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Background: Copper (Cu) is essential for the functioning of various enzymes involved

in important cellular and physiological processes. Although critical for normal

cardiac function, excessive accumulation, or deficiency of Cu in the myocardium

is detrimental to the heart. Fluctuations in cardiac Cu content have been shown to

cause cardiac pathologies and imbalance in systemic Cu metabolism. However, the

genetic basis underlying cardiac Cu levels and their effects on heart traits remain

to be understood. Representing the largest murine genetic reference population,

BXD strains have been widely used to explore genotype-phenotype associations and

identify quantitative trait loci (QTL) and candidate genes.

Methods: Cardiac Cu concentration and heart function in BXD strains were

measured, followed by QTL mapping. The candidate genes modulating

Cu homeostasis in mice hearts were identified using a multi-criteria

scoring/filtering approach.

Results: Significant correlations were identified between cardiac Cu concentration

and left ventricular (LV) internal diameter and volumes at end-diastole and end-

systole, demonstrating that the BXDs with higher cardiac Cu levels have larger LV

chamber. Conversely, cardiac Cu levels negatively correlated with LV posterior wall

thickness, suggesting that lower Cu concentration in the heart is associated with

LV hypertrophy. Genetic mapping identified six QTLs containing a total of 217 genes,

which were further narrowed down to 21 genes that showed a significant association

with cardiac Cu content in mice. Among those, Prex1 and Irx3 are the strongest

candidates involved in cardiac Cu modulation.
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Conclusion: Cardiac Cu level is significantly correlated with heart chamber size and

hypertrophy phenotypes in BXD mice, while being regulated by multiple genes in

several QTLs. Prex1 and Irx3 may be involved in modulating Cu metabolism and its

downstream effects and warrant further experimental and functional validations.

KEYWORDS
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Introduction

Copper (Cu), a trace element, is essential for many Cu-
binding enzymes and proteins that are required for various
physiological functions, including regulation of mitochondrial
respiration, iron metabolism, antioxidant defense, and maintenance
of the extracellular matrix (ECM) in mammals (1, 2). A few
examples of such enzymes and proteins (chaperones) are cytochrome
c oxidase (CCO), superoxide dismutase (SOD), metallothionein
(MT), ceruloplasmin (CP), dopamine-beta-hydroxylase (DBH), and
lysyl oxidase. Several other Cu-chaperones deliver Cu to CCO;
these include CCO copper chaperone 11 (COX11), COX17, COX19,
COX23, and synthesis of CCO1 (SCO1) and SCO2. They are essential
for oxidative phosphorylation in the heart. Furthermore, Cu has been
shown to regulate target gene selectivity of hypoxia-inducible factor
1 (HIF-1), a transcription factor that regulates cellular responses
to hypoxia, by affecting its binding to the gene promoters (3).
Importantly, normal Cu homeostasis depends on a very narrow
range of Cu concentrations in tissues and fluids, and therefore, Cu-
uptake and -utilization processes are tightly regulated by coordinated
functions of several transporter proteins and enzymes (4). Copper
transporter 1 (CTR1) is the evolutionarily conserved high-affinity Cu
transporter, while another Cu transporter, divalent metal transporter
1 (DMT1), has been shown to compensate for Cu uptake in the
absence of CTR1 (5). The Cu efflux from cells is mainly regulated
by ATPases, such as ATP7A and ATP7B. Mutations in ATP7A
and ATP7B genes cause inherited disorders, known as Menkes and
Wilson diseases, respectively (2). While ATP7A mutations cause Cu
deficiency resulting in developmental delay, hypotonia, and nervous
system deterioration, mutations in ATP7B cause Wilson’s disease that
results in excessive Cu accumulation, mainly in the liver and brain.

