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circRNA, a novel diagnostic
biomarker for coronary heart
disease
Xiao Tong, Xinyi Zhao, Xuan Dang, Yan Kou* and Junjie Kou*

Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory
of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China

Objective: This study aimed to identify the potential diagnostic biomarkers of

coronary heart disease (CHD) from exosome-derived circRNA.

Methods: The microarray data of circRNA derived from the exosomes of patients

with CHD and mRNA in acute myocardial infarction was retrieved from exoRBase

website and GEO database (GSE61144), respectively, to identify the differentially

expressed genes (DEGs). Our findings detected the differentially expressed circRNAs

and mRNAs and predicted their correlation with microRNAs using the microRNA

target prediction website, thus ascertaining the corresponding circ-microRNA and

micro-mRNAs. Then, we performed systematic Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis on the differentially expressed

mRNA. Protein-Protein Interactions (PPI) of these DEGs were examined using

STRING. The receiver operator characteristic (ROC) curve was used to validate the

diagnostic efficacy of circRNA in patients with CHD. Finally, the RNAs identified in this

study were verified by quantitative real-time polymerase chain reaction (qRT-PCR).

Results: A total of 85 differentially expressed circRNAs (4 up-regulated and 81

down-regulated) were identified by screening the circRNAs in exosome of CHD

patients. Based on the prediction data of circRNA, mRNA, and the corresponding

microRNA, a ceRNA network was constructed, including 7 circRNA nodes, 5

microRNA nodes, and 2 mRNA nodes. Finally, validated by qRT-PCR testing, we

found circRNA0001785, circRNA0000973, circRNA0001741, and circRNA0003922

to be the promising candidate for the effective prediction of CHD. These potential

diagnostic markers can provide insight for further research on the occurrence of

CHD or even acute coronary syndrome (ACS).

KEYWORDS

diagnostic marker, plasma exosome, coronary heart disease, ceRNA network, differentially
expressed genes

1. Introduction

Ischemic heart disease (including acute myocardial infarction) is the leading cause of death
globally and accounted for 17.3% of all deaths in 2016 (1, 2). It is well known that myocardial
injury leads to narrowing of coronary arteries and exacerbates oxygen deficiency in myocardial
cells (3). Although PCI and coronary artery bypass grafting are widely used to treat patients with
acute myocardial infarction, post-operative complications and reduced cardiac function remain
inevitable (4). Elucidating the mechanism underlying atherosclerotic plaque formation and
triggering of plaque rupture may facilitate the development of treatments for patients with CHD.
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Exosomes are intracellular membrane-bound vesicles with
diameters of 30–150 nm that originate from a variety of intracellular
cell types and transfer their bioactive molecules between cells (5).
Exosomal contents change in response to environmental stimuli on
their parental cells (5–7), thus modulating downstream biological
effects of the exosomes. Moreover, exosomes can deliver their
cargo, such as functional nucleic acids (microRNAs, mRNAs, and
other RNA types), to recipient cells, thereby regulating these cells
at the post-transcriptional level (8–10). Therefore, exosomes are
intercellular signaling factors that can deliver bioactive proteins,
lipids, and RNA species in both paracrine and autocrine fashions
(11, 12). For example, exosomes isolated from human atherosclerotic
plaques were shown to directly transfer functional ICAM1 to target
cells, and plaque exosomes from symptomatic patients could induce
monocyte adhesion and migration more strongly than those from
asymptomatic patients, indicating functional differences among these
exosomes (13). Therefore, the detection of differentially expressed
genes of exosomal origin enables a more accurate determination of
diagnostic biological markers of disease.

Circular RNA (CircRNA) is a novel endogenous non-coding
RNA, characterized by a covalent closed-loop structure called post-
clipping through a special type of alternative splicing (14). In recent
years, the development and application of microarray technology,
RNA sequencing analysis (RNA-seq), and new bioinformatic
methods have led to the discovery of many circRNAs (15–19). For
example, has-circ-0124644 can be used as a diagnostic biomarker
of CHD (20, 21), and has-circ-0005870 can be used as a diagnostic
biomarker of hypertension (22). In addition, some circRNAs have
also been identified as new prognostic biomarkers for patients
with heart failure after cardiac infarction (23–25). Similarly, the
enrichment and stability of circRNAs in exosomes were also identified
in body fluids, such as human blood, saliva, and cerebrospinal
fluid, indicating that these Exo-circRNAs have potential applications
as disease biomarkers and novel therapeutic targets (20). Some
databases also indicate that the number of circRNAs in exosomes
is even higher than the number of mRNAs. However, the role of
exosomal circRNAs in cardiovascular disease is not fully understood.

