supplementary Figure 1C). snRNA
ENSRNOT00000081005.1 overexpression inhibited the apoptosis of
endothelial cells induced by ox-LDL (Figures 3F, G).

Differential expression of miRNA in rat
endothelial cells with ox-LDL treatment

MiRNAs are involved in the maintenance of endothelial cell
function (30, 31). Small RNA sequencing showed that 106 miRNAs

were upregulated and 91 miRNAs were downregulated in ox-LDL-
treated endothelial cells compared to NC cells (Figures 4A–C). We
used PCA to show the relationship between miRNA expression
and ox-LDL treatment. The obtained results showed that miRNA
expression could distinguish the ox-LDL and NC groups (Figure 4D).
qPCR analysis showed that compared with the NC group,
the expression of 21 miRNAs in the ox-LDL group increased,
and the expression of miRNA rno-novel-136-mature increased
most significantly (Figure 4E). The expression of miRNA rno-
novel-136-mature in endothelial cells was increased or knocked
down by miRNA rno-novel-136-mature mimics or inhibitors
(Supplementary Figure 1D). miRNA rno-novel-136-mature
overexpression promoted the apoptosis of endothelial cells induced
by ox-LDL, and miRNA rno-novel-136-mature knockdown inhibited
the apoptosis of endothelial cells induced by ox-LDL (Figures 4F, G).
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FIGURE 3

Differential expression of snRNA in rat endothelial cells treated with ox-LDL. Heatmap (A), MA map (B), and volcano map (C) show the expression of
snRNA in rat endothelial cells with ox-LDL treatment, n = 3. (D) PCA showed the expression of snRNA in rat endothelial cells with or without ox-LDL
treatment, n = 3. (E) qPCR detected the expression of snRNA in rat endothelial cells with or without ox-LDL treatment. (F) Flow cytometry assay of cell
apoptosis after treatment with pLVX-ENSRNOT00000081005.1. (G) Quantification of normal cells according to flow cytometric analysis. For the
statistical analysis, three independent experiments were conducted. *p < 0.05, **p < 0.01.

Differential expression of repeat RNA in rat
endothelial cells with ox-LDL treatment

All RNAs have a tendency to spontaneously fold into secondary
or tertiary structures. Although RNA has only four types of
nucleotides, they can form a variety of structures, thus affecting cell
function. Aberrantly expanded, repeated RNA sequences can exhibit
gain-of-function abnormalities and become pathogenic, giving rise to
many diseases (32). The obtained results showed that 4 repeat RNAs
were upregulated and 6 repeat RNAs were downregulated in ox-LDL-
treated endothelial cells compared to NC cells (Figures 5A–C). PCA

showed that repeat RNA expression could distinguish the ox-LDL
group and NC group (Figure 5D).

Discussion

The relationship between RNA structural and functional diversity
in different organisms is the frontier of major basic research in
life science. Especially with the proposal of genome and proteome
projects, RNA omics research has become a new growth point of
molecular biology research. In this study, we found the relationship
between small RNAs and ox-LDL-induced ED by small RNA
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FIGURE 4

Differential expression of miRNA in rat endothelial cells treated with ox-LDL. Heatmap (A), MA map (B), and volcano map (C) show the expression of
miRNA in rat endothelial cells with ox-LDL treatment, n = 3. (D) PCA showed the expression of miRNA in rat endothelial cells with or without ox-LDL
treatment, n = 3. (E) qPCR detected the expression of miRNA in rat endothelial cells with or without ox-LDL treatment. (F) Flow cytometry assay of cell
apoptosis after treatment with rno-novel-136-mature mimic and rno-novel-136-mature mimic inhibitors. (G) Quantification of normal cells according
to flow cytometric analysis. For the statistical analysis, three independent experiments were conducted. *p < 0.05, **p < 0.01.

sequencing and qPCR. PiRNA is a type of small RNA isolated from
mammalian germ cells, and piRNA can play its regulatory role only
when combined with members of the piwi protein family (16).
Currently, piRNAs have been detected in blood vessels and the heart,
and previous studies have shown that piRNAs exert mechanistic
regulatory potency during cardiac differentiation (33). PiRNA-30473
mediates the occurrence and prognosis of B lymphoma by regulating
m6A methylation (34). PiRNA-DQ541777 mediates neuropathic pain
through targeted regulation of Cdk5rap1 expression (35). PiRNA-
63076 promotes the proliferation of pulmonary artery smooth muscle
cells by regulating acyl-CoA dehydrogenase activity (36). However,
no study has reported the regulatory effect of piRNAs on vascular
endothelial cells. We first reported the effect of ox-LDL on the

expression of piRNA in vascular endothelial cells, which may become
a biomarker for the detection of vascular endothelial injury.