Abbreviations: Cu, copper; QTL, quantitative trait loci; LV, left ventricle;
ECM, extracellular matrix; CCO, cytochrome c oxidase; SOD, superoxide
dismutase; MT, metallothionein; CP, ceruloplasmin; DBH, dopamine-beta-
hydroxylase; COX, CCO copper chaperone; SCO1, synthesis of CCO1; HIF-1,
hypoxia-inducible factor 1; CTR1, copper transporter 1; DMT1, divalent metal
transporter 1; HCM, hypertrophic cardiomyopathy; VEGF, vascular endothelial
growth factor; RI, recombinant inbred; GRP, genetic reference population; B6,
C57BL/6J; D2, DBA/2J; FS, fractional shortening; EF, ejection fraction; LVVol;d,
left ventricular volumes end-diastolic; LVVol;s, left ventricular volumes end-
systolic; LVID, LV internal diameters; IVS, interventricular septum; LVPW, LV
posterior wall; CO, cardiac output; GEMMA, Genome-wide efficient mixed
model association; LOCO, Leave One Chromosome Out; LOD, logarithm
of the odds; GN, GeneNetwork; LRS, likelihood ratio statistic; RWT, RNeasy
wash buffer; RPE, RNeasy wash buffer with ethanol; SNP, single nucleotide
polymorphism; cDNA, complementary DNA; GWAS, genome-wide association
study; PCR, polymerase chain reaction; TPM, transcripts per million; eQTL,
expression QTL; MGI, Mouse Genome Informatics; IMPC, International Mouse
Phenotyping Consortium; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Cu content in the body is an important parameter for
physiological functions in humans, and imbalanced Cu
concentrations have been shown to associate with heart diseases.
Wilson’s disease patients with Cu overload exhibit a higher risk of
atrial fibrillation with sudden cardiac death and heart failure (6,
7). The marginal dietary Cu restriction demonstrated a potentially
adverse effect on the cardiovascular system (8), while dietary Cu
deficiency caused structural and functional pathologies in the heart,
including cardiac hypertrophy with deposition of lipid droplets and
excessive collagen accumulation, disruptive cristae, vacuolization
of mitochondria, and increased mitochondrial biogenesis (9).
Supplementation by a Cu-adequate diet has been shown to reverse
cardiac hypertrophy in subjects with dietary Cu deficiency (10)
and in patients with hypertrophic cardiomyopathy (HCM) carrying
mutations in Cu chaperones, SCO1 and SCO2 (11). Moreover, Cu
repletion reversed the HCM phenotype in Cu-deficient and pressure
overload animal models via SOD-mediated HIF-1 activation
of VEGF (vascular endothelial growth factor) expression and
angiogenesis (10–13). Disturbed Cu metabolism has also been
connected to ischemic heart disease and heart failure involving
dysfunction of CP, SOD1, and SOD3 chaperones (11). Mice with
a heart-specific knockout of CTR1 (hCtr1−/−) suffered from
cardiac Cu deficiency that resulted in severe cardiomyopathy (14).
Remarkably, these hCtr1−/− mice exhibited increased serum Cu
levels and a concomitant decrease in hepatic Cu storage capacity via
ATP7A mobilization in the liver. While fluctuations in cardiac Cu
content have been shown to cause cardiac pathologies, the regulation
and genetic basis that influence cardiac Cu content, and whether this
is associated with the physiological parameters of heart morphology
and function remain to be understood.

The goal of this study was to identify the genes and chromosomal
regions that influence Cu concentrations in the heart and correlate
cardiac Cu content with heart structure and function in a murine
genetic reference population (GRP) of the recombinant-inbred (RI)
BXD family. The BXD family has been bred specifically for systems
genetics studies of complex traits to identify causal and modifier
candidate genes and their phenotype-modulating effects on a whole
genome level. The BXD family consists of over 100 highly diverse
lines of mice that descend from two independent advanced RI
crosses between C57BL/6J (B6) and DBA/2J (D2) parental strains

Genes and Genomes; RGD, Rat Genome Database; Chr, Chromosome; Prex1,
phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1;
Fam83d, family with sequence similarity 83, member D; Irx3, Iroquois related
homeobox 3; Usb1, U6 snRNA biogenesis 1; Slc35a1, solute carrier family
35 member 1; Ica1, islet cell autoantigen 1; RAC, RHO family of small GTP-
binding proteins.
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(15–17). The father of the BXDs (D2 strain) is an inherent model
of HCM, whereas the mother of BXDs (B6 strain) has normal
cardiac morphology and function (18). The phenotype and severity
of HCM greatly vary among patients with the same causal gene
mutations as well as among BXD strains, and these variations in
an individual’s risk are regulated by genetic background, metabolic
features, and various environmental factors (19, 20). In this study,
we hypothesized that Cu content is associated with cardiac function,
thus we measured Cu concentrations in the myocardium and
collected echocardiographic data from multiple BXD strains and their
parental lines. Furthermore, quantitative trait loci (QTL) analysis
was performed using GeneNetwork (GN),1 which identified six QTLs
and 21 possible candidate genes that are associated with cardiac Cu
metabolism and cardiac function.

Materials and methods

Animals and tissue harvesting

All animals were housed in an environmentally controlled animal
facility (12:12 light/dark cycle) with free access to water and standard
chow diet, standard rodent diet 7,912 (irradiated Teklad LM485,
Envigo) containing 240 ppm Fe, 23 ppm Cu, and 63 ppm Zn
throughout their life or until sacrifice. The tap water contained 1.6,
0.5, and 4.3 ppm Fe, Cu, and Zn, respectively. All experimental
protocols were performed in accordance with the NIH Animal Care
guidelines and were approved by The University of Tennessee Health
Science Center Animal Care and Use Committee (approval code # 21-
0310).

