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Introduction: Heart failure (HF) is a complex clinical syndrome leading to high

morbidity. In this study, we aimed to identify the gene expression and protein

signature of HF main causes, namely dilated cardiomyopathy (DCM) and ischemic

cardiomyopathy (ICM).

Methods: Omics data were accessed through GEO repository for transcriptomic

and PRIDE repository for proteomic datasets. Sets of differentially expressed genes

and proteins comprising DCM (DiSig) and ICM (IsSig) signatures were analyzed

by a multilayered bioinformatics approach. Enrichment analysis via the Gene

Ontology was performed through the Metascape platform to explore biological

pathways. Protein-protein interaction networks were analyzed via STRING db and

Network Analyst.

Results: Intersection of transcriptomic and proteomic analysis showed 10

differentially expressed genes/proteins in DiSig (AEBP1, CA3, HBA2, HBB,

HSPA2, MYH6, SERPINA3, SOD3, THBS4, UCHL1) and 15 differentially expressed

genes/proteins in IsSig (AEBP1, APOA1, BGN, CA3, CFH, COL14A1, HBA2, HBB,

HSPA2, LTBP2, LUM, MFAP4, SOD3, THBS4, UCHL1). Common and distinct biological

pathways between DiSig and IsSig were retrieved, allowing for their molecular

characterization. Extracellular matrix organization, cellular response to stress and

transforming growth factor-beta were common between two subphenotypes.

Muscle tissue development was dysregulated solely in DiSig, while immune cells

activation and migration in IsSig.

Discussion: Our bioinformatics approach sheds light on the molecular background

of HF etiopathology showing molecular similarities as well as distinct expression

differences between DCM and ICM. DiSig and IsSig encompass an array of “cross-

validated” genes at both transcriptomic and proteomic level, which can serve as

novel pharmacological targets and possible diagnostic biomarkers.
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1. Introduction

Despite contemporary advances in medicine, cardiovascular
diseases (CVDs) are still the leading cause of mortality worldwide,
accounting for almost half the total number of global deaths (1).
CVDs encompass a wide array of heart and vessel-related pathologies,
such as coronary heart disease, hypertension, cardiomyopathy (CM),
and congenital heart disease (2, 3), all eventually progressing to
heart failure (HF).

Heart failure is a debilitating condition that manifests as a
consequence of abnormalities in cardiac function, structure, rhythm,
or conduction (4). The etiological factors of HF syndrome are often
difficult to discern and vary (5, 6), with dilated cardiomyopathy
(DCM) and ischemic cardiomyopathy (ICM) being among the main
causes of HF in Western countries. ICM is defined by an imbalance
between myocardial oxygen demand and supply resulting in myocyte
loss and ventricular failure (7), while DCM is characterized by left
ventricular dilation and subsequent contractile dysfunction (8).

Although HF pharmacotherapy has come a long way since
diuretics and digitalis were state-of-the-art (9), a long-standing
paradigm is that HF with reduced ejection fraction evolves via
a “final common pathway” (10). Current therapeutic approaches,
such as angiotensin-converting enzyme inhibitors (ACEIs) and
β-receptor blockers, are relatively etiology agnostic and focus
on symptom alleviation (11). This potentially reflects a lack of
comprehension of the heterogeneous pathogenic mechanisms in the
progression of DCM and ICM.

Dysregulated genes, proteins, and their corresponding biological
pathways represent the molecular background of multiple diseases
(12). The continuous development of omics technologies and data
processing through bioinformatics shed new light on CVD molecular
basis (13, 14). Although several standalone transcriptomics and
proteomics studies have revealed differentially expressed molecules
(DEMs), i.e., genes and proteins, in DCM and ICM, integrated
multi-omics analyses of multiple datasets are still sparse.

The present study aims to elucidate the gene expression and
proteomic signature of DCM and ICM and explore their molecular
characteristics via bioinformatics analyses. This approach combines
the assessment of mRNA and protein molecules, generating common
DEMs, and provides strong evidence for their role in HF. The goal
is to identify potential biomarkers and discover novel therapeutic
targets by unraveling the complex architecture of HF pathogenesis.
Our results accentuate the importance of Extracellular Matrix
(ECM) organization in HF and stress the need for matrix-based
therapies that may attenuate remodeling processes and/or promote
cardiac regeneration.