In this study, we downloaded microarray data of exosome-
derived circRNAs from exoRBase1 and microarray data of mRNAs
involved in acute myocardial infarction (GSE61144) and identified
the differentially expressed genes (DEGs) (26). The differentially
expressed circRNAs and mRNAs were predicted using the microRNA
target prediction websites (Targetscan, StarBase, miRanda) and the
relationship between the two and microRNA. Furthermore, starBase
and Circular RNA Interactive were used to identify the corresponding
circ-microRNA and micro-mRNA (27, 28). Then, systematic Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were performed with the DEGs identified
following the analysis of the mRNAs (29, 30). STRING was used to
study the protein interactions between these DEGs (31), ROC curves
were used to verify the diagnostic effect of circRNAs on patients with
CHD (32). Finally, we extracted peripheral blood from healthy and
CHD individuals, and verified the above-derived RNAs by PCR. In
conclusion, our study provides new insights into the potential of
circRNAs as diagnostic biomarkers for patients with CHD based on
exosomes as delivery vehicles for genes.

1 http://www.exorbase.org/

2. Experimental methods

2.1. Microarray data

The expression profiles of exosomal RNA, including circRNA,
in blood samples of patients suffering from CHD (6 cases) and
healthy individuals (32 cases) were downloaded from the exoRBase
(see text footnote 1). mRNA expression profiles in blood samples
of patients with acute myocardial infarction were downloaded from
the GEO (GSE61144) database, including 7 datasets of patients with
acute myocardial infarction and 10 datasets of blood samples from
healthy individuals.

2.2. Filtering DEGs

Differentially expressed genes (DEGs) screening: “Limma” and
“sva” R packages were used to identify the DEGs. RNA conforming
to /log2FC/ > 0 and P < 0.05 were designated as DEGs,
including DEmRNAs and DEcircRNAs, and the corresponding
volcano map was generated.

2.3. Constructing the ceRNA network

This study was conducted using Target Scan Human 7.22 and
miRanda3 to predict the microRNA corresponding to the mRNA.
ENCORI4 was used to predict the corresponding microRNAs of the
circRNA. Circular RNA interactive identified corresponding circ-
microRNA and micro-mRNA targets. Finally, the prediction data
of circRNA with differential expression in the exosomes of patients
diagnosed with CHD, mRNA derived from the blood of patients with
acute myocardial infarction and their corresponding microRNA were
obtained to construct a circRNA-microRNA-mRNA-related ceRNA
regulatory network.

2.4. Functional enrichment analysis

To evaluate the potential biological functions of the differentially
expressed mRNAs corresponding to the circRNA in exosomes, we
performed Gene Ontology (GO) annotation and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis using
clusterProfiler, EnrichPlot, and GGploT2 softwares. GO enrichment
analysis primarily included biological process (BP), cell component
(CC), and molecular function (MF) groups, and the significance
analysis was conducted based on this database. KEGG enrichment
analysis was used to analyse the pathway significance of differentially
expressed genes based on the KEGG database.

2.5. The general information of patients

Thirty-one patients with CHD, who were being treated in the
Department of Cardiology of the Second Affiliated Hospital of

2 https://www.targetscan.org/vert_72/

3 cbio.mskcc.org/miRNA2003/miranda.html

4 http://starbase.sysu.edu.cn/
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FIGURE 1

Distribution of differentially expressed genes. (A) Heat maps of differentially expressed genes in plasma derived from patients with acute myocardial
infarction were divided into acute myocardial infarction (ACS) group (7 cases) and healthy control group (10 cases). Blue to red successively represent
gene expression levels from low to high. (B) Volcano map of ACS differentially expressed genes. (C) Heat maps of differentially expressed circRNA genes
in patients with CHD derived from exosomes were divided into CHD group (6 cases) and healthy control group (32 cases). Blue to red represent gene
expression from low to high.

Harbin Medical University, were selected for the study. Twenty-
four arrhythmia or other non-CHD patients of the same gender and
age were selected at the same period. The clinical data are shown
in Supplementary Table 1. The diagnostic criteria for CHD were

set according to the report “Nomenclature and Diagnostic Criteria
for Ischemic Heart Disease” formulated by the Joint Task Group
on “Clinical Nomenclature Standardization of the International
Cardiology Societies and Associations” and the World Health
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FIGURE 2

Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis. (A) Shows the enrichment results of GO pathway
analysis of differential genes. (B) Shows the enrichment results of KEGG pathway analysis of differential genes. P < 0.05 indicated that the enrichment
pathway was statistically significant.

