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Background: It has been well acknowledged that disordered intestinal microflora
and their fermented products play crucial role during the development of
hypertension (HTN). Aberrant profiles of fecal bacteria have been documented
in subjects with isolated systolic HTN (ISH) and isolated diastolic HTN (IDH)
previously. Nevertheless, evidence regarding the association of metabolic
products in the bloodstream with ISH, IDH and combined systolic and diastolic
HTN (SDH) remains scarce.
Methods: We performed a cross-sectional study and conducted untargeted liquid
chromatography-mass spectrometry (LC/MS) analysis on serum samples of 119
participants, including 13 subjects with normotension (SBP < 120/DBP < 80 mm
Hg), 11 individuals with ISH (SBP≥ 130/DBP < 80 mm Hg), 27 patients with IDH
(SBP < 130/DBP≥ 80 mm Hg), and 68 SDH patients (SBP≥ 130, DBP≥ 80 mm Hg).
Results: Here, the results showed clearly separated clusters in PLS-DA and OPLS-
DA score plots for patients suffering from ISH, IDH and SDH when compared with
normotension controls. The ISH group was characterized by elevated levels of 3,5-
tetradecadien carnitine and notable reduction of maleic acid. While IDH patients
were enriched with metabolites in L-lactic acid and depleted in citric acid.
Stearoylcarnitine was identified to be specifically enriched in SDH group. The
differentially abundant metabolites between ISH and controls were involved in
tyrosine metabolism pathways, and in biosynthesis of phenylalanine for those
between SDH and controls. Potential linkages between the gut microbial and
serum metabolic signatures were detected within ISH, IDH and SDH groups.
Furthermore, we found the association of discriminatory metabolites with the
characteristics of patients.
Conclusion: Our findings demonstrate disparate blood metabolomics signatures
across ISH, IDH and SDH, with differentially enriched metabolites and potential
functional pathways identified, reveal the underlying microbiome and
metabolome network in HTN subtypes, and provide potential targets for disease
classification and therapeutic strategy in clinical practice.
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Introduction

Hypertension (HTN) has been widely recognized as a crucial

risk factor for multiple cardiovascular diseases (CVD), leading to

substantial financial burden globally (1, 2). The prevalence of

HTN is rising worldwide, with estimates suggesting a total of

46.4% adult populations suffering from HTN in China (2012–

2015) according to the 2017 American College of Cardiology/

American Heart Association (ACC/AHA) blood pressure (BP)

guidelines (1, 3, 4). Investigators have spared increasing interests

and efforts to assess the risks of HTN subtypes including isolated

systolic HTN (ISH), isolated diastolic HTN (IDH) and combined

systolic and diastolic HTN (SDH). ISH and IDH defined by

ACC/AHA guideline were suggested to carry significant risk for

left ventricular global longitudinal strain (5). In addition, the

contribution of IDH, ISH, and SDH to the incident of heart

failure and CVD events was identified to be increased with age

(6). Moreover, it was recently demonstrated that different HTN

phenotypes were at significant risk of cardiovascular death, and

that SDH was associated with higher mortality risk than IDH

and ISH (7). Distinct treatment strategies specific for IDH, ISH

and SDH are urgently required, however, available literature

contains limited data on the pathogenesis and new targets for the

early prevention of different HTN subtypes.

Gut microbiota is indicated to be a key factor in the

pathogenesis of CVD and is particularly crucial for HTN

pathogenesis (8–10). Cumulative researchers have confirmed that

patients with hypertensive disease exhibit apparent intestinal

microbial dysbiosis, which leads to aberrant high BP (8, 11, 12).

Previous studies demonstrate that gut microbes contribute to the

pathogenesis of various diseases through their profound impacts

on metabolism, and the disordered intestinal microbiota profiles

directly result in metabolic alterations and metabolic disorders

(13, 14). The small molecule metabolites produced by gut

microbes are capable to drive host responses at target organs. In

hypertensive patients, significant shifts in microbial metabolic

functions and microbiota-derived products known as short chain

fatty acids have been documented (11). Meanwhile, by

metabolizing dietary phosphatidylcholine, choline, L-carnitine

and betaine, gut microbiome has been identified to elicit the

accumulation of trimethylamine N-oxide, which is prominently

elevated in plasma of hypertensive patients, and facilitates

angiotensin II-induced HTN in animal experiments (15).

Untargeted metabolomic analyses of serum, plasma and urine

specimens from hypertensive patients further revealed apparent

variations when compared to normotensive controls (8, 16,17).

For distinct HTN subtypes, it has been illustrated that the

dysbiosis of gut microbiota differs among HTN, IDH, and ISH

patients (18). A link between the variation of fecal bacteria

communities and the phenotypes of HTN in ISH and IDH was

further elucidated recently (19).

Whereas our knowledge of the complex microbe-metabolism

interactions specific to ISH, IDH and SDH remains limited,

leaving an understanding gap that greatly delays clinical

translation. Thus interest in the metabolic profiles of HTN
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subtypes is increasing in an attempt to acquire information of

how the serum metabolomic signatures specifically correlated

with the pathological subtypes manifestation in hypertensive

diseases. In light of this, we conducted serum metabolome

analysis with liquid chromatography-mass spectrometry (LC/MS)

based approaches to elucidate the metabolic signatures of

disparate hypertensive phenotypes. The specific serum metabolite

profiles and functional pathways associated with ISH, IDH and

SDH were identified, respectively. We further explored the

relevance of metabolism-microbiota interplay to HTN subtypes.
Methods

Study subjects enrollment

We recruited the patients and collected stool and serum

samples from our previous study with normotensive controls,

pre-hypertensive individuals, and patients diagnosed with HTN

(8). Briefly, our present study is a cross-sectional study involving

participants from the Kailuan Study from September 2014 to

February 2015. The Kailuan study focus on the Kailuan

community of Tangshan, a large modern city in northern China,

where 11 hospitals in the community responsible for health care,

all of which participated in the physical examination.