2. Materials and methods

2.1. Publicly available data collection of
DCM and ICM

Transcriptomic and proteomic datasets for DCM and ICM were
accessed from the public data repositories GEO (15), ENA (16), and
PRIDE Archive (17). The search terms used were “HEART FAILURE”
and “HOMO SAPIENS.” Datasets meeting the following three
criteria were used: (i) the total number of samples in each dataset

should be at least six, incorporating a minimum of three patients and
three healthy control samples to ensure statistical significance, (ii) HF
patients participating should be strictly diagnosed with either DCM
or ICM, and (iii) all samples should be derived from the left ventricle
of the heart, as it best reflects the physiological changes of HF (18).

Our search retrieved 6 transcriptomic [GSE3585 (19), GSE57338
(20), GSE5406 (21), GSE116250 (22), GSE133054 (23), PRJEB42485
(24)] and 1 proteomic [PXD008934] (25) dataset for DCM and
7 transcriptomic [GSE76701 (26), GSE57338, GSE5406, GSE46224
(27), GSE116250, GSE48166, PRJEB42485] and 1 proteomic
[PXD008934] dataset for ICM. The basic information of all the
datasets used is listed in Supplementary Table 1.

2.2. Screening for differentially expressed
molecules

Gene expression data derived from both microarray and
RNASeq methods. Microarray analysis was conducted using the
online platform GEO2R. The statistical significance of differentially
expressed genes (DEGs) was evaluated through adjusted p-values
using the Benjamini and Hochberg (28) procedure and Fold Change
(FC) calculations. RNASeq data were quantified, quality controlled,
and analyzed using the RaNA-Seq online platform (29). Differential
expression analysis was performed using the DESeq2 algorithm
(30) and statistically significant results were selected using the
adjusted p-value (median of ratios). For proteomics data, the analysis
report provided in the original paper was utilized. Differentially
expressed proteins (DEPs) were determined by utilizing a linear
model adjusted for age and sex in the R package limma (31).
P-values were adjusted for multiple testing using the Benjamini–
Hochberg procedure. For all analyses, adjusted p < 0.05 and
| FC | ≥ 2 were set as the threshold. Above-threshold molecules have
dysregulated expression, either upregulated or downregulated, and
were considered DEMs in DCM and ICM.

2.3. Defining DiSig and IsSig

The intersection of DEMs was demarcated for DCM and ICM
independently at first. Molecules that were common in DCM and
ICM were identified using a Venn diagram produced by the web tool
VENNY (32). The intersecting molecules in DCM were coined as
DiSig (Dilated Cardiomyopathy Signature), whereas in ICM as IsSig
(Ischemic Cardiomyopathy Signature). Results of this intersection
were used in the downstream analyses.

2.4. Pathway enrichment analysis

Annotations of cellular components, biological processes, and
molecular functions of DiSig and IsSig were determined by
Gene Ontology (GO) enrichment analysis, performed using the
Metascape platform (33) and PANTHER database (protein analysis
through evolutionary relationships) (34) through the OmicsNet
platform. Networks of these biological pathways were plotted
through Metascape.
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2.5. Protein-protein interaction (PPI)
network analysis and omics visualization

To determine the functional interactions between DEMs, the
corresponding protein-protein interaction (PPI) networks were
created using the online Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) (35), the online platform Network Analyst
(36). Moreover, network integration and visualization of the multi-
omics data were achieved by utilizing the online tool OmicsNet (37).

The entire methodological approach is summarized in Figure 1.

3. Results

3.1. Identification of DEMs in DCM and
ICM samples compared to non-failing
samples

Through the microarray DCM dataset analysis, 96 DEGs were
identified between the DCM and non-failing groups from GSE3585,
of which 66 were upregulated and 30 were downregulated. In
GSE57338, 4,319 DEGs were highlighted, of which 4,205 were
upregulated and 114 were downregulated. Lastly, a total of 2,450
DEGs were found in GSE5406 (1,377 upregulated and 1,073
downregulated). The analysis of the three RNASeq datasets outlined
210 DEGs from all three datasets, of which 155 were upregulated
and 55 were downregulated. Finally, for the proteomic dataset
PXD008934, 76 proteins were differentially expressed (54 upregulated
and 22 downregulated).