Organization (WHO). The criteria for excluding patients with severe
infection and complications and coronary angiographic features
were determined by a combination of history, physical examination,
serological examination, and angiography with stenosis greater than
or equal to 50%. This study was approved by the Ethics Committee
of the Second Affiliated Hospital of Harbin Medical University
(KY2022-072). All patients participating in the study provided
informed consent.

2.6. Diagnostic merit of characteristic
biomarkers in CHD

To test the efficiency of the prediction of CHD by differential
expression of circRNA, we generated receiver operating characteristic
(ROC) curves using circRNA expression data from the dataset of
31 CHD patients and 24 healthy individuals. The area under the
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FIGURE 3

STRING network of protein-protein interactions (PPI) of differentially
expressed genes (DEGs) related to AMI. In PPI networks, there are
seven different colored lines: 1. Light blue: supported by the evidence
from database; 2. Purple: experimentally proved; 3. Red: gene-gene
fusion; 4. Yellow-green: supported by the evidence from previous
studies; 5. Green: genetic proximity; 6. Blue: co-existing genes;
7. Black: co-expression between genes. Filled nodes indicate the
proteins which have their three-dimensional structure known or
predicted, while empty nodes designate those whose
three-dimensional structures are yet to be resolved.

ROC curve (AUC) was used to evaluate the diagnostic value of the
identified hub genes.

2.7. qRT-PCR verification

Quantitative reverse transcription polymerase chain reaction
(qRT-PCR) was used to detect the variations of gene expression
levels in peripheral blood with specific primers. The experiment was
performed with biological triplicates. The reaction system was 10 µl.
β-actin was used as the internal control. Quantitative analysis of
differential expression was assessed by qRT-PCR using SYBR green
reaction system on qRT-PCR machine (Bio-Rad, Hercules, CA, USA).
The relative expression levels of circRNA were calculated by the
2−MMCt method. Primer sequences used for qRT-PCR are enlisted in
Supplementary Table 2.

2.8. Statistical analysis

All statistical analyses related to the bioinformatics study were
assessed using the R 3.6.3 statistical software. Graphpad prism 7.00

FIGURE 4

circRNA-microRNA-mRNA related ceRNA regulatory network. In this
figure, the first column represents the differentially expressed
exosomal circRNAs from patients with CHD, the third column depicts
the mRNAs from patients with acute myocardial infarction with
differentially expressed mRNAs, and the second column denotes the
microRNAs with intersection with circRNA and mRNA as predicted by
bioinformatic analysis.

statistics Mann-Whitney test was used to analyse differences in
PCR of circRNA between the CHD group and the healthy control
group. Multiple alterations in circRNA expression were assessed by
comparing the gene expression levels of patients with CHD and
the control group. Screening criteria to examine the differential
expression of circRNA was set to P < 0.05.

3. Results

3.1. DEG screening results

Based on the analysis of circRNAs in exosomes from patients with
CHD and healthy subjects, 85 differential expressed circRNAs were
screened, including 4 up-regulated genes and 81 down-regulated
genes. From the analysis of peripheral blood mRNAs in patients with
acute myocardial infarction, 173 differentially expressed mRNAs,
including 133 up-regulated genes and 40 down-regulated genes, were
screened. The DEG heat map and volcano map are shown in Figure 1.

3.2. Enrichment analysis of GO terms and
KEGG pathways

To further detect the potential function of differentially expressed
mRNAs in acute myocardial infarction in CHD, we performed the
GO term and KEGG pathway functional enrichment analyses. The
GO term enrichment analysis showed that exosomal mRNAs were
mainly enriched in T cell activation, regulation of T cell activation,
regulation of lymphocyte activation, positive regulation of T cell
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FIGURE 5

Target prediction of circ-microRNA and micro-mRNA. To further corroborate the accuracy of the target of the ceRNA network, we predict the target
location using bioinformatic analysis. (A) Binding target of circRNA and microRNA, and (B) predicted target binding site of microRNA and mRNA.

activation, and regulation of lymphocyte proliferation (Figure 2). The
KEGG pathway enrichment analysis showed that the differentially
expressed mRNAs in the regulatory network are mainly enriched
in Allograft rejection, Graft-versus-host disease, Type I diabetes
mellitus, Epicardial thyroid disease, and Cell adhesion molecules.
Studies have shown that CHD is correlated with cell adhesion
molecules (32, 33). These results suggest that the differentially
expressed circRNAs may play an important role in the occurrence
and development of CHD.