Demographic characteristics of the subjects were recorded,

including age, sex, height, weight, body mass index (BMI),

fasting blood glucose, total cholesterol and triglyceride. Patients

were recruited based on the exclusion criteria as follows: (1)

individuals suffered from malignant cancer, stroke, atrial

fibrillation, heart failure, renal failure, peripheral artery disease,

immunodeficiency disorders, secondary causes of HTN, and

patients with previous cardiovascular events; (2) subjects treated

with statin, aspirin, insulin, metformin, nifedipine or metoprolol;

(3) individuals been exposed to antibiotics, commercial prebiotics

or probiotics in the last eight weeks prior to blood collection. All

the samples and information were collected when HTN patients

were newly diagnosed prior to antihypertensive treatment.

BP of subjects in a sitting position was measured by nurses or

physicians under a random-zero mercury column

sphygmomanometer. The BP readings were recorded three times

at every five minutes intervals. The average reading was

calculated and considered to be the final BP data. Healthy

controls (Nor) were defined as SBP < 120 mm Hg, or DBP <

80 mm Hg, IDH was diagnosed as SBP < 130 mm Hg and

DBP≥ 80 mm Hg, ISH indicates patients with SBP≥ 130 mm Hg

and DBP < 80 mm Hg, and SDH patients were SBP≥ 130 and

DBP≥ 80 mm Hg according to the 2017 ACC/AHA guidelines

(4, 20). Ultimately 13 controls, 11 ISHs, 27 IDHs and 68 SDHs

were proceed to the metabolome examination. Ethics approval

was obtained from the Ethics Committee of Beijing Chaoyang

Hospital. Signed informed consent have been obtained from all

the participants prior to data collection, and this study complied

with all applicable institutional regulations regarding the ethical

use of information and samples from human participants.
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Sample preparation

The fasting blood samples were harvested from all the

participants with coagulation-promoting vacuous tubes. Serum

samples were separated by centrifugation at 4°C, 3,000 rpm for

10 min, and stored at −80°C until further examination. Prior to

metabolomics determination, each 100 µl serum sample was

thawed under room temperature, mixed with 300 µl methanol

(80%) and 10 µl DL-o-chlorophenylalanine [2.9 mg/ml, GL

Biochem (Shanghai) Ltd.] as internal standard. The mixtures

were vortexed and subsequently centrifuged at 4°C, 12,000 rpm

for 15 min (8). The supernatant obtained was then subject to

untargeted liquid chromatography-mass spectrometry (LC/MS).
Untargeted metabolome detection based
on LC/MS

There were 7 quality control samples and 119 experimental

samples for the metabolome detection. LC/MS was performed

with hypergod C18 column (100 mm × 2.1 mm × 1.9 µm) under

the platform (Thermo, Ultimate 3,000LC, Orbitrap Elite). The

setting parameters for chromatographic separation was as

follows: (1) temperature was maintained at 40°C; (2) the flow

rate was at 0.3 ml/min; (3) mobile phase A consisted water with

0.1% formic acid; (4) mobile phase B was acetonitrile with 0.1%

formic acid. Each 4 µl sample was injected into the detecting

system under 4°C, and then transported through the column by

the mobile phase. The mobile phase gradient elution procedure

was 95% mobile phase A +5% mobile phase B at 0–2 min, 5%

mobile phase A+ 95% mobile phase B at 12–15 min, 95% mobile

phase A +5% mobile phase B at 17 min, respectively. And the

parameters for ES+ (positive ion mode) detection were heater

temperature at 300°C, sheath gas flow rate at 45 arb, aux gas flow

rate at 15 arb, sweep gas flow rate at 1 arb; spray voltage on

3.0 kV; capillary temperature at 350°C; S-Lens RF level at 30%.

And for ES− (negative ion mode) mode, the ion chromatograms

were detected under spray voltage at 3.2 kV and S-Lens RF level

of 60%. The total ion chromatogram from each sample was

manipulated and metabolic peaks and features were draw using

SIEVE software (Thermo). The retention time of each peak was

tracked in the total ion current with SIEVE software (Thermo).

The data were then normalized and transformed into two-

dimensional data matrix with retention time, compound

molecular weight, sample peak intensity (21). Only peak area

data with <50% null value in the cohort were retained, missing

values were recorded with the half minimum value, and each

detected metabolic feature was normalized with the total ion

current. The peak area was used to normalize the data, with all

feature areas of each sample set as 1. The relative abundance of

each feature was calculated through standardization. For quality

assurance, the relative standard deviation for each peak was

calculated, and metabolic features with relative standard

deviation of >30% were removed to obtain high quality data set.