Pertaining to ICM, a total of 82 DEGs were highlighted between
the ICM and the non-failing group from GSE76701, of which 39 were
upregulated and 43 were downregulated. In GSE57338 a total of 9,095
DEGs were identified between the ICM and the non-failing group, of
which 4,357 were upregulated and 4,738 were downregulated, while
in GSE5406, 1,599 genes were found to be differentially expressed
(610 upregulated and 989 downregulated). The four RNASeq datasets
analyzed highlighted a total of 243 DEGs from all four datasets, of
which 206 were upregulated and 37 were downregulated. Regarding
the proteomic dataset PXD008934, a total of 149 proteins were
outlined, 98 of which were upregulated, and 51 downregulated.

The full lists of DEMs mentioned (sorted by p-adj) are listed in
Supplementary Table 2.

3.2. IsSig and DiSig

Intersection of DEMs deriving from microarray, RNASeq and
mass spectrometry dataset analysis showed an overlap in upregulated
or downregulated DEMs both in DCM and ICM (Figure 2). List of
molecules for each Venn of Figure 2 can be found in Supplementary
Table 3.

After intersection of all three (microarray, RNASeq, and mass
spectrometry) analyses, eight DEMs were upregulated (AEBP1, CA3,
HBA2, HBB, HSPA2, SOD3, THBS4, and UCHL1) and two were
downregulated (MYH6 and SERPINA3) in DiSig. In IsSig, 15 DEMs
were upregulated (AEBP1, APOA1, BGN, CA3, CFH, COL14A1,
HBA2, HBB, HSPA2, LTBP2, LUM, MFAP4, SOD3, THBS4, and
UCHL1) while none downregulated molecule was found. DiSig and

IsSig DEMs deriving from this triple intersection are considered
valuable indicators of HF.

When intersection of at least two common methods was
applied, 78 molecules were upregulated and 28 molecules were
down regulated in DiSig, whereas 147 were upregulated and 40
were downregulated in IsSig. These DEMs are used in downstream
analyses and results are presented in following sections.

3.3. Pathway enrichment analysis

Gene ontology analyses in Metascape were performed on
DiSig and IsSig to elucidate the biological functions of DEMs. In
enrichment analysis, several biological processes were statistically
significant (p < 0.0001). Specifically, the detected 78 upregulated
DEMs of DiSig regulate extracellular matrix organization,
supramolecular fiber organization, cellular response to transforming
growth factor-beta stimulus and collagen metabolic process.
DiSig downregulated DEMs (n = 28) are involved in double-
strand break-repair, inflammatory response, mitotic cell cycle,
activation of the immune response, regulation of developmental
growth, negative regulation of response to external stimulus, and
response to wounding.

In IsSig, the upregulated DEMs (n = 147) have a role
in extracellular matrix organization, ossification, response to
transforming growth factor-beta and positive regulation of leucocyte
migration. The detected 40 downregulated DEMs are involved in
positive regulation of gene silencing by miRNA, cellular response
to nitrogen, acute-phase response, protein import into the nucleus,
generation of precursor metabolites and energy, phagocytosis
and viral process.

The top 100 molecular pathways found are listed in
Supplementary Table 4.

Networks of these biological pathways are displayed in Figure 3.

3.4. PPI network analysis

Protein-protein interaction networks were constructed using
STRING db and NetworkAnalyst online platforms. Two approaches
were followed. Firstly, we plotted the networks of DiSig and IsSig
using the DEMs that were common in at least two methods as
previously described, and secondly, we used the 10 and 15 DEMs of
DiSig and IsSig that derived from the intersection of all three analyses
to explore their interconnections.

