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Cardiovascular disease supposes a substantial fraction of healthcare systems. The
invisible nature of these pathologies demands solutions that enable remote
monitoring and tracking. Deep Learning (DL) has arisen as a solution in many
fields, and in healthcare, multiple successful applications exist for image
enhancement and health outside hospitals. However, the computational
requirements and the need for large-scale datasets limit DL. Thus, we often
offload computation onto server infrastructure, and various Machine-Learning-
as-a-Service (MLaaS) platforms emerged from this need. These enable the
conduction of heavy computations in a cloud infrastructure, usually equipped
with high-performance computing servers. Unfortunately, the technical barriers
persist in healthcare ecosystems since sending sensitive data (e.g., medical
records or personally identifiable information) to third-party servers involves
privacy and security concerns with legal and ethical implications. In the scope
of Deep Learning for Healthcare to improve cardiovascular health,
Homomorphic Encryption (HE) is a promising tool to enable secure, private, and
legal health outside hospitals. Homomorphic Encryption allows for privacy-
preserving computations over encrypted data, thus preserving the privacy of the
processed information. Efficient HE requires structural optimizations to perform
the complex computation of the internal layers. One such optimization is
Packed Homomorphic Encryption (PHE), which encodes multiple elements on a
single ciphertext, allowing for efficient Single Instruction over Multiple Data
(SIMD) operations. However, using PHE in DL circuits is not straightforward, and
it demands new algorithms and data encoding, which existing literature has not
adequately addressed. To fill this gap, in this work, we elaborate on novel
algorithms to adapt the linear algebra operations of DL layers to PHE.
Concretely, we focus on Convolutional Neural Networks. We provide detailed
descriptions and insights into the different algorithms and efficient inter-layer
data format conversion mechanisms. We formally analyze the complexity of the
algorithms in terms of performance metrics and provide guidelines and
recommendations for adapting architectures that deal with private data.
Furthermore, we confirm the theoretical analysis with practical experimentation.
Among other conclusions, we prove that our new algorithms speed up the
processing of convolutional layers compared to the existing proposals.
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1. Introduction

Cardiovascular diseases produce substantial costs to health

systems (1). The invisible nature of these pathologies makes them

deadlier and more challenging to track and detect (2). The

growing efforts to prevent cardiovascular disease go through

continuous and more effective monitoring. However, monitoring

and healthcare outside hospitals introduce often-neglected

challenges in various domains. First, remote monitoring requires

introducing automatic systems that monitor and perform data

analytics on patients’ data. Second, due to the sensitive nature of

that data, sharing and transmission involve legal, privacy, and

security issues.

Deep Learning (DL) has stood as a driver of a new revolution

carrying improvements and automation into many fields. In

healthcare, multiple examples exist of successful applications of

DL (3–5); specifically, these models have succeeded in enhancing

medical imaging and health outside hospitals. Deep Learning can

help bridge these needs for automatic analysis outside healthcare

centers, yet, the sensitive nature of data presents legal and ethical

requirements for this data to be shared and adds to existing

challenges due to model training and inference and

computational capacity (6).

With the recent growth of cloud computing, DL has benefited

from significant performance optimizations and flexible

environments for its deployment. Concretely, Machine Learning

as a Service (MLaaS) allows offloading computations to

specialized third-party servers that benefit model owners. This

paradigm has two main benefits. First, it relieves the client

endpoint from heavy workloads since the processing burden is

outsourced to high-performance computing servers (7, 8).

Second, it eases the integration of different stakeholders to work

in a collaborative environment, where they could contribute with

their data to train a common model (9–11). However, scientific

applications where sensitive data needs to be exchanged (e.g.,

healthcare or finances) have not sufficiently profited from the

advantages of MLaaS due to ethical and legal restrictions when

sharing the data (12, 13).

During the last decade, multiple innovations have enabled

secure data exchanges and private computation using Privacy-

Preserving Computation Techniques (PPCT), e.g., Homomorphic

Encryption (HE) and Secure Multiparty Computation (SMPC)

(14). These techniques enhance the security and privacy of the
FIGURE 1

Encryption procedure for Homomorphic Encryption Schemes based on Learn
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cloud ecosystem by enabling users to safely and privately share

data for its computation on external servers, either as a

standalone procedure or in a collaborative environment.