For metabolite identification, we matched the m/z values and
Frontiers in Cardiovascular Medicine 03
mass of compounds to the featured peaks in the METLIN

database, which enhances accurate quantification and facilitates it

to more effectively use the data in metabolite databases. The

ppm was <20.
Metabolic functional profiles determination

By matching to the Kyoto Encyclopedia of Genes and Genomes

(KEGG) Pathway database (http://www.kegg.jp/kegg/pathway.

html), the metabolic features identified to be differentially

abundant between groups were found to participate in multiple

metabolic pathways (22). Through enrichment analysis and

topological analysis of the metabolites-involved pathways, these

metabolic pathways were further screened, and the most crucial

KEGG pathways correlated with the potential metabolic

biomarkers were obtained.
Gut microbiome annotation

The metagenome shotgun sequencing data of the stool samples

assessed in current work were from the EMBL European

Nucleotide Archive underthe BioProject accession code

PRJEB13870. The metagenomic sequencing of bacterial DNA,

gut microbial taxonomic annotation and abundance

determination were conducted as we described previously (19).

The stool and serum samples were collected from the

participants on the same visit.
Statistical analysis

Demographic characteristics of the subjects were quantitatively

represented with mean and SD. Range was described for

continuous variables, and count with percent prevalence were

shown for categorical variables. Z-score as a standard score was

dimensionless quantity based on subtracting the mean and then

dividing the standard deviation of the sample data. The formula

was that Z-score = (x− µ)/σ. x indicated a specific score for a

specific sample, µ was the mean of the cohort, and σ represented

the standard deviation of all the samples (23). For univariate

statistical analysis, two-tailed Student’s t-test was performed to

determine whether the two groups of metabolic data were

significantly different or not, and p < 0.05 was regarded as

reaching a statistical significance. Fold change was calculated by

the ratio of means between the comparisons. The multivariate

statistical analysis method was performed to construct a reliable

mathematical model by plotting the clustering or separation of

samples from distinct groups using partial least squares

discrimination analysis (PLS-DA) and orthogonal partial least

squares discriminant analysis (OPLS-DA) models. The serum

metabolome data were subjected to multivariate statistical

analyses using SIMCA software (V14.1, Sartorius Stedim Data

Analytics AB, Umea, Sweden), and samples from HC, IDH, ISH

and SDH groups were discriminated into clusters with PLS-DA
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and OPLS-DA. For sophisticated multivariate statistical modeling

in supervised analysis, PLS-DA was applied with regression

model and dimension reduction, and the regression results were

used for discriminant analysis (24). Furthermore, the non-

orthogonal variables and orthogonal variables were used to

obtained OPLS-DA score for multi-class classifying the difference

between global metabolic profiles between groups, and identify

differently altered metabolites (25). Metabolites with p < 0.05, and

variable importance in the projection (VIP) >1 from the OPLS-

DA model, were considered to be statistically different. Volcano

plots integrating the fold change and p-values were performed to

depict the significantly different metabolites. To assess the

association of serum metabolites, with clinical measures or gut

microbial composition, Spearman’s correlation analysis was

conducted. The visualizations of correlation heat-maps and

networks was conducted with the OmicStudio tools at https://

www.omicstudio.cn/tool.
Results

Demographic characteristics of the
participants

This study included 119 participants from the population based

on our previous cohort (8). 13 individuals with normal BP, were

compared with 11 patients with ISH, 27 with IDHs and 68 with

SDH, according to the ACC/AHA guidelines. The percentages of

participants with ISH, IDH and SDH were 9.2, 22.7 and 57.1%,

respectively. The detailed baseline characteristics of the study

population by normal BP status and HTN subtypes are

summarized in Supplementary Table S1. The average age of the

participants was 58.5 years, of whom 88.2% were men. The mean

age of the participants with ISH was 59 years, and those with

IDH or SDH exhibited lower mean age (P (ISH vs. IDH) = 0.016,

P (ISH vs. SDH) = 0.030). Compared with individuals with

normal BP, those with HTN subtypes showed extremely higher

SBP and DBP. Hypertensive patients were more likely to exhibit

higher uric acid (except for ISH), and show elevated fasting

blood glucose (except for IDH). There was no significant

difference in heart rate, BMI, creatinine, total cholesterol,

triglyceride, high-density lipoprotein cholesterol, low-density

lipoprotein cholesterol, blood platelets and white blood cells

between separated groups.
Heterogeneity of ISH, IDH and SDH
individuals in metabolomic profiling

To investigate the specific serum metabolomic features in

distinct HTN subtypes, we compared the distributions in PLS-

DA and OPLS-DA scatter plots of ISH, IDH and SDH patients

with normotensive controls, respectively, by multivariate analysis.

Here, we demonstrated that, in both positive and negative ion

modes, patients with ISH clustered separately from the healthy

controls (Figures 1A,B). As well, IDH patients were significantly
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deviated in overall metabolomic structure from normotensive

controls (Figures 1C,D). PLS-DA and OPLS-DA also identified

obvious difference between SDHs and controls (Figures 1E,F).