Starting with DiSig, a PPI network analysis was conducted using
all 78 upregulated and 28 downregulated DEGs of DiSig. Totally,
122 edges were produced by STRING db analysis (Figure 4A)
and the functional network generated by NetworkAnalyst that is
depicted in Figure 4B. The STRING interactome database with
a high confidence score (900) was selected and the network was
trimmed to a minimum. SNCA, UBC, JAK2, TUBA1C, UCHL1,
APOA1, MMP2, HSP90AA1, DNM1, and HP were the top 10 nodes
according to their network degree value. Similarly, for IsSig the PPI
network analysis via STRING including all 128 upregulated and 40
downregulated DEGs produced 633 edges (Figure 4C). PPI network
analysis for IsSig using NetworkAnalyst generated the following
functional network (Figure 4D); STAT3, JUN, FOS, MMP2, CCL5,
EGR1, DCN, FN1, COL1A2, EIF4G1 were the top 10 nodes according
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FIGURE 1

Depiction of the methodology used in this study. Image created using artwork from Servier Medical Art [https://smart.servier.com/].

to their degree value. The PPI Networks of DiSig and IsSig can be
found in Supplementary Table 5.

The PPI of the 10 DiSig DEMs was constructed via
STRING, after Protein Enrichment (Medium confidence = 0.4,
first shell interactions = maximum 10 interactors) with the
proteins Hemoglobin subunit alpha 2 (HBA2), Hemoglobin
subunit beta (HBB), Heat shock-related 70 kDa protein 2
(HSPA2), Myosin-6 Protein (MYH6), Extracellular superoxide
dismutase [Cu-Zn] (SOD3), Thrombospondin-4 (THBS4), and
Ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1)
being interconnected among the 10 DEGs, while the remaining
three proteins had no interactions (Figure 4C). The 15 IsSig
molecules were analyzed via STRING as shown in Figure 4D,
and the proteins Adipocyte enhancer-binding protein 1 (AEBP1),
Apolipoprotein A-I (APOA1), Biglycan (BNG), Complement
factor H (CFH), Collagen alpha-1 (XIV) chain (COL14A1),
Hemoglobin subunit alpha 2 (HBA2), Hemoglobin subunit
beta (HBB), Lumican (LUM), Latent-transforming growth
factor beta-binding protein 2 (LTBP2), Microfibril-associated
glycoprotein 4 (MFAP4), and Thrombospondin-4 (THBS4) were
found interconnected, while the remaining four proteins had no
interactions.

3.5. Omics visualization through
OmicsNet online platform

To create and visualize the interconnections and relationships
between the genes and proteins derived from transcriptomics and
proteomics datasets, the online platform OmicsNet was used. The

red nodes represent the protein input, the blue nodes represent the
gene input, and the double-colored nodes are the common DEMs
(Figure 5).

As previously described, the following pathway analysis in
both DiSig and IsSig highlighted the molecular pathways in
the Extracellular region, Extracellular space, and Extracellular
matrix. These interactions are depicted in Figure 5 with green
interconnections. The full list of the molecular pathways by using the
PANTHER database is listed in Supplementary Table 6.

3.6. Common pathways and genes in
dilated and ischemic cardiomyopathy

By comparing the two types of cardiomyopathies leading to HF,
both similarities and differences can be deduced. Even though the
phenotypic expression is unique in each case, approximately 1/3
(27/100 molecular pathways) of their genomic signature is common
when we directly compare the top 100 functional pathways between
DiSig and IsSig (Supplementary Table 7). Common biological
pathways include extracellular matrix organization, cellular response
to stress and transforming growth factor-beta and transmembrane
transport of ions. On the contrary, muscle tissue development
characterized only DiSig, while immune cell activation and migration
were unique in IsSig.

In addition, a Venn diagram was plotted using the triple “cross
validated” DiSig genes (8 upregulated and 2 downregulated) and
the IsSig genes (15 upregulated), as shown in Figure 6. The results
showed that 8 DEMs were common, while 2 DEMs were unique in
DCM and 7 DEGs were unique in ICM.
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FIGURE 2

Venn diagrams represent the intersection of genes and proteins in DCM and ICM. The three groups include DEGs derived from microarray (blue),
RNASeq (yellow), and proteomics (green) analyses.

4. Discussion

As shown in the present multi-omics study, a unique molecular
signature was deduced for DCM and ICM after intersection of
microarray, RNASeq and mass spectrometry analyses with 10 DiSig
and 15 IsSig DEMs being the most important finding in our results.
In intersection of at least two common methods, DiSig is comprised
of 106 DEMs (78 upregulated and 28 downregulated), while IsSig
encompasses 187 DEMs (147 upregulated and 40 downregulated).
Analyses of pathway enrichment were performed and PPI networks
were constructed to detangle the processes and mechanisms of DCM
and ICM pathology, using DiSig and IsSig molecules.