3.3. STRING analysis of protein
interactions

STRING is an online biological database that offers gene analysis
and constructs networks of gene interactions at the protein level
(31). In this study, we used STRING (version 11.0) to construct the
PPI network of DEGs. To further explore central genes related to
CHD and their mechanism of action, 40 genes with down-regulated
expression among the 173 differentially expressed genes in the CHD
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FIGURE 6

Receiver operator characteristic (ROC) curve of circRNA for the
diagnosis of coronary heart disease (CHD). As shown in the figure,
each point on the curve corresponds to the FPR and TPR at different
thresholds. TPRate refers to the proportion of all samples of true
category 1 that are predicted to be in category 1. FPRate refers to the
percentage of all samples with true category 0 that are predicted to
be in category 1. AUC refers to the random selection of a positive
sample and a negative sample from a given category. The classifier
predicted that the probability of a positive sample being positive was
P1 and that of a negative sample being positive was P2. AUC is the
probability that P1 > P2.

group were identified and uploaded to STRING online database to
build a PPI network. A PPI network with 40 nodes and 80 edges
was obtained (Figure 3). The nodes represent differentially expressed
genes enriched in the STRING database, whereas the edges reflect the
interactions between differentially expressed genes. As genes with a
high binding degree and high clustering coefficient are important in
maintaining the stability of the entire network, we searched for genes
with a high binding degree and a clustering coefficient greater than
0.4 using the PPI network. The average node degree was 4.57, average
local clustering coefficient was 0.453, and P-value of PPI enrichment
was <1.0e–16.

3.4. circRNA-related ceRNA regulatory
network construction

Based on the prediction data of circRNAs, mRNAs, and
corresponding microRNAs with differential expression in CHD, we
constructed a ceRNA network with 7 circRNA nodes, 5 microRNA
nodes, and 2 mRNA nodes (Figure 4). To prove the reliability of the
ceRNA network, we obtained the corresponding target information
of circRNAs, microRNAs, and mRNAs from StarBase, Circular RNA
Interactive (Figure 5).

3.5. Diagnostic effect of characteristic
biomarkers on CHD

Six biomarkers were used to distinguish CHD from the prediction
of high diagnostic value in healthy samples (Figure 6). The AUC
value of circ0004383 was 0.644 (95% CI = 0.495–0.792), AUC of
circ0001741 was 0.667 (95% CI = 0.521–0.812), AUC of circ0000973
was 0.723 (95% CI = 0.583–0.863), ACU of circ0008488 was
0.618 (95% CI = 0.467–0.769), AUC of circ0003922 was 0.772

(95% CI = 0.638–0.905), and AUC of circ0001785 was 0.699 (95%
CI = 0.557–0.840). Finally, we produced another joint ROC curve
for each circRNA, which showed an area under the curve of 0.784
(Supplementary Figure 1).

3.6. PCR validation and analysis results

After screening the differentially expressed circRNAs, we
performed PCR verification of circRNA0000973, circRNA0001741,
circRNA0001785, circRNA0003922, circRNA0004383, and
circRNA0008488. RNA sequence information is shown in
Supplementary Table 2. We designed primers for circRNA0006737
for three times, but the results failed to reach the peak value in the
qRT-PCR experiment, so we did not conduct further experiments
on it. The results showed that the expression of circRNA0001785,
circRNA0000973, circRNA0004383, and circRNA0001741 were
down-regulated in patients with CHD on peripheral blood. While
the expression of circRNA0001785 in CHD was significantly reduced,
which was statistically significant. These results validate the results of
our bioinformatics analysis (Figure 7). Finally, we built a flow chart
for the whole experiment design (Figure 8).

4. Discussion

CAD is associated with high morbidity and mortality rates
worldwide. In recent years, the number of patients with CHD
has been increasing. Thus, there is a need to control the number
of patients with CHD and explore its molecular mechanism.
Studies have shown that in acute myocardial infarction, myocardial
cells secrete exosomes rich in tumor necrosis factor, which leads
to myocardial cell damage. On the contrary, cardiac stem-cell-
derived exosomes can reduce scar tissue formation (34). Exosome
microRNAs play a major role in limiting the development of
atherosclerosis (35). However, the role of exosome-derived circRNAs
in coronary artery disease is still poorly studied.