To explore the extent of the similarity of the metabolic signatures

between HTN subtypes of ISH, IDH and SDH, we examined the

performance in PLS-DA and OPLS-DA between patients with

HTN subtypes. Both diagrams displayed apparent departures of

ISH and SDH group (Supplementary Figures S1A,B). PLS-DA

and OPLS-DA further revealed that IDH patients were separated

from SDH participants, although there were overlaps

(Supplementary Figures S1C,D). In addition, distinct clusters

were confirmed between the ISH and IDH group

(Supplementary Figures S1E,F). The aberrant metabolic patterns

across ISH, IDH and SDH indicated unique features in distinct

HTN subtypes.
Disparity in metabolic composition across
HTN subtypes

Next, we focused on serum metabolome variations that

significantly changed in each hypertensive disease status. Volcano

plots revealed 411 and 220 differentially enriched metabolites

(DEMs) between the ISH and control group under negative and

positive ion mode, respectively (Figures 2A,C). Of these

discriminatory metabolic products, a total of 56 metabolites were

accurately identified, as described in Figures 2B,D. The ISH

group was characterized by significantly higher levels of 3,5-

tetradecadien carnitine, arachidonic acid, hexadecanedioic acid,

7-ketocholesterol, linoleic acid, linoleyl carnitine and glutaric

acid, but lower hypoxanthine, maleic acid, l-glutamic acid levels

(Figures 2B,D). Volcano plots with 386 (ES-) and 255 (ES+)

metabolites at p < 0.05 and VIP > 1 from the OPLS-DA model,

showed the specific DEMs involved with IDH (Figures 2E,G).

Heatmap distribution diagrams showed clear alterations in the

metabolites characterized by higher 16-hydroxyhexadecanoic

acid, octadecanedioic acid, linoleyl carnitine, L-lactic acid,

linoelaidic acid and palmitelaidic acid levels in the IDH group

(Figures 2F,H). However, N-arachidonoyl dopamine,

L-glutamine, citric acid and pyroglutamic acid levels were

significantly decreased in the IDH patients. To examine the

metabolic biomarkers that could distinguish SDH from controls,

we performed comparison of metabolic profiles between these

groups. 625 and 355 metabolic features in ES− and ES+ were

considered as DEMs in SDH (Figures 2I,K). The DEMs linoleic

acid, 15(S)-hydroxyeicosatrienoic acid, linoleyl carnitine and

stearoylcarnitine were more abundant in the SDH group, while

2-ketobutyric acid, hypoxanthine, glyceric acid, N-arachidonoyl

dopamine and dehydroascorbic acid were more abundant in the

control group (Figures 2J,L). The complicated co-abundance

relationship among these key DEMs was shown in Figure 3,

which was extremely strong among the distinct metabolites

identified in SDH.

Also, in volcano plots across HTN subtypes, they exhibited

dramatic variations in relative abundance of specific metabolites,

which revealed that the metabolic patterns were unique in distinct
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FIGURE 1

Individuals with ISH, IDH or SDH exhibited dissimilar serum metabolic characteristics as compared with normotensive controls. (A) The PLS-DA score
plots showing overall metabolic features in ISH patients as compared with controls (Nor) under negative and positive mode, respectively. (B) Scatter
diagram derived from OPLS-DA illustrated the separation of serum metabolomic data in ISH patients and normotensive controls. Left was in ES−
mode, and right was in ES+ mode. (C) PLS-DA plots describing the metabolic features in IDH patients as compared with controls. (D) OPLS-DA score
plots identified the difference in metabolic profiles between IDH patients and Nor with a supervised multiple regression analysis. The results based on
data of ES− mode was shown in left, and ES+ mode was in right. (E) Metabolic characteristics between SDH and Nor were identified based on PLS-
DA plots. F, OPLS-DA showed the separation of serum metabolomic profiles in SDH patients and normotensive controls.

Shen et al. 10.3389/fcvm.2023.1102754
hypertensive patients (Supplementary Figure S2A,C,E,G,I,K). A

total of 30 significantly changed metabolites between the ISH

group and SDH group samples were identified, as illuminated in

the heat map, of which, 9 showed a reduced trend, and 21

displayed an increasing trend in SDH (Supplementary Figures

S2B,D). Briefly, indolelactic acid, phenylacetylglutamine, N-

stearoyl tyrosine and palmitoleoylethanolamde exhibited lower

concentrations in ISH patients than in SDHs. The heat map

in Supplementary Figure S2F,H revealed that IDH patients had

a different metabolic pattern from SDHs based on these 18

DEMs. In particular, the levels of diaminopimelic acid,

hydroxykynurenine, deoxycholic acid and L-acetylcarnitine were

significantly increased in SDH patients, whereas 2-

hydroxybutyric acid, biliverdin and bilirubin were evidently

reduced. Notably, the disparate endogenous metabolites in

serum samples were basically related to myristoleic acid,

myristoleic acid, 12-hydroxydodecanoic acid, hexadecanedioic

acid, maleic acid, stearidonic acid and taurochenodeoxycholic
Frontiers in Cardiovascular Medicine 05
acid when comparison was performed between IDH and ISH

group (Supplementary Figures S2J,L). Supplementary

Figure S3 described the correlation of various DEMs in distinct

HTN patients.