A total of 313 mice from 72 BXD RI strains were used for Cu
content measurement (mean n > 4/strain) and 162 mice from 73
BXD strains plus their four parental strains, C57BL/6J (B6), DBA/2J
(D2), B6D2F1 and D2B6F1, were used for the generation of heart
gene expression data (mean n > 2/strain). Animals were euthanized
under isoflurane anesthesia. The heart was dissected, and the atria,
aorta, and surrounding tissues were removed. The ventricles were
washed in phosphate-buffered saline and frozen in isopentane with
dry ice for further measurement of Cu content and generation of gene
expression data.

Measurement of Cu content

The heart tissue was wet-washed with nitric acid and analyzed
by total reflection X-ray fluorescence spectroscopy using an S2
PICOFOX instrument (Bruker, Berlin). The samples were measured
for 500 s and the values for Cu were normalized to tissue wet weights.
Metal concentration (µg/g) is reported as mean ± standard error
of the mean (SEM).

Measurement of echocardiographic
parameters

Transthoracic two-dimensional and Doppler echocardiography
was used to evaluate heart function and morphology in BXD

1 http://genenetwork.org/

mice. Experiments were conducted in BXD, B6, and D2 strains (44
strains) at 4–6 months of age (n > 5/strain). The chest of the mice
was treated with a chemical hair remover day prior. Mice were
anesthetized by oxygenated 1–2% isoflurane, and core temperature
and heart rate were maintained using a heated platform set at 37◦C,
while echocardiography was performed using a Vevo2100 Micro-
Imaging System (VisualSonics Inc., Toronto, Canada). Fractional
shortening (FS%), ejection fraction (EF%), left ventricular volumes
end-diastolic and end-systolic (LVVol;d and LVVol;s, respectively),
LV internal diameters end-diastolic and end-systolic (LVID;d and
LVID;s, respectively), interventricular septum end-diastolic and
end-systolic (IVS;d and IVS;s, respectively) and LV posterior wall
thickness end-diastolic and end-systolic (LVPW;d and LVPW;s,
respectively), stroke volume and cardiac output (CO) were calculated
as reported previously (19).

QTL mapping

The QTL mapping for identifying genetic loci associated with
Cu concentration in mouse hearts was performed using Genome-
wide efficient mixed-model association (GEMMA)2 method in GN
(see text footnote 1) (21). It maps traits with correction for kinship
among samples using a linear mixed model method and incorporates
the Leave One Chromosome Out (LOCO) method to ensure that
the correction for kinship does not remove useful genetic variance
near each marker. Further, the markers were filtered to include only
those with minor allele frequencies above the default threshold of
0.05. The suggestive and significant thresholds used for a genome-
wide scan were −log(p) of 3.0 and 4.0, respectively. The threshold
is based on one unit of −log(p) being equivalent to one unit of
the logarithm of the odds (LOD) value, where LOD = likelihood
ratio statistic (LRS)/4.61. A total of 21,054 informative single
nucleotide polymorphism (SNP) genotype markers were used for
the analysis. The BXD genotype file can be accessed and reviewed
on GN. A 1.5-LOD confidence interval was used for identifying the
candidate genes.

Cardiac gene expression data

The gene expression data, “NHLBI BXD All Ages Heart RNA-Seq
(Nov20) TMP Log2” used in the current study was generated from
hearts of 73 BXD strains plus their parental strains—C57BL/6J (B6),
DBA/2J (D2), B6D2F1 and D2B6F1 (one male and one female per
strain for most of the strains) in our laboratory recently. This data
set can be accessed at our GN website (see text footnote 1) with the
accession number GN1028 (22).

RNA isolation and sequencing

Briefly, total RNA was extracted using miRNeasy Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Approximately, 30 mg of left ventricle tissue was
added into a 2 mL tube containing 700 µL QIAzol Lysis Reagent
and one 5 mm stainless steel bead (Qiagen, Hilden, Germany).
The tissue was homogenized in a Tissue Lyser II (Qiagen, Hilden,

2 https://github.com/genetics-statistics/GEMMA
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Germany) for 2 min with a speed frequency of 30 r followed by
incubation for 5 min. Then, 140 µL chloroform was added into the
homogenate, shaken vigorously for 15 s, and centrifuged at 12,000 ×

g for 15 min at 4◦C. Following centrifugation, 280 µL upper aqueous
was transferred into a new collection tube containing 500 µL 100%
ethanol. The mixture was loaded into a RNeasy Mini Kit spin column
(Qiagen, Valencia, CA, USA), and then washed once with RNeasy
wash buffer (RWT) and twice with RNeasy wash buffer with ethanol
(RPE) for RNA elution. All RNA samples were analyzed using an
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA), and samples with optical density 260/280 > 1.8 and RNA
integrity number > 8.0 were used for library preparation.