In particular, HE schemes enable performing operations over

the encrypted ciphertext without disclosing information about the

cleartext data. A key milestone was the discovery of

bootstrapping by Gentry in 2009, which allows (theoretically) to

perform unlimited computation, i.e., HE was proven Fully

Homomorphic (15). Since then, multiple improvements have

made HE more efficient and practical (16). One such

fundamental improvement is Ciphertext Packing, which allows

the encoding of various entries of plaintext data (encoded as a

vector) within a single ciphertext (17). Packing improves

efficiency through Single Instruction Multiple Data (SIMD) since

the individual operations to the ciphertext affect all the

individual entries of the underlying plaintext vector. Figure 1

shows how HE packing works for a 2D Matrix. First, we

transform the matrix into a vector using a Row-Column format.

Then, we encode (packed) and encrypt it. Then, we can operate

the ciphertext can using SIMD, where we modify all the elements

of the encrypted vector (matrix)with each instruction.
1.1. Motivation

Over the last few years, there has been significant progress on

the cryptographic protocols and theories related to ciphertext

packing, which promises substantial improvements in the

application of HE in complex, distributed applications such as

Deep Learning for healthcare remote analysis and monitoring.

However, adapting existing operations for SIMD over ciphertext

packing is non-trivial.

Unfortunately, the application of ciphertext packing in DL is

not straightforward. Indeed, the linear algebra operations used in

the internal structures highly affect the performance (18).

Understanding the impact of the ordering and election of

internal operations on global performance is critical for

designing efficient algorithms. However, this complex task

requires a proper understanding of cryptographic protocols.

Existing works have attempted to automatically transform

linear algebra algorithms so they can be applied using SIMD

over packed ciphertexts (18–20) (see Section 6). However, these

works provide simplistic views of the required algorithms, which
ing with Errors (LWE).
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limit their reproducibility and implementation in real-world

architectures. Moreover, the algorithms are described and tested

for isolated computations, far from the complex workflow and

interconnections from the internal layers of Deep Learning. Since

the input and output encoding of ciphertext packing differs from

regular operations, it is necessary to account for the different

formats of the inputs and outputs in each layer of the DL

architecture and how these affect the overall performance. For

example, when using SIMD operations, it is required to

transform the output of a Convolutional Layer to be a valid

input for subsequent Dense Layer. These transformations have

not been described or accounted for the overall overhead in

previous works. Also, depending on specific details of the DL

layer, e.g., the use of stride or padding, this transformation

requires different adaptions (we provide background on CNNs in

Section 2.3). Furthermore, in rotations with packed ciphertexts,

the last entries overflow to the first positions. Our work shows

how some algorithms profit from this overflow to perform

computation.

Overall, existing proposals either leave the adaptation to HE on the

user (19) or provide algorithms that are not general for inputs of any

size (18). Accordingly, we formulate the following research question:

How can we adapt linear algebra operations used internally in

DL architectures to operate with packed ciphertexts, so they

can benefit from the improvements of SIMD operations for

Homomorphic Encryption, and thus enable the analysis of

privacy-sensitive medical images by untrusted parties?

1.2. Contribution

To tackle the question mentioned above, in this paper we

describe a set of algorithms to efficiently transform the operations

of Convolutional Neural Networks for their use on packed vectors.

A key aspect in the design of the algorithms for cardiovascular

diseases is that they work on arbitrary-sized input matrices and

vectors, and thus they can adapt to medical images of any size.

We provide a holistic view of the DL inference process by not

only understanding the individual linear operations required by

the algorithms but also the collective relationship of the different

layers. For the first time, we show that the transformations

required to interconnect the layers pose a significant overhead,

which should be considered in the design of the DL architecture.

In summary, the main contributions proposed in this research

are the following:

1. We describe algorithms for executing each layer of a

Convolutional Neural Network (CNN) using SIMD HE over

packed ciphertexts (Section 3). We include algorithms to

adapt the input and output encodings to meet the format

required on each layer. As a fundamental contribution, we

illustrate these algorithms to consider as inputs arbitrary size

matrices, allowing their application to different existing

architectures. Among these, we provide a streamlined version
Frontiers in Cardiovascular Medicine 03
of the convolution algorithm that significantly improves the

efficiency of the previously considered algorithms.