Multivariate linear regression analysis for distinct metabolites

obtained among hypertension subtypes was conducted to adjust

the major biological confounders. The independent strength of

the associations between hypertension subtypes and the top 5

most disparate metabolites identified under positive and negative

modes between groups was evaluated. ISH was associated

with higher relative abundance of hexadecanedioic acid,

7-ketocholesterol, 13-HODE and palmitelaidic acid independent

of the effects of sex, FBG and hemoglobin (Supplementary

Tables S2, S3, Phexadecanedioic acid = 0.037, P7-Ketocholesterol = 0.002,

P13-HODE= 0.029, Ppalmitelaidic acid = 0.013). IDH predicted

increases in the relative abundance of levulinic acid,

hexadecanedioic acid and L-glutamic acid independent of the

effects of sex and uric acid (Supplementary Tables S4, S5,
frontiersin.org
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FIGURE 2

Determination of the dramatically altered metabolites in ISH, IDH or SDH patients as compared with healthy controls. (A,C) Volcano plots illustrating the
fold changes, p-values and VIP of each detected metabolic peaks in ISH and Nor group under negative and positive mode. For significantly varied peaks in
ISH, the threshold of VIP in OPLS-DA model was >1, and the relative abundance was additionally screened with p-values <0.05 from two-tailed Student’s
t-test. Dots represented metabolites, blue denoted down-regulated, pink represented those up-regulated in ISH, and grey were not significant different
peaks. Dot size showed the value of VIP. (B,D) Relative abundance of each metabolite identified to be prominently altered in ISH was described in
heatmaps. Only those successfully identified were depicted. B shows those detected in ES-, and D displays those in ES+. (E,G) Metabolites shifted in
IDH patients were detected with volcano plots. E was derived based on metabolomics data in ES− mode, and G was in ES+ mode. Dots denoted
metabolites detected, blue ones were those reduced in IDH, and pink represented those enriched in IDH. (F,H) Among the markedly varied
metabolites between IDH and Nor group, the relative abundance of those successfully identified were further shown in hierarchical cluster analysis
heat-maps. F for those in ES-, and H for those in ES+. (I,K) Volcano plots identifying the discriminative metabolites between SDH and Nor was
conducted with the OPLS-DA model. I was based on metabolomics data in ES− mode, and K was in ES+ mode. The dots represented various
metabolites, and color denoted significantly down-regulated or up-regulated in SDH. (J,L) Of the varied metabolites between SDH and Nor,
heatmaps illustrated comparison for the relative abundance of those identified metabolites with significant disparate levels.

Shen et al. 10.3389/fcvm.2023.1102754
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FIGURE 3

Association analysis of the metabolites disparate among groups by Spearman correlation. (A,B) Co-abundance correlation of the distinct metabolites
identified in ISH patients as compared with normotensive controls under ES− and ES+ mode, respectively. (C,D) Variants with significant different
metabolic compositions between IDH and Nor in negative and positive mode were shown to be related with each other. (E,F) Heat map depicting
the potential correlation of differently abundant metabolites identified between SDH and controls. (E) For those in ES−, and (F) for ES+. Negative
correlation was depicted in orange and positive correlation was in blue. The shade of and size of dots represented the correlation coefficient. *p <
0.05, **p < 0.01, ***p < 0.001; derived from Spearman’s correlation.

Shen et al. 10.3389/fcvm.2023.1102754
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Plevulinic acid = 0.034, Phexadecanedioic acid = 0.004, PL-glutamic acid =

0.008). The independent strength of the associations between

SDH and top 5 altered metabolites was weakened by adjusting

the effects of sex, uric acid, FBG and hemoglobin

(Supplementary Tables S6, S7). For different metabolites

between ISH and IDH, IDH predicted increases in the relative

abundance of L-homoserine, estrone glucuronide and

octadecanamide independent of the effects of age and FBG

(Supplementary Tables S8, S9, PL-homoserine = 0.005, Pestrone

glucuronide = 0.002, Poctadecanamide = 0.026). Among the distinct

metabolites between ISH and SDH, SDH was associated with the

relative abundance of L-homoserine, deoxycholic acid glycine

conjugate and ornithine independent of the effects of age

(Supplementary Tables S10, S11, PL-homoserine = 0.028, Pdeoxycholic

acid glycine conjugate = 0.045, Pornithine < 0.001).
Functional pathway alterations identified via
KEGG enrichment analysis

The identified DEMs were subsequently mapped to metabolic

pathways according to KEGG database, including metabolism of

alanine, aspartate and glutamate, linoleic acid, D-glutamine and

D-glutamate, and biosynthesis of aminoacyl-tRNA and arginine,

which were consistent in each HTN subtype when compared

with healthy controls (Figures 4A–F). We noted that pathways

involved in tyrosine metabolism was exclusively between ISH and

control (Figures 4A,B). And KEGG pathway terms, such as

biosynthesis of phenylalanine, tyrosine and tryptophan, and

metabolism of phenylalanine were specifically detected in SDH

vs. control (Figures 4E,F). Furthermore, across each HTN

subtypes, it was observed that DEMs between ISH and SDH

mainly functioned in pyruvate metabolism and arginine

biosynthesis, whereas those between IDH and SDH primarily

participated in porphyrin, pyrimidine metabolism and arginine

biosynthesis (Supplementary Figures S4A–D). According to

DEMs and differential KEGG metabolic pathways noted between

ISH and IDH, the metabolism of pyruvate, tyrosine and linoleic

acid was the most significant, which suggested that a disturbance

of these pathways might occur in patients (Supplementary

Figures S4E,F). The evidence seems to suggest that ISH, IDH

and SDH patients may experience aberrant metabolic processing

but distinct functional activities.
Correlation between discrepant metabolites
and gut microbiome

The relative abundance of specific genera and species markedly

altered between groups was obtained through taxonomic analysis

based on metagenomic sequencing data from our previous work

(8, 24). Correlation matrixes were created using Spearman

correlation and co-abundance network analysis to explore the

potential relationships between changes in the metabolic
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products and gut microbiome was performed (Figure 5,

Supplementary Figures S5, S6).