One microgram of RNA was used for complementary DNA
(cDNA) library preparation using a NEBNext R© Ultra RNA Library
Prep Kit for Illumina R© (cat# E7420S, New England Biolabs, Ipswich,
MA, USA) according to the manufacturer’s protocol. Briefly, mRNA
was enriched using oligo(dT) beads followed by two rounds of
purification and fragmented randomly by adding a fragmentation
buffer. The first strand cDNA was synthesized using random
hexamer primers, after which a custom second-strand synthesis
buffer (Illumina, San Diego, CA, USA), dNTPs, RNase H, and DNA
polymerase I were added to generate the second strand (double-
stranded cDNA). After a series of terminal repairs, poly-adenylation,
and sequencing adaptor ligation, the double-stranded cDNA library
was completed following size selection and polymerase chain reaction
(PCR) enrichment. The resulting 250–350 bp insert libraries were
quantified using a Qubit 2.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA) and quantitative PCR. Size distribution was
analyzed using an Agilent 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA). The qualified libraries were sequenced on an
Illumina NovaSeq Platform (Illumina, San Diego, CA, USA) using a
paired-end 150 run (2 × 150 bases). On average, 40 million raw reads
were generated from each library.

Alignment and quantification of RNA
sequencing data

For mapping of the RNA-seq reads, mouse reference genome
(GRCm38) and gene model annotation files were downloaded from
the Ensembl genome browser (23).3 The reference genome was
then indexed and paired-end reads were aligned to the indices
using STAR v2.5.0a (24). The algorithm employed in STAR uses
sequential maximum mappable seed search in uncompressed suffix
arrays followed by seed clustering and stitching procedure, which
can generate a precise mapping result for the junction reads.
FeatureCount v0.6.1 was used to count the number of read(s) mapped
to each gene (25). Transcripts Per Million (TPM) was calculated for
each gene based on the length of the gene and the number of reads
mapped to that gene. In this normalization, the sum of all TPMs (gene
level) is equal to 1,000,000. The TPM values were further rescaled
to log2 (TPM + 1).

Genetic correlation analysis

Genetic correlation analysis was performed on our GN portal
using the Pearson correlation coefficient to identify gene-phenotype

3 https://useast.ensembl.org/

and gene-gene associations. For gene-phenotype correlation analysis,
the Cu concentration phenotype (GN phenotype ID: 21404) was
correlated with the mRNA levels of genes in “The NHLBI BXD All
Ages Heart RNA-Seq (Nov20) TMP Log2” dataset.

Identification of candidate genes

A 1.5-LOD confidence interval was used for identifying potential
candidate genes associated with the effect of Cu concentration in BXD
mice hearts. We employed a scoring system (scores ranging from 0
to 10) to prioritize the candidate genes. The scoring system contains
five different parameters, and each parameter was assigned a different
score based on its overall significance. The reason for selecting these
five parameters was to finally shortlist gene(s) that are important for
the studied phenotype based on their tissue expression, significant
association with the phenotype being studied, genotype as well as
their known/studied functions in the context of the phenotype.

Expression in the heart (1 score)
Expression of genes at a particular level in a specific tissue is an

important requirement for their functions to be carried out. Thus,
genes having a higher expression in the heart tissue were prioritized,
ensuring the presence of enough number of mRNA copies to carry
out the functions. Hence, genes with a mean expression of ≥ 2 were
assigned a score of 1.

Coding DNA variants (2 score)
The location of the variants in the gene sequence can affect

the protein sequence and function. The variants, such as non-
synonymous, frameshift, stop gain, or loss are particularly vital in
affecting the gene function. Hence, using our previously generated
genetic variant calls by whole genome resequencing (26) of the two
parental strains, B6 and D2, the coding sequence polymorphisms for
genes located in the QTL interval were evaluated. If a gene harbored
a coding sequence variant, then a score of 2 was assigned.

Gene-phenotype correlation (2 score)
A significant gene-phenotype correlation is an important

criterion that indicates the importance of a gene in a particular
phenotype. Hence, only those genes that had a significant correlation
with Cu concentration (P < 0.05) were selected and assigned a
score of 2. The gene-phenotype correlation was done by Pearson
correlation coefficient analysis in GN (see text footnote 1) (22).

Cis-regulation (2 score)
For the genes located in the 1.5-LOD QTL interval, expression

QTL (eQTL) mapping was performed. A score of 2 was assigned
for the cis-regulated genes. A gene was cis-regulated if the eQTL
is located within 5 Mb flanking regions of this gene with a
“maximum LRS” > 14.