Extracellular matrix organization was the most abundantly
expressed pathway in both DCM (p = 10–12) and ICM (p = 10–
24), with upregulated genes encoding collagens and metalloproteases.
Extracellular matrix (ECM) is a well-documented molecular pathway
(38) and a major player in cardiac homeostasis. Not only does it
provide structural support, but also facilitates force transmission
and transduces molecular signals regulating cardiac cell function. In
failing hearts, the cardiac interstitium is expanded, by augmentation
of both structural and matricellular ECM proteins, resulting in
alterations in extracellular matrix biochemistry. ECM plays a critical
role in regulating fibrotic, inflammatory, and even regenerative
responses, making it an attractive therapeutic target in HF (39).

TGFβ signaling pathway is also under investigation for the
development of novel therapies for HF. TGFβ levels are elevated
in HF, promoting cardiomyocyte apoptosis and cardiac hypertrophy
and playing an important role in heart remodeling (40).

Transmembrane transport of ions is another important pathway
found to be upregulated in both DCM and ICM. Ion channels,
transporters and pumps comprise only a subset of proteins that are
altered during HF with calcium playing a critical role in mediating
the cardiac excitation-contraction coupling (41).

By comparing the DEMs of DiSig and IsSig, 8 upregulated
molecules were found common. These genes can be categorized
as cardioprotective proteins (HSPA2, SOD3), genes having a major
role in remodeling processes (AEBP1, CA3, THBS4, UCHL1)
and hemoglobins (HBA2, HBB). SOD3, extracellular superoxide
dismutase [Cu-Zn], is an antioxidant protein (42), while HSPA2,
Heat shock-related 70 kDa protein 2, is a molecular chaperone that
helps maintain cardiomyocyte protein quality. It can be induced by
cellular stress, promoting cell survival, as the toxic to cardiomyocytes’
misfolded proteins, directly contribute to HF (43). Exploration of
strategies involving SOD3 and HSPA2 may provide therapeutic
options against HF and associated systemic inflammation. The
carbonic anhydrase enzyme (CA3) gene expression is induced in HF
due to ventricular stretch inflicted as a consequence of increased
ventricular load. Alvarez et al., have presented evidence that elevated
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FIGURE 3

Pathway enrichment analysis. (A) Top 20 clusters of biological pathways with the smallest p-value, using the upregulated DEMs of DiSig and their
corresponding network. (B) Top 20 clusters of biological pathways with the smallest p-value, using the downregulated DEMs of DiSig and their
corresponding network. (C) Top 20 clusters of biological pathways with the smallest p-value, using the upregulated DEMs of IsSig and their
corresponding network. (D) Top 20 clusters of biological pathways sorted by p-value, using the downregulated DEMs of IsSig and their corresponding
network. Each cluster is characterized by a broader general term annotated beside the clusters and encompasses smaller individual terms represented by
circle nodes. Their size is proportional to the number of input genes that fall into those terms. The colors represent the clusters’ identities. Terms with a
similarity score > 0.3 are linked by an edge (the thickness of the edge represents the similarity score).

CA3 levels can be used as biomarker for early detection of cardiac
hypertrophy and HF (44). The hemoglobin types HBA2 and HBB
are overexpressed in DCM and ICM patients, suggesting a potential
reciprocal mechanism due to dysregulation in oxygen circulation and
general hypoxemia in HF patients.

Thrombospondin-4 (TSP-4), a secreted extracellular matrix
protein, is involved in myocardial remodeling by regulating the
adaptive cardiac responses to pressure overload (45). Another
hypertrophic factor, Ubiquitin C-terminal hydrolase L1 (UCHL1) is

related to fibrosis and has proven to deubiquitinate and stabilize
the epidermal growth factor receptor (EGFR), promoting cardiac
hypertrophy (46). Lastly, Adipocyte enhancer-binding protein 1
(AEBP1), a positive regulator of collagen involved in the organization
and remodeling of the ECM, was found upregulated in a DCM
patients (19).