Between the ISH and control groups, we found that most

of ISH-related serum metabolites were significantly correlated

with at least one individual connection. In particular, the levels

of ketoleucine, sebacic acid, 3-hydroxyvalproic acid and

indolelactic acid detected in ES− mode, were negatively

correlated with the abundance of genus Sphaerobacter,

Bilophila, Loktanella, Oscillibacter, Metascardovia, Acetobacterium

and Desulfonatronovibrio, and species Oscillibacter sp.,

Desulfonatronovibrio hydrogenovorans, Acetobacterium

dehalogenans, and Metascardovia criceti (Figures 5A,C). Co-

occurrence network further showed the complicated connections

between intestinal bacteria and DEMs in ISH and controls

(Figures 5B,D). Sebacic acid and ketoleucine were identified to

be crucial DEMs, which negatively linked to most gut bacteria

examined. For ES+ mode, it was found that L-methionine was

negatively correlated with the abundance of multiple bacteria

such as Acetobacterium, Metascardovia, Oscillibacter,

Ruminiclostridium, Eggerthella, Caldicellulosiruptor and

Clostridium sp., whereas L-valine was positively related to them

(Figures 5E–H).

We also correlated the relative abundance of individual genus

and species shifted in IDH, with the DEMs to find key

metabolites that were closely associated with abnormalities

occurred in IDH (Supplementary Figure S5). Vital DEMs in ES−
including 2-hydroxyvaleric acid, hexadecanedioic acid,

dodecanedioic acid, ketoleucine and levulinic acid identified

between IDH and controls, were observed to be positive to

Alicycliphilus and Alicycliphilus denitrificans, while negative to

Syntrophobotulus glycolicus, Desulfonatronovibrio hydrogenovorans,

Tuberibacillus calidus, Clostridium sp., Oscillibacter sp., Roseburia

hominis (Supplementary Figures S5A–D). In addition,

indolelactic acid was negatively associated with the majority of gut

microbes (Supplementary Figures S5E–H).

Correlation analysis of serum metabolites varied in SDH, with

key fecal microflora biomarkers revealed that ketoleucine,

urobilinogen, 7-ketocholesterol, myristic acid and 12-

hydroxystearic acid were the most significant microbiome-

relevant DEMs in negative ion mode (Supplementary Figures

S6A–D). Especially, urobilinogen was negatively related with

Acetobacterium dehalogenans, Anaerotruncus colihominis,

Oscillibacter sp., Clostridium sp., Roseburia hominis and

Firmicutes bacterium. Whereas 12-hydroxystearic acid showed

positive correlation with Klebsiella sp. such as Klebsiella

pneumoniae, which has been confirmed to drive high BP and

HTN in mice (26). Supplementary Figures S6E–H described the

relationships of gut genera/species and metabolites in ES+

between SDH and controls. Clostridium sp., Roseburia hominis,

Firmicutes bacterium and Robinsoniella sp. were positively

connected with L-serine, L-pipecolic acid and citric acid, but

negatively with calcitriol and N-oleoyl tyrosine (Supplementary

Figures S6E–H). Our findings have drawn tight lines between

specific metabolites in serum and dysregulation of intestinal

microbiome in HTN subtypes.
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FIGURE 4

KEGG pathway analysis of the differentially enriched metabolites in ISH, IDH and SDH patients, respectively. (A,B) Bubble plots in negative and positive
mode exhibited the enriched metabolic pathways of altered metabolic compounds between ISH and healthy controls. (C,D) Metabolites significant
distinct between IDH group and controls were annotated to KEGG pathways, and the enrichment of metabolite pathways were described. (E,F) The
significant matched KEGG pathway terms based on altered metabolites between patients with SDH and Nor were shown in the plots. The dots were
colored with the −ln p-value, and where the color was darker, the enrichment degree was more significant. The dots were further sized according to
value of impact factor in each pathway.
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FIGURE 5

ISH-associated metabolites were identified to be correlated with intestinal microbiota distinguish ISH vs. control individuals. (A,C,E,G) The correlations of
gut microbial genera and species with the top25 varied serum metabolites in ISH were shown with heat-map. The genera/species examined were those
significantly disparate between ISH and controls. A and E depicted the correlation between gut genera and serum metabolites in ES− and ES+, while C
and G were the association of microbial species and metabolites. Positive association was in red color, and negative association was in blue. *p < 0.05, **p
< 0.01, ***p < 0.001, Spearman’s rank correlation. (B,D,F,H) Network exhibiting the correlation of metabolome and microbiome at genus and species
levels, respectively. Differential microbial genera/species were closely linked to differential metabolites in ES− and ES+ between ISH and control. (B)
Metabolite in ES− correlated with genera; (D) metabolite in ES− correlated with species; (F) metabolite in ES+ correlated with genera; (H) metabolite
in ES+ correlated with species. Blue circle denoted metabolites, and purple rhombus represented bacterial genera/species. Size of circles or rhombus
denoted the degree according to the number of variances connected. The correlation coefficient was ≥0.6 or ≤−0.6, and p-value was <0.05, as
calculated with Spearman correlation. The thickness of lines connecting variants represented the correlation coefficient.
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Serum metabolic associations with clinical
characteristics

As considerable variability was observed in the metabolome

across the samples in each group, we further explore the linkage

of these discriminatory metabolites and the characteristics of

patients with HTN subtypes. Our results revealed that ISH-

related serum DEMs, including 12-hydroxydodecanoic acid,

phenylalanylglutamic acid and palmitoylcarnitine, were positively

related to SBP, FBG, HGB and RBC but negatively to sex of the

participants (Figures 6A–D). Another noteworthy finding was

the DEMs obtained when comparison performed between IDHs

and normotension controls, were predominantly associated with

the DBP, GPT, HGB and RBC (Supplementary Figures S7A–D).