2. We present a formal analysis of the different algorithms and

their application to HE (Section 4). We first define a set of

metrics to compare the algorithms regarding HE constraints.

Then, we analyze the impact of these metrics on the

performance of all the algorithms. Finally, using the results of

this analysis, we provide a set of recommendations and

takeaways for applying the algorithms to DL inference. These

conclusions allow us to understand the constraints and

challenges of applying SIMD operations inside DL architectures.

3. We empirically test the impact of the proposed algorithms in

different use cases to practically verify the takeaways

extracted (Section 5). We measure the performance impact of

the different stages of the algorithms. We observe how our

conclusions match the obtained results. Also, it helps validate

our claims that format transformations involve complex

processing that we should not take out of the equation for

Packed Homomorphic Encryption.

Overall, this paper shows off an existing problem arising from

adapting DL architectures’ complex and interrelated operations for

their efficient usage with ciphertext Packing and SIMD operations.

The proposed algorithms and guidelines will allow programmers

to simplify the adaption of existing CNN architectures, thus

optimizing the inference process over encrypted data. To assist in

the implementation of these algorithms, we provide prototype

implementations in our GitHub repository1 .
1.3. Paper structure

The rest of the paper is organized as follows. First, we provide

background information and describe the adversarial model in

Section 2. Second, we describe the different algorithms in

Section 3. Third, we conduct a formal analysis for the efficiency

and performance of the algorithms in Section 4. Fourth, we

empirically evaluate a working prototype in well-defined tests in

Section 5. Finally, we discuss conclusions and future work in

Section 7.
2. Background

This section provides base knowledge for the concepts used in

the remainder of the document. We first describe the adversarial

model and the privacy requirements assumed. Then, we cover an

introduction to Homomorphic Encryption, and finally, we

describe the Deep Learning Structures considered in the

proposed algorithms.
1github.com/anon-dlhe/DeepLearningLinearAlgebra
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2.1. Adversarial model

In this work, we consider an Honest-but-Curious adversary

(21–23), a passive adversary that complies with the protocol and

does not tamper with the data for malicious purposes. However,

it tries to learn as much information from data exchanges.

Homomorphic Encryption inherently guarantees input privacy

(i.e., the privacy of the data sent to the cloud during the

inference process is guaranteed). However, HE does not account

for the output privacy of the model. Thus, in our work, we

assume that the service provider either is proprietary or has

access to the model.2

Furthermore, for all of our use cases, we consider the set of

parameters established for the Learning with Errors problem

following the guidelines described in the Homomorphic

Encryption Security Standard (24). Thus, these parameters

provide a secure environment for the execution of the algorithms.
2.2. Homomorphic encryption

Homomorphic Encryption (HE) is a property of an encryption

scheme that permits operating with the ciphertext while translating

those changes to the underlying plaintext. This work focuses on

widely used HE schemes based on the Ring Learning with Errors

(RLWE) problem (25).

Concretely, we focus on Levelled Homomorphic Encryption

(LHE) Schemes (16). In these schemes, we represent the RLWE

polynomial coefficient modulus Q with a Chinese Remainder

Theorem (CRT) coefficient moduli chain qi. The representation

allows performing a rescaling operation after each multiplication,

thus reducing the incurred noise. Also, it reduces the size of the

numbers that schemes have to treat. We note that these

techniques do not restrict their application to FHE Packed

Schemes, but their application to LHE Schemes remains more

constraining and thus relevant.

A key point of LHE is the cost of individual operations on the

underlying ciphertext representation, as ciphertext are big

polynomials (17). Ciphertext Packing arose as a solution by

enabling the introduction of more than one plaintext element per

ciphertext (17). It permits executing Single-Instructions-Multiple-

Data (SIMD) operations (i.e., the execution of an HE operation

on a ciphertext propagates to the underlying plaintext vector).

An essential aspect of LHE design is parameter selection. The

parameter N , or polynomial degree, affects the various matrix

operations presented in this paper. This parameter establishes the
2Output privacy, e.g., preventing model inversion or membership inference

attacks, requires mechanisms during training, such as Differential Privacy,

which provides privacy protection against adversarial attacks. These are

out of this paper’s scope, which focuses on inference and assumes a

pre-existing trained model.
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degree of the polynomial. Also, packed schemes define the

number of plaintext elements n that a ciphertext can

accommodate, i.e., the maximum length of a vector that can be

encoded (see Figure 1). Schemes such as BFV (26) allow packing

as many elements as the length of the polynomial (i.e., n � N).