While IsSig and DiSig share a lot of common elements,
IsSig has five additional ECM proteins associated with it (BGN,
COL14A1, LUM, LTBP2, MFAP4) and two bloodstream proteins
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FIGURE 4

(A) PPI-networks of DiSig using STRING db and NetworkAnalyst, respectively. (B) PPI-networks of IsSig using STRING db and NetworkAnalyst,
respectively. Each node represents a gene, while interacting nodes are linked by edges, the number of which is proportional to their interaction degree.
(C) PPI networks of the 10 DiSig genes. (D) PPI networks of the 15 IsSig genes.

APOA1 and CFH. Collagen type XIV (COL14A1) is major fibrillar
collagen produced by fibroblasts and is involved in ECM during the
progression of cardiac remodeling in the failing heart (39).

Lumican (LUM) is an ECM localized proteoglycan associated
with inflammatory conditions and known to bind collagens (47).
Previous studies in humans and mice indicated that the LUM protein
levels are increased in cardiac tissues of patients with HF compared to
control hearts (48). These findings suggest that LUM may contribute
to cardiac remodeling, by assisting in fibrinogenesis.

Microfibril-associated glycoprotein 4 (MFAP4) is an ECM
protein that is involved in cell adhesion or intercellular interactions.
It was demonstrated that MFAP4 deficiency inhibits cardiac fibrosis
and ventricular arrhythmias in mice models and therefore may act as

a novel therapeutic target for the prevention of cardiac remodeling
in HF (49). Latent-transforming growth factor beta-binding protein
2 (LTBP2) is an ECM protein. Bai et al., demonstrated that serum
LTBP-2 levels might act as a promising biomarker in HF, as LTBP-
2 levels in HF patients are significantly elevated (50). Lastly, Biglycan
(BGN) is a protein responsible for muscle development, regeneration,
and collagen fibril assembly. In previous studies, it was proven that
biglycan is required for the stability of collagen matrix formation,
during ECM remodeling (51).

The two downregulated genes specifically in DCM are Myosin
Heavy Chain 6 (MYH6) and Serpin Family A Member 3 (SERPINA3)
with its corresponding protein GIG25 (alpha-1-antichymotrypsin).
The MYH6 gene encodes instructions for the cardiac alpha
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FIGURE 5

Multi-omics visualization using OmicsNet. The nodes in red represent the proteins, while the nodes in blue represent the genes of DiSig and IsSig,
respectively. They are also categorized into three layers: proteins, genes, and common. Green nodes are those associated with the terms extracellular
region, extracellular space, and extracellular matrix.

(α)-myosin heavy chain, found in cardiac muscle cells, where it
forms type II myosin. Type II myosin generates the mechanical
force needed for cardiac muscle contraction in sarcomeres (52).
Mutations in MYH6 may cause a spectrum of cardiac phenotypes
associated with contractile dysregulation (53). GIG25, a protease
inhibitor, is an acute phase response gene primarily upregulated
during inflammation. Tanash et al. concluded that individuals with
lower levels of GIG25 protein have a lower risk of developing heart
incidents (54). Dysregulation of these two genes/proteins of DiSig can
be used to differentiate between the two subphenotypes of HF.

In the work of Kanapeckaitė and Burokienė (55), bulk and
single-cell RNA-sequencing and proteomics datasets of the human
heart tissue were analyzed. Similar results of tissue remodeling and

inflammatory processes were identified as pharmacological targets for
DCM and ICM, respectively, despite using a different methodology.
Our approaches differ significantly as in our study we accumulated
a large number of human samples (in total 252 DCM, 232 ICM,
and 221 control heart samples) and achieved gene/protein cross-
validation through transcriptomic and proteomic analysis, while their
work was based on a mixture of human and murine samples. They
also utilized a two-step machine learning pipeline, while we have
followed a multi-omic network approach.