For example, indolelactic acid, 2-hydroxyvaleric acid, 12-

hydroxydodecanoic acid, phenylalanylglutamic acid and L-leucine

were tightly linked to these clinical characteristics. Likewise,

Spearman’s correlation was used to assess the pairwise

correlations between clinical measures and SDH-related serum

metabolites (Supplementary Figure S8). Specifically, DEMs that

were significantly associated with both SBP and DBP, such as

biliverdin, myristic acid, arachidonic acid, hexadecanedioic acid,

16-hydroxyhexadecanoic acid, tetranor 12-HETE, L-asparagine,

L-serine and L-pipecolic acid were also related to GPT

(Supplementary Figures S8A–D). Overall, the network between

clinical performance and DEMs was more complicated in ISH

and IDH, whereas concise and weaker in SDH. These

observations implied that the intestinal flora affected HTN

subtypes possibly by affecting the metabolism of certain

metabolites, which might, in turn, functioned on BP and even

GPT, FBG, HGB and RBC levels of the host.
Discussion

In this study, we present the first analysis of serum metabolome

across ISH, IDH and SDH patients to improve our previous

knowledge regarding HTN, microbiome and metabolism. It is

uncovered that the serum metabolic characteristics, as assessed

by PLS-DA and OPLS-DA distributions of ISH, IDH and

SDH patients, are significantly distinct from that of normotensive

subjects. Comparison for metabolome composition of serum

samples in HTN subtypes reveal 57, 55 and 78 DEMs

between normotension and ISH, IDH and SDH respectively. The

parallel assessment of ISH, IDH and SDH made it possible to

identify shared and specific metabolic associations in HTN

subtypes.

On the one hand, among these differential metabolites,

various metabolites such as Tetranor 12-HETE, 13-HODE and

12-hydroxydodecanoic acid are enriched simultaneously in ISH,

IDH and SDH group. On the other hand, several metabolites

are abundant specifically in a single HTN subtype. For

instance, acylcarnitines (ACs) including 3,5-tetradecadien

carnitine, cis-5-tetradecenoylcarnitine are uniquely increased in

ISH patients, L-lactic acid is particularly in IDH group, while
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stearoylcarnitine is inimitably in SDH patients. In addition, the

identified DEMs are annotated to metabolic pathways in terms

of KEGG database, including alanine, aspartate and glutamate

metabolism, D-glutamine and D-glutamate metabolism as well

as aminoacyl-tRNA biosynthesis, which is consistent for each

HTN subtype when compared to controls.

Major overlapping differences observed between ISH, IDH and

SDH when compared with controls emphasize the enrichment of

Tetranor 12-HETE. Tetranor 12-HETE as a kind of oxylipin with

pro-inflammatory properties, has been documented to participate

in the inflammatory response and accelerate the progression of

HTN (27). Previously, it was reported that the abundance of

Tetranor 12-HETE was promoted by high-dose cadmium

intervention, which elicited nephrotoxicity and oxidative stress to

the kidneys (28). Meanwhile, Li Q and colleagues demonstrated

that plasma level of Tetranor 12-HETE was extremely elevated in

patients suffering from nonalcoholic fatty liver disease (29).

Furthermore, another study confirmed the significant association

between Tetranor 12-HETE and liver fibrosis in nonalcoholic

steatohepatitis patients (30). Here in our present work, when

examining the serum metabolome in HTN, we consistently

observed apparent augment in the content of Tetranor 12-HETE

among ISH, IDH and SDH patients in comparison with healthy

controls. In addition, we revealed that the presence of Tetranor

12-HETE exhibited a significantly positive correlation with both

SBP and DBP levels. Subsequently, it was further identified that

Tetranor 12-HETE was negatively associated with Eggerthella

lenta and Roseburia hominis in ISH and SDH patients,

respectively. Notably, Roseburia hominis has been suggested as a

biomarker of HTN, and is considered to be major producer for

short chain fatty acids exhibiting protective properties against

hypertensive disease (31, 32). Thus our data open the possibility

that Tetranor 12-HETE might be an important mediator playing

crucial role during the crosstalk between intestinal microbial

environment and HTN development.

By considering each HTN subtype in parallel, we also observed

multiple metabolites that are typically overproduced in disparate

hypertensive disorders. Specifically, ACs including 3,5-

tetradecadien carnitine, cis-5-tetradecenoylcarnitine significantly

increased among ISH patients. ACs, are intermediate oxidative

metabolites that comprise a fatty acid esterified to a carnitine

molecule (33, 34). They are produced by mitochondrial

and peroxisomal enzymes, including the carnitine

palmitoyltransferase (CPT) 1 and 2 enzymes, in order to

transport long-chain fatty acids across the mitochondrial

membrane for β-oxidation (35). A recent study involving plasma

metabolomics profile of overweight individuals with a high

visceral fat area showed higher plasma levels of medium- and

long-chain ACs as compared to individuals with low visceral fat

area (36). Our observation is also in line with previous evidence

indicating that pulmonary HTN was strongly associated with

higher concentrations of long-chain ACs (37).