With the development of gene chip technology, microarray
analysis has been applied in the study of exosomes from patients
with CHD. Here, the GEO gene expression dataset was used to detect
the differential gene expression between exosomes from patients with
CHD and those from healthy subjects, and the ceRNA network of
circRNA, mRNA, and the corresponding microRNA was constructed
using the bioinformatic prediction website. The GO term and
KEGG pathway enrichment analysis were performed on mRNAs
differentially expressed in acute myocardial infarction to determine
the underlying mechanism of acute myocardial infarction in CHD.
Potential biomarker genes were preliminarily verified using the ROC
curve. To further confirm the diagnostic function of exosome-derived
circRNAs in CHD, basic experiments were performed to verify them.
PCR analysis was performed on circRNAs from the healthy and
disease groups. Our study contributes to a better diagnosis of CHD
and offers potential biomarker for predicting the risk of CHD in acute
myocardial infarction.

Finally, through differential expression analysis and functional
basis verification, we found that the down-regulation of
circRNA0001785, circRNA0000973, circRNA0001741, and
circRNA0003922 was statistically significant. Also, we constructed
a ceRNA network corresponding to circRNAs related to acute
myocardial infarction. The increase in circ0001785 promoted
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FIGURE 7

qRT-PCR results of peripheral blood-derived circRNA. The expressions of peripheral blood-derived circRNAs were further confirmed using qRT-PCR. (A)
Represents the expression of circ0001785 in white blood cells of healthy and coronary patients, (B) represents the expression of circ0001741 in white
blood cells of healthy and coronary patients, (C) represents the expression of circ0000973 in white blood cells of healthy and coronary patients, (D)
represents the expression of circ0003922 in white blood cells of healthy and coronary patients, (E) represents the expression of circ0008488 in white
blood cells of healthy and coronary patients, and (F) represents the expression of circ0004383 in white blood cells of healthy and coronary patients. Red
represents healthy control group, blue represents coronary heart disease (CHD) group, P < 0.05 was statistically significant. *P < 0.05, **P < 0.01, and
***P < 0.001.

the combination of circ0001785 and miR513a-5p and reduced
the combination of miR513a5p and TGFBR3, thus leading to
the increased expression of TGFBR3. Similarly, the increased
circ0000973 promoted the expression of LFNG by competitively
combining with miR-330-3p and miR-548p. The increased
circ0001741 that is prone to combine with miR-548p caused
the increased expression of LFNG. Also, the increased circ0003922
promoted the expression of TGFBR3 or LFNG by competitively
combining with miR-513a-5p. Studies have shown that up-regulated
circ0001785 expression in osteosarcoma cells can enhance its
carcinogenic effect by up-regulating HoxB2 by sponge miR-1200
(36). Circular RNA hsa_circ_0001785 inhibits the proliferation,
migration, and invasion of breast cancer cells in vitro and in vivo

by sponging miR-942 to up-regulate SOCS3 (37). miR-125a-5p can
induce the release of gastrin from vascular endothelial cells and
thus affect gastrointestinal function (38). miR-513a-5p can mediate
TNF-α and LPS-induced apoptosis by down-regulating X inhibitors
of apoptosis proteins in endothelial cells (39). TGFBR3 signal can
conduct and regulate apoptosis of myocardial cells after infarction. In
addition, TGFBR3 signaling is a potential negative regulator that can
protect myocardial cell-induced apoptosis (40). Because of the role of
these genes in CHD, we confirm that exosome-derived circRNAs can
serve as a stable biomarker for diagnosing plaque stability in patients
with CHD in future clinical applications.

There are some limitation in this study. First, we did not
compare microRNA and mRNA expression in the plasma of
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FIGURE 8

Flow chart of coronary heart disease (CHD).

patients. This will be further verified in our subsequent experiments.
Second, we used bioinformatic methods to infer that exosome-
derived circRNA0001785, circRNA0000973, circRNA0001741, and
circRNA0003922 can predict the possibility of myocardial infarction
in patients with CHD, and these results need to be verified in large-
scale studies. Third, according to the current results, the expression
of these circRNAs are all at a lower diagnostic level in the ROC
curve, but their specificity is higher and their expression is more
stable in humans, also its combined ROC curve has a high diagnostic
efficiency, so we believe that they are still of great clinical importance.

In conclusion, we found that circRNA0001785, circRNA0000973,
circRNA0001741, and circRNA0003922 are potential biomarkers for
the diagnosis of CHD, and can affect the stability of plaque by down-
regulating these genes. This study provides new insight for studying
pathogenesis and prevention strategies of acute myocardial infarction
in patients with CHD.
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