Several disease-susceptibility loci of heart failure and
cardiomyopathies have been identified in genome wide association
studies (56). However, these loci were either not identified as DEGs
in our study or they were only differentially expressed in proteomic
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FIGURE 6

Comparison between the triple cross-validated molecules of DiSig (10 genes) in the blue circle and IsSig (15 genes) in the red circle. Upregulated DEMs
are represented in green color, while the downregulated DEMs are represented in red color. The color and type of edges connecting the nodes in this
figure (as provided by STRING-db) allocate biological meaning coded as follows: red lines indicate the presence of fusion evidence, green lines of
neighborhood evidence, blue lines of co-occurrence evidence, purple lines of experimental evidence, yellow lines of text-mining evidence, light blue
lines of database evidence, and black lines of co-expression evidence. In addition, solid lines represent intra-cluster edges and dashed-lines inter-cluster
edges.

analysis. It should be acknowledged that genetic variations affecting
amino acid coding sequences do not affect the number of final
transcripts, mutations leading to protein isoforms cannot be directly
linked with transcriptomic or proteomic alterations and, additionally,
the number of transcripts does not necessarily correspond to protein
abundance since several expression and translation regulators exist
in between (57). Further studies are therefore needed to assess
the functional significance of genetic alterations, including their
transcriptomic and proteomic provoked changes, which can create a
predisposition to DCM and ICM.

The results of the multi-omics approach we have integrated
propose a total of 17 targets that are potentially of enhanced
biological significance as their dysregulation is confirmed on both
transcriptomic and proteomic level. These targets can be further
investigated as potential therapeutic targets, as a variety of them
regulate extracellular matrix (LUM, BGN, MFAP4, COL14A1,
LTBP2) and fibrosis (CA3, UCHL1), while others are associated with
increased oxidative stress and inflammation in the heart (HSPA2,
SOD3). Additionally, the DEMs that were found unique in each
disease could serve as biomarkers, by measuring their expression
levels in patient samples, leading to patient stratification between the
two subtypes of heart failure. To overcome the need of tissue samples
for transcriptomic and proteomic analyses, further studies can also
identify the best fitted biomarkers in easily accessible biological
material, such as blood or plasma.

As with most bioinformatics studies on human diseases, this
study has its limitations. Although we detected gene and protein
expression in cardiac tissues, as well as several related pathways and
mechanisms, these findings need to be confirmed in further studies.
Moreover, there are unavoidable differences in samples used such as
etiologies and duration of cardiomyopathy, differences in age, gender,

and medications, as well as the individual course of the disease,
which contribute to the variability of gene and protein expression
data. Missing metadata is a common limitation of studies based
on public data and heterogeneity on the abovementioned variables
is expected. In our study, however, the left ventricle samples used
were collected during cardiovascular surgery, suggesting that the
disease has already progressed. Subsequently, it can be speculated
that the majority of patients were under medication and thus
similar confounding factors are expected throughout the whole
study population. In addition, true “non-failing” human ventricular
tissue is not easy to obtain, as non-transplantable donor hearts
are usually exposed to varying degrees of hypoxia which is known
to be a potent inducer of BNP gene expression and chemokine
(58). Finally, in bioinformatics studies, results can only successfully
impute correlation and not causation between differentially expressed
genes/proteins and disorders. To assess the causality and functional
significance of dysregulated genes in DCM and ICM as for whether
these targets contribute to disease pathogenesis or are changes
resulting from the disease, different models both in vivo and in vitro
are required; the results of our study can be used for the selection of
the molecules further examined in such studies.

An obvious strength of this study is the integration of
multiple independent microarray, RNASeq, and proteomic studies
accumulating a large number of failing and non-failing hearts
allowing for minimizing biases after normalization. To the best
of our knowledge, this is the seminal study to cross-validate gene
and protein expression as well as differentiate between the two
subphenotypes of HF. Additionally, the rather large sample size
of our study combined with the strict cutoffs used (padj < 0.05,
| FC | > 2) during statistical analysis suggest that the derived results
are minimum affected by random variation.
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5. Conclusion

We aimed to identify the genetic and proteomic signatures
of DCM and ICM, using a comprehensive multi-omics analysis.
We herein demonstrate that DiSig and IsSig share common
gene and protein expression elements, but also exhibit disease-
specific molecular pathways. Extracellular matrix dysregulation
was highlighted in both DCM and ICM, suggesting an attractive
pharmacological target. In total 10 genes/proteins were highlighted
in DiSig and 15 genes/proteins in IsSig. Therefore, our findings
could provide insights into the pathogenesis of HF and suggest that
the uncovered genes can be further investigated as possible novel
diagnostic and/or therapeutic agents.
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