In the scheme CKKS (27), though, due to the complex number

packing, it is only possible to pack half of the vector size (i.e.,

n � N=2). This paper treats parameter N independently of the

scheme (i.e., n ¼ N). However, all the conclusions are valid to

CKKS by substituting N by N=2. In Section 4.1, we analyze the

implications of different parameter selections on the efficiency of

the algorithms. Next, we describe the basic routines of an

HE scheme:

† A key generation routine produces a public key pk and its

corresponding private key sk, defined by KG(Q, N)! pk, sk,

where N and Q are the homomorphic encryption parameters.

† The encoding routine takes a plaintext vector v and encodes it

based on the HE parameter N obtaining venc such that

ENC(v, N)! venc. There is an inverse decoding routine that

takes the encoded vector venc and obtains the plaintext vector

v such that DEC(venc, N)! v.

† The encryption routine takes a public key pk and an

encoded vector venc to generate a ciphertext vector

ct [ ZQ½x�=hxN þ 1i such that E(pk, venc)! ct . The inverse

decryption routine takes a ciphertext ct and uses the private

key sk to obtain the encoded vector such that D(sk, ct)! venc.

† The different evaluation routines compute over the ciphertext

ct one of the following operations: Element-wise Sum (�)
Element-wise Subtraction (�), Element-wise Multiplication

(�), and left/right Rotation (� and � respectively). We

depict the SIMD schemes operation behavior in Figure 2.

2.3. Convolutional deep neural networks
inference

Deep Learning is a set of statistical algorithms based on Deep

Artificial Neural Networks. These algorithms have shown

proficiency when learning from large amounts of data (6). The

basic building blocks of DL models are layers (i.e., the different

arrangements of neurons in an architecture). Each layer operates

with the data differently, depending on its type (e.g., convolution

or dot-product). The basic building blocks of layers have been

ported to hardware acceleration and multiple libraries (28–30).

This work focuses on Convolutional Deep Neural Networks

(CNN). These are nowadays the most prominent networks to

deal with images (3, 31) (e.g., classification, object detection, or

segmentation). Thus, the use of CNN with privacy-preserving

techniques is of paramount importance. For further information

on CNN, we refer the reader to the book by Goodfellow et al.

(32). Next, we overview the basic structures that require

adaptation to work with SIMD operations.

Convolutional layers compute the correlation between a

multidimensional input matrix and a kernel or filter. When

dealing with 2D images, we consider it to be the relation

between an input image of dimensions M [ Rh	w	c and a set
frontiersin.org
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FIGURE 2

SIMD Operations allowed by CKKS Packed Homomorphic Encryption Scheme and operation scenarios for n ¼ 8 and N ¼ 16.
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of kernels or filters F [ R fx	fy	c0 . The convolution iterates through

regions of size (fx , fy) and computes the convolution with each filter

F (i.e., multiplication and sum). Usually, in combination with

convolutional layers, padding, and stride mechanisms are paired.

Considering a picture over which we place a filter, the stride

defines the axial displacement of the filters (sx , sy). Padding a

matrix consists of uniformly adding a value p times at the

beginning and end of each dimension. In CNN, padding

highlights potential features existing on the borders and corners

of the image that otherwise would disappear.

Pooling layers act as aggregation component. They reduce the

size of previous layers and help keep the number of parameters

low. They perform a similar operation to the convolution, taking

(px , py) regions of the input 2D matrix M [ Rh	w and

computing an operation over the region. The most common type

of pooling layer is the max pooling layer. It involves computing

the maximum pixel of the extracted region. Unfortunately, the

max function is non-linear. With current LHE schemes, non-

linear functions require polynomial approximations (e.g., Taylor or

Chebyshev approximations (33)), incurring extra complexity. Thus,

it is also possible to use another classical, yet-effective approach to

the Average Pooling Layer, which applies the following operation:

1
n


Xxþpx
i¼x

Xyþpy
j¼y

Mi,j

Fully connected or dense layers link each input element to all output

activations. Dense layers usually translate to matrix multiplication

between weights matrix (W [ Rh	w) and the input vector

(x [ Rw) and adding a bias element (b [ Rh) (i.e., z ¼Wx þ b).