Functional relevance (3 score)
To determine if the QTL genes are functionally important in

cardiac-related phenotypes, the following public databases/resources
were used: Mouse Genome Informatics (MGI)4 (27), Rat
Genome Database (RGD)5 (28), International Mouse Phenotyping

4 http://www.informatics.jax.org/

5 www.rgd.mcw.edu
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Consortium (IMPC)6 (29) and Genome-Wide Association Study
(GWAS) Catalog (30).7 These databases were queried with cardiac or
cardiovascular disease-related keywords, such as “heart,” “cardiac,”
“cardiomyopathy,” “cardiomyocyte proliferation,” “angiogenesis,”
“myocardial,” “myocardial ischemia,” “cardiovascular system disease,”
or “heart disease” to obtain the associated genes. The phenotypes
obtained from the GWAS catalog or IPMC databases were significant
with a P-value < 1 × 10−4. In addition, genes related to the “Cu
transport” from Gene Ontology (GO)8 (31) and MGI databases,
and those related to “Cu homeostasis” pathway from WikiPathways
database9 (32) were obtained. As Cu is known to regulate target gene
selectivity via HIF-1 binding to the gene promoters (3), genes related
to mouse “HIF-1 signaling pathway” from Kyoto Encyclopedia of
Genes and Genomes (KEGG)10 database (33) were retrieved.

The genes obtained from these resources were matched to the
QTL genes, and if a potential candidate gene was implicated in any
of the above phenotypes, processes, or pathways, then a score of 3
was assigned. The scores across all five parameters were summed for
each gene and genes with a total score of ≥ 6 (higher than the median
score of 5) were selected as candidate genes for further analysis.

Results

Genomic loci associated with cardiac Cu
concentration in BXD mice

Among the BXD strains, BXD190 had the highest (6.8 ± 1.2 µg/g)
and BXD141 had the lowest (4.3 µg/g) Cu concentrations
(Figure 1A). The parental strain, DBA/2J had a Cu level of
5.9 ± 0.1 µg/g, which was higher than the average Cu level
(5.4 ± 0.1 µg/g) across all BXD strains. GEMMA mapping was
performed to identify genetic loci associated with cardiac Cu
concentration in BXD mice. As shown in Figures 1B, C, we identified
a significant QTL on chromosome (Chr) X at 139 ∼ 141 Mb (peak
LRS = 24.26), where one unit of LOD is equivalent to 4.61 LRS.
Furthermore, with a threshold of 3 LOD (LRS = 13.8), five suggestive
QTLs were mapped on different chromosomes (Figures 1D–H), as
follows: Chr 2 at 159.4 ∼ 161.9 Mb (peak LRS = 17.43), Chr 4 at
29.2 ∼ 34 Mb (peak LRS = 16.74), Chr 6 at 8.4 ∼ 15.8 Mb (peak
LRS = 17.54), Chr 8 at 88 ∼ 90 Mb (peak LRS = 16.4), and Chr 10
at 119.5 ∼ 120.7 Mb (peak LRS = 16.78).

Candidate genes modulating cardiac Cu
concentration in BXD mice

For prioritizing the candidates, genes within the 1.5-LOD
confidence interval were selected. To further narrow down the
candidate genes, we employed a comprehensive strategy, which
included five different parameters, such as cis-regulation, coding
sequence variants, expression in heart tissue, significant correlation

6 http://www.mousephenotype.org/

7 www.ebi.ac.uk/gwas

8 http://geneontology.org/

9 https://www.wikipathways.org/

10 https://www.genome.jp/kegg/

with the phenotype(s), and functional relevance of the genes. The
data associated with the first four parameters were collected from
our GN portal, whereas the functional association of the genes was
retrieved from various publicly available resources, such as MGI,
IPMC, RGD, KEGG pathway, WikiPathways, and GO. Based on these
data, the genes were assigned a score from 0 to 10, and those attaining
a score of at least 6 (higher than the median score threshold of 5) were
considered candidates for further analysis. A score of six also ensures
that the selected genes qualify majority of the considered parameters.

The 1.5-LOD region across six QTLs contained a total of 217
genes with 41 from Chr X, 42 from Chr 2, 28 from Chr 4, 18
from Chr 6, 45 from Chr 8, and 43 from Chr 10 (Figure 2A).
Interestingly, 12 of the 45 Chr 8 genes had coding sequence variants,
whereas this number was comparatively much lower for other
chromosomes. Approximately 60% of the Chr 10 genes within 1.5-
LOD were significantly correlated with Cu phenotype. Functional
relevance was lowest for Chr X genes, while it was highest for Chr
8 genes. Furthermore, approximately 25% of the Chr 2 and Chr 8
genes were cis-regulated (Figure 2A). Among the 217 genes, 112
were significantly correlated with Cu-concentration phenotype (GN
phenotype ID: 21404), 29 had coding sequence variants, 38 were
cis-regulated and 95 genes were expressed with a mean TPM value
of ≥ 2. Furthermore, 26 of the genes within the 1.5-LOD region
were functionally relevant being involved in one of the cardiac
phenotypes or associated with Cu-related pathways or biological
processes. Two genes (Prex1 and Irx3) were common to all five
categories (Figure 2B).