SnoRNA is a type of non-coding RNA with a length of 60–300
nucleotides that widely exists in eukaryotic cells (18). In vertebrates,
the genes encoding snoRNAs mainly exist in the intron region of
protein-coding genes or non-protein-coding genes and form mature
snoRNAs after further posttranscriptional processing (18, 37). It
can combine with specific proteins to form complexes to exist
stably in cells. The main function of snoRNA is to guide the 2′-
O-ribose-methylation and pseudouridylation modification of rRNA
(19). Recent studies have shown that snoRNA is also involved in
genetic diseases, human variation, hematopoiesis, metabolism and
cancer (19). SNORD50A/B acts as a molecular switch to regulate
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FIGURE 5

Differential expression of repeat RNA in rat endothelial cells treated with ox-LDL. Heatmap (A), MA map (B), and volcano map (C) show the expression of
repeat RNA in rat endothelial cells with ox-LDL treatment, n = 3. (D) PCA showed the expression of repeat RNA in rat endothelial cells with or without
ox-LDL treatment, n = 3.

the activity of the KRAS protein and then regulate the occurrence
of tumors (38). Currently, no study has reported the expression
changes of snoRNA in the process of endothelial cell injury caused
by ox-LDL. We reported the expression changes of snoRNA in the
process of endothelial cell injury caused by ox-LDL for the first time,
which provides a new research and therapeutic target for the study of
endothelial cell injury.

SnRNA is the main component of the RNA spliceosome in
the posttranscriptional processing of eukaryotes (29). There are
now five types of snRNAs with a length of approximately 100–
215 nucleotides in mammals. snRNAs form RNA spliceosomes
with approximately 40 nuclear proteins and play an important
role in RNA posttranscriptional processing (29). The expression
of snRNA in human, chimpanzee, rhesus monkey and mouse

prefrontal cortices was systematically measured by high-throughput
sequencing technology. Through comparative analysis, it was found
that snRNA is very conserved at the gene family level, but the
expression of U1 greatly changes in the human brain (39). We
found that the expression of snRNA significantly changed during
endothelial cell injury. However, the mechanism of snRNA needs to
be further studied.

MiRNAs are the most studied sncRNAs, and their function is
involved in almost all aspects of biological processes. An increasing
number of studies have shown that miRNAs play an important
regulatory role in cardiovascular diseases (40). Several reports have
studied the role of miRNA in ox-LDL-induced endothelial injury.
Mir-214-3p protects endothelial cells by targeting the expression
of GPx4 (26). MiR-217 reduces ox-LDL-induced endothelial cell
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injury by inhibiting the expression of EGR1 (27). In this study, we
found that some new miRNAs are related to endothelial cell damage
caused by ox-LDL, and these new miRNAs need to be identified in
sequence and function.

There are relatively few reports on the relationship between
repeat-associated RNA and disease. Repeat-associated RNA was
reported to be associated with myotonic dystrophy (DM), Fuch’s
endothelial corneal dystrophy (FECD) and amyotrophic lateral
sclerosis (ALS) (41). We first found expression changes in repeat-
associated RNAs during ox-LDL-induced endothelial cell injury by
small RNA sequencing.

Using small RNA high-throughput sequencing and qPCR
detection, we found that the expression of piRNAs, snoRNAs,
snRNAs, miRNAs and repeat-associated RNAs significantly changed
during ox-LDL-induced endothelial cell injury. Our results
preliminarily show that these sncRNAs are significantly upregulated
or downregulated during ox-LDL treatment. PiRNA, snoRNA,
snRNA, miRNA and repeat-associated RNA may be biomarkers of
endothelial cell injury and could be useful in the future as therapeutic
targets. Further research is still needed to reveal the cellular
pathways regulated by sncRNAs that are involved in ox-LDL-induced
endothelial cell injury.
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SUPPLEMENTARY FIGURE 1

The overexpression and knockdown of ncRNA in rat endothelial cells. (A) The
overexpression and knockdown of piRNA DQ614630 in rat endothelial cells.
(B) The overexpression of ENSRNOT00000079032.1 in rat endothelial cells.
(C) The overexpression of ENSRNOT00000081005.1 in rat endothelial cells.
(A,D) The overexpression and knockdown of miRNA rno-novel-136-mature in
rat endothelial cells. For the statistical analysis, three independent
experiments were conducted. ∗∗p < 0.01.
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