Lactic acid (L-lactic acid) is a dead-end product of glycolysis,

which plays an essential regulatory role in a variety

pathophysiological processes. Previously, the anti-inflammatory

effect of lactic acid has been subtly demonstrated by Hoque et al.
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FIGURE 6

The relevance of clinical parameters with the serum metabolites varied specifically in ISH. (A,C) Heat-map depicting Spearman’s rank correlation of the
top20 differential metabolic compounds between groups and all the clinical indexes of individuals. A for ES− and C for ES+. Red indicated positive
association; blue represented negative association. The statistical significance was expressed with *p < 0.05, **p < 0.01, and ***p < 0.001, respectively.
(B,D) Association networks showed correlations between clinical data and metabolites distinct in ISH vs. Nor. The correlation coefficient was ≥0.5 or
≤−0.5, and p-values were <0.05, derived from Spearman correlation analysis. Blue circles denoted metabolites, and purple rhombus represented
clinical parameters. Circle or rhombus size represented degree. Red lines were positive correlation, while blue lines indicated negative association.
Lines thickness was based on the correlation coefficient.

Shen et al. 10.3389/fcvm.2023.1102754
in a study showing that transient lactic acid exposure suppresses

inflammation and alleviates tissue damages in chemically induced

pancreatitis and hepatitis models (38). Moreover, lactic acid

derived from glycolysis in astrocytes could be transported via

monocarboxylate transporters to neurons, where it exerts

signaling functions and stimulates the expression of protective

genes involved in long-term memory formation (39). However,

in contrast to these findings, lactic acid is also suggested as a

signaling molecule and regulator participating in multiple

diseases, such as ischemic tissue injury, and cancer progression

(39). Still, GPR81-mediated signaling activated by lactic acid has

been shown to exacerbate ischemic brain injury in the oxygen-

glucose deprivation and middle cerebral artery occlusion models

(40). When considering cancer growth, Walenta et al. have

identified prominently abundant lactic acid accumulation

surrounding the tumor tissues, which is significantly higher than

that in normal tissue (41). And lactic acidosis in cancer patients

is frequently correlated with rapid cancer growth, metastasis and
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poor survival (39). In the current work, our data provides

information that the enrichment of lactic acid was more

pronounced in IDH patients, but not ISH or SDH. It is therefore

an open question whether lactic acid observed in IDH may

contribute to health or illness.

Homoplastically, SDH patients displayed exclusive metabolic

alterations from IDHs and ISHs when compared with controls,

especial for the expansion of stearoylcarnitine. Stearoylcarnitine

is an important long-chain ACs, which has been previously

confirmed to be elevated in the blood of obese individuals and

accumulate in β cells of subjects with type 2 diabetes, leading to

insulin arrest and energy deficiency in key energy pathways (42).

Within hypoxia-ischemic brain injury animal models, Dave and

colleagues have demonstrated that the level of stearoylcarnitine

was primarily increased in the cortex, striatum/thalamus as well

as cerebellum (43). Moreover, in pulmonary arterial HTN animal

models, another study indicated that stearoylcarnitine was

slightly elevated compared with healthy controls, with marginally
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significant (44). These observations perhaps suggested a causal

influence of stearoylcarnitine on mentioned disease, but there is

limited knowledge of whether stearoylcarnitine contribute

directly to SDH disease, and further attempts to clarify this

should be a priority.

Nevertheless, there are several limitations regarding this cross-

sectional study. First, the relatively small sample size of the

participants is a general challenge for metabolome studies, which

might limit the power of the analysis, although we did detect

certain statistically significant compounds. Second, the shifts of

metabolites composition in patients having acquired ISH, IDH or

SDH could not be elucidated as the cause of the disease or a

secondary phenomenon following disease onset according to the

current findings. Delineation of the causality relationship

between gut microbiome, metabolic alterations and disease

development should be prioritized in further studies focusing on

HTN. Additionally, non-targeted LC-MS analyses were

performed to evaluate the metabolite composition in

hypertensive phenotypes of ISH, IDH and SDH. Target mass

spectrometry is a more sensitive and quantitative method, which

would allow further confirmation of the metabolic features

observed in the current work.
Conclusion

In summary, we highlight a distinctive metabolome-based

characteristic for ISH, IDH, SDH and normotension. Metabolites

as represented with Tetranor 12-HETE and 12-

hydroxydodecanoic acid are enriched simultaneously in ISH,

IDH and SDH patients. Whereas other metabolites like 3,5-

tetradecadien carnitine and cis-5-tetradecenoylcarnitine are

particularly elevated in ISH patients, L-lactic acid in IDH

subjects, while stearoylcarnitine in SDH patients. These DEMs

exert functional role in alanine, aspartate and glutamate

metabolism, D-glutamine and D-glutamate metabolism. Our

findings provide insights into metabolome disturbances that may

play an essential role in linking gut microbial environment and

the pathological subtypes manifestation of HTN. This study also

suggests potentially metabolic targets for disease classification

and therapy to mitigate the damages on cardiometabolic health.

Targeting disparate metabolites and gut microbes may provide

strategies for the prevention and treatment of distinct subtypes of

HTN specifically.
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