Finally, after scoring the 1.5-LOD interval genes based on
different parameters, 21 genes across six QTLs (Chr X, 2, 4, 6, 8,
and 10) with a score of ≥ 6 were selected as candidate genes that
may have an important effect in modulating Cu concentration in the
murine heart (Table 1). Each of the Chr 2 and Chr 8 contributed
six genes to the candidate list. There were three genes each from
Chr 4 and 10, two genes from Chr 6, and one gene from Chr X.
The top two genes from Chr 2 were Prex1 (phosphatidylinositol-
3,4,5-trisphosphate-dependent Rac exchange factor 1) and Fam83d
(family with sequence similarity 83, member D) with a score of
10 and 9, respectively. The top two genes from Chr 8 were Irx3
(Iroquois-related homeobox 3) and Usb1 (U6 snRNA biogenesis 1)
which had a score of 10 and 7, respectively. Interestingly, Prex1 (Chr
2: 166.566342) and Irx3 (Chr 8: 91.798525) attained the maximum
score of 10 (Table 1). Furthermore, Fam83d (Chr 2: 158.768093) was
the next best candidate with a score of 9. A few of the candidate
genes, such as Slc35a1 (solute carrier family 35 member 1) encoding
CMP-sialic acid transporter, Ica1 (islet cell autoantigen 1), Usb1, and
Slc26a10 from chromosome 4, 6, 8, and 10, respectively, did not have
any score for functional relevance. However, they received a full score
for the remaining four categories and attained a score of 7, suggesting
that these genes may be novel candidates for Cu phenotype and
further studies are required for clarification.

Association between cardiac Cu
concentration and cardiac phenotypes in
BXD mice

Our analysis clearly showed a significant correlation between
cardiac Cu concentration and various echocardiographic phenotypes.
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FIGURE 1

Genetic mapping of the cardiac copper (Cu) concentration in BXD family mice. (A) Bar plot showing Cu concentration in the myocardium of BXD mice.
The x-axis shows the BXD and the parental strains, and the y-axis shows Cu levels in µg/g. (B) Manhattan plot indicating the genomic loci correlated with
Cu concentration across all mouse chromosomes. The x-axis indicates the genomic position, while the y-axis shows the –log(P), a measurement of the
linkage between Cu level and genomic region. The blue and red dotted lines indicate suggestive (–logP of 3) and significant (–logP of 4) genome-wide
thresholds, respectively. (C–H) Genomic loci correlated with Cu concentration either with a significant or suggestive threshold in specific chromosomes.
The x-axis indicates the genomic position, and y-axis denotes the –log(P) value.

For instance, LVID at end-diastole (r = 0.415; p = 0.015) and end-
systole (r = 0.367; p = 0.033) were significantly positively correlated
with cardiac Cu levels (Figure 3). Similarly, a positive correlation
was also observed between Cu concentration and LV volumes at end-
diastole (r = 0.441; p = 0.009) and end-systole (r = 0.389; p = 0.023)
(Figure 3). In addition, LVPW thickness at end-diastole and end-
systole significantly negatively correlated with Cu concentration (r = -
0.353; p = 0.040 and r = -0.402; p = 0.018, respectively). Furthermore,
other echocardiographic phenotypes, including FS%, EF%, stroke
volume, CO, and IVS although correlated with Cu concentration, did
not attain statistical significance. While a negative correlation was
observed for FS% (r = -0.153; p = 0.387), EF% (r = -0.186; p = 0.293),
and stroke volume (r = -0.315; p = 0.253), a positive correlation was

noted for CO (r = 0.264; p = 0.132), IVS.d (r = 0.176; p = 0.320)
and IVS.s (r = 0.100; p = 0.573) with Cu concentration (Figure 4).
The values recorded for the echocardiographic parameters and Cu
phenotype are provided in Supplementary File 1.

Discussion

The strictly balanced concentrations of Cu in peripheral organs
and in circulation are crucial for various biological processes in
mammals, and imbalances in Cu concentrations affect multiple
tissues and organs resulting in a broad range of disorders. While
dietary Cu deficiency results in HCM, heart ischemia, and heart
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FIGURE 2

Number of genes within 1.5-LOD interval across the significant and suggestive QTLs. (A) Number of genes in each category for each indicated
chromosome. (B) Number of exclusive and shared genes across five selection criteria.

TABLE 1 Candidate genes associated with cardiac Cu phenotype identified in significant and suggestive QTLs.

Gene symbol Gene ID Chr Scores assigned for different categories

Mean expression Coding variant Cis-regulation Correlation Function Total

Armcx1 78248 X 1 0 0 2 3 6

Fam83d 71878 2 0 2 2 2 3 9

Ift52 245866 2 1 0 0 2 3 6

Ada 11486 2 1 0 0 2 3 6

Matn4 17183 2 0 2 2 2 0 6

Ctsa 19025 2 1 0 0 2 3 6

Prex1 277360 2 1 2 2 2 3 10

Ankrd6 140577 4 0 0 2 2 3 7

Slc35a1 24060 4 1 2 2 2 0 7

C9orf72 73205 4 1 0 0 2 3 6

Col28a1 213945 6 0 2 2 2 0 6

Ica1 15893 6 1 2 2 2 0 7

Irx3 16373 8 1 2 2 2 3 10

Mmp2 17390 8 1 0 0 2 3 6

Gnao1 14681 8 1 0 0 2 3 6

Usb1 101985 8 1 2 2 2 0 7

Csnk2a2 13000 8 1 0 0 2 3 6

Gins3 78833 8 0 2 2 2 0 6

Cand1 71902 10 1 0 0 2 3 6

Lrig3 320398 10 0 2 0 2 3 7

Slc26a10 216441 10 1 2 2 2 0 7

Important candidate genes based on overall scoring are underlined and highlighted in bold.

failure (9), Cu excess is also toxic and causes cardiomyopathy
with lethal arrhythmias and heart failure in patients with Wilson’s
disease (7). Notably, Cu content in the heart has been shown to
regulate the systemic Cu homeostasis and the Cu content in the
liver, the main organ that is responsible for excreting excess Cu
from the body (4, 14). However, major questions persist about the
association of cardiac Cu concentrations with heart morphology
and function and its underlying genetic regulation. To this end,
we have previously applied a systems genetics approach using the

BXD family of RI mice, a murine GRP that has previously been
successfully used for several QTL analyses to identify candidate genes
and gene networks that underlie the effects of trace metals in the
brain (34, 35). Similarly, in the current study, we showed that the
cardiac Cu concentration in BXD mice is significantly correlated with
various echocardiographic parameters. Our results demonstrate that
BXD strains with larger LV internal diameters and volumes have
higher Cu content in the myocardium, indicating that excessive Cu
accumulation in the heart is related to LV dilation. Supporting this
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FIGURE 3

Correlation between cardiac copper (Cu) concentration and echo phenotypes (LVID, LV.Vol, and LVPW). The x-axis indicates the Cu concentration
(µg/g), and y axis denotes various echocardiography parameters. The Pearson correlation coefficient was used to determine the relationship between
cardiac Cu concentration and echo phenotypes. The Pearson correlation r and P-values are indicated in the plots. LV, left ventricular; s, end-systole; d,
end-diastole; LVID, LV internal diameter; LV.Vol, LV volume; LVPW, LV posterior wall.

correlation, BXDs with thinner LV walls because of LV chamber
dilation had higher Cu content. On the other hand, the BXD strains
with lower cardiac Cu content had thicker LV walls, suggesting a
significant negative association between cardiac Cu concentrations
and myocardial hypertrophy. Taken together, Cu content imbalance
in the heart may be associated with an undesirable remodeling in
cardiac structure and geometry. Furthermore, our genetic mapping
identified six QTLs associated with cardiac Cu concentrations in the
BXD family. These QTLs are located on Chr X, Chr 2, Chr 4, Chr
6, Chr 8, and Chr 10; the 1.5-LOD region across these six QTLs
contained a total of 217 genes. The candidate genes were narrowed
down by employing a stringent scoring system that identified 21
candidate Cu-content-modifier genes, suggesting that cardiac Cu
concentration is a multigene-regulated phenotype.

Among the 21 candidate genes, two genes, Prex1 on Chr 2 and
Irx3 on Chr 8, met all the scoring criteria and received a score of

10. The Prex1 gene encodes a guanine nucleotide exchange factor
for the RHO family of small GTP-binding proteins (RACs). PREX1
is expressed in multiple tissues in both mouse and human and is
known to activate RAC1. The Framingham Heart Study 100K Project,
which analyzed genome-wide SNP (Affymetrix 100K GeneChip)
associations with systolic and diastolic blood pressure found a
significant association of PREX1 rs6063312 SNP with diastolic and
systolic blood pressure and arterial stiffness phenotypes as well as
with MEF2C, a regulator of cardiac morphogenesis (36). There is no
direct evidence that Prex1 regulates Cu metabolism or transportation.
However, it has been found that Cu transporter ATP7A is regulated
by the RAC1 GTPase pathway (37) and interacts with a RAC1-
binding protein IQGAP1 (38). Prex1 might be involved in Cu
transportation through the activation of RAC1 and ATP7A. IRX3,
a member of the Iroquois homeobox gene family, has been shown
to play a critical role in the precise regulation of intercellular gap
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FIGURE 4

Correlation between cardiac copper (Cu) concentration and echo phenotypes (FS%, EF%, stroke volume, CO, and IVS). The x-axis indicates the Cu
concentration (µg/g), and y axis denotes the echocardiography parameters. The Pearson correlation coefficient was used to determine the relationship
between cardiac Cu concentration and echo phenotypes. The Pearson correlation r and P-values are indicated in the plots. LV, left ventricular; s,
end-systole; d, end-diastole; CO, cardiac output; IVS, interventricular septum.

junction coupling by modulating the transcription of connexins,
Cx40, and Cx43, necessary for normal ventricular conduction (39).
Mutations in IRX3 cause ventricular fibrillation, the main cause
of sudden cardiac death in humans (40). Irx3 KO (Irx3−/−) mice
develop ventricular conduction system defects with a lack of gap
junctional channels during the early postnatal period due to enriched
transcripts targeted by Nkx2.5 and/or Tbx5 (41). IRX3 affects obesity
(42), which is associated with higher Cu in serum and tissues (43).
Thus, further studies are required for understanding how IRX3
regulates Cu content in the heart.

Scored as 9, Fam83d on Chr 2 is known to be involved in
the positive regulation of cell cycle G1/S phase transition, protein
localization to the mitotic spindle, and regulation of intracellular
signal transduction. Fam83d is expressed in skeletal muscle and is
significantly induced in response to denervation and neurogenic
atrophy involving MAP kinase and AKT/PKB (protein kinase B)

signaling (44). However, there are very few studies pertaining to this
gene and it needs to be explored further in the context of cardiac
Cu-related associations identified.

Among 6 genes that scored 7, Ankrd6 encodes ankyrin repeat
domain 6, also known as diversin, a ubiquitous protein highly
expressed in the heart, brain, and spinal cord in humans is shown
to be involved in neural development via suppressing canonical Wnt
signaling (45). Genetic SNPs inANKRD6 were associated with muscle
hypertrophy and strength response to physical activity (46). Genes,
Slc35a1 (Chr 4) and Slc26a10 (Chr 10) encode transporter proteins.
SLC35A1 protein transports activated sugars into the endoplasmic
reticulum (ER) and/or Golgi apparatus and SLC35A1 mutations have
been associated with congenital disorder of glycosylation II and
platelet life span (47, 48). SLC26A10 is an anion transporter and
has been found to be related to cortical thickness in Alzheimer’s
disease (49). Two genes, Usb1 and Lrig3, have recently been studied
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as therapeutic targets in poikiloderma with neutropenia and prostate
cancer, respectively (50, 51), while Ica1 encodes an autoantigen
involved in autoimmune insulin-dependent diabetes mellitus and
primary Sjogren’s syndrome (52). Therefore, further studies are
required to define the functions of these genes in cardiac Cu
regulation and heart physiology.

Interestingly, Mmp2 with a score of 6 encodes matrix
metalloproteinase 2 (MMP2), a Zn-binding member of MMPs,
that has numerous substrates in cardiomyocytes that contribute to
cardiac ischemia-reperfusion injury, cardiac remodeling, and heart
failure (53). A study with hypertension and cardiac hypertrophy
found that increased cardiac MMP2 contributes to the transition
of concentric to eccentric LV hypertrophy and cardiac dysfunction
(54). MMP2 serum levels are higher in patients with Wilson’s
disease compared to healthy controls (55), supporting our findings
of the association of cardiac Cu content with Mmp2 expression in
BXDs. Interestingly, Cu repletion recovered MMP2 level and reduced
cardiac fibrosis in a rat model of pressure overload-induced cardiac
hypertrophy (56). It has been shown that Cu could also increase
Zn concentration in the heart, along with upregulation of MMP2
(12, 57), indicating that the balanced Cu content and MMP2 are
important for cardiac morphology and function. The other genes
noteworthy to mention are Ctsa and Armcx1. Ctsa encodes Cathepsin
A (CatA), a serine carboxypeptidase that degrades extracellular
peptides in lysosomes (58). A Cu chaperone, extracellular SOD
(EC-SOD) is a substrate of CatA and a significant correlation
between CatA expression and Cu content in normal aorta wall
has been reported (59). Moreover, cardiomyocyte-specific CatA
overexpression reduced EC-SOD levels, resulting in oxidative stress,
inflammation, ECM remodeling, and myocyte hypertrophy in vivo
(58), whereas inhibition of CatA attenuated infarction-induced heart
failure (60). Located on Chr X, Armcx1 encodes armadillo repeat-
containing X-linked protein 1 that is involved in mitochondrial
trafficking in neurons (61). Recently, Armcx1 has been identified
as a hub gene enriched in patients with ST-segment elevation
myocardial infarction (62). Although these genes received a score
of 6, their perceived involvement in cardiac remodeling warrants
further studies to uncover the underlying pathomechanisms of
ischemic heart disease.

In summary, we identified candidate genes that modulate
cardiac Cu content using a systems genetics strategy. One
significant and five suggestive QTLs have been mapped on different
chromosomes and 21 candidate genes have been identified. Prex1
and Irx3 are suggested as potential modifier genes of cardiac
Cu content, while Ctsa, Mmp2, and Armcx1 may closely be
related to ischemic heart disease. Taken together, Cu content
in the heart is a multigene-regulated phenotype and further
experimental investigations of candidate genes identified in our study
will undoubtedly uncover and expand our current understanding
of the role of Cu in heart performance and pathogenesis of
cardiac diseases.
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