In the weights matrix, each entry represents the relation between

the input element y and output element x (i.e., each row relates to

an input element, and the specific column represents the

relationship with the output element).

Activation functions are often non-linear functions that involve

introducing non-linear behaviors in the approximated functions.

The rationale of these functions is to resemble synaptic signals

transmitted by biological neurons (34). Thus, without these, Neural
Frontiers in Cardiovascular Medicine 05
Networks would reduce to complex polynomials. In this work, we

do not cover activation function algorithms, as they involve

operating on all entries of the ciphertext (i.e., it is straightforward

with SIMD). Regarding the existing approximations of non-

linearities, we refer the reader to different works (35, 36).
2.4. Privacy-preserving deep learning
inference

In this paper, we consider a use case where a client-server

scenario, where a client needs to outsource the computation of DL

inference to a not necessarily trusted server. For that, the client and

server rely on public-key FHE. The client performs the key

generation, encrypts the data with his public key, and sends the

ciphertext to the server. The server receives the public and

relinearization keys and the ciphertext. Through privacy-preserving

processing, the server can operate on the data and return the result

to the client. The client owns a private key which he never released,

therefore is the only person able to decrypt the information. Also,

we consider that the client performs no computation except light

tasks before encrypting or after decryption. For example, the client

can perform padding to reduce the load of convolutions since it is

a light task. Also, after decrypting the information, the client can

retrieve the relevant information entries instead of having the server

post-process the result.
3. SIMD algorithms for deep learning

Most Deep Learning building blocks rely on standard linear

algebra operations (e.g., matrix or vector multiplication). Some of

these operations are not available in the encrypted domain (e.g.,

accessing an arbitrary entry of an array). Furthermore, existing

optimizations for running classical linear algebra on computers, such

as tiling memory accesses in matrix multiplications (37), are not

possible when the smallest unit considered is a packed HE ciphertext

(i.e., a polynomial in ZQ½x�=hxN þ 1i). Thus, it is necessary to

develop focused algorithmic optimizations for these ciphertexts.
frontiersin.org
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In this section, we provide general algorithms to adapt linear

algebra operations so they can exploit the potential of SIMD

operations in Deep Learning while working on HE ciphertexts.

Concretely, we propose descriptions of algorithms that work on

arbitrary matrices M [ Rh	w (i.e., of height h and width w).

Additionally, since DL architectures consist of connected layers of

different natures, the representations between these layers need to be

compatible. This compatibility means that the output of SIMD

operations resulting from a given layer needs to be formatted

according to the input of the following layer. While previous works

have proposed SIMD operations for these layers, they have only

provided partial examples, not giving a holistic view of the DL

pipeline and not considering the interconnections of the layers (18,

19). Indeed, as we show in Section 5, the data transformations have a

considerable overhead which the DL design phase should account for.

When dealing with Packed Homomorphic Encryption, the

ciphertext encodes vectors of size N . However, CNNs operate

over matrices which require transforming matrices into vectors

(see Figure 1). We consider a standard representation that we

refer to as Row-Column (RC) format, where the 2D matrix is

flattened row by row (Equation 1). This format allows the

representation of information with the smallest N . Accordingly,

in this work, we provide algorithms to transform the RC format

to the appropriate Initial Representation for the algorithm and

Result Transformation algorithms for returning to the RC format

RC(M) ¼ {M0,0, M0,1, . . . , M0,w�1, M1,0, . . . , Mh�1,w�1}:

(1)

In a nutshell, the processing of each layer requires the following

algorithms (executedbefore, during, andafter theactualdataprocessing):

1. Initial Representation (IR) algorithms provide the

corresponding layer with an appropriate representation of

the data for executing the algorithm (i.e., according to the

requirements of the layer).

2. Algorithm Execution (ALG) algorithms are the actual

execution of the internal operations over the data. We next

describe the convolution blocks (i.e., convolutional layer,

pooling layer, and activation function) and dense blocks (i.e.,

dense layer and activation function).

3. Result Transformation (RT). Due to the nature of SIMD

operations, the algorithms usually introduce some extra,

irrelevant data in the result (e.g., redundant or padded). Also,

different SIMD operations produce different output formats.

Thus, we elaborate dedicated algorithms to extract the

relevant output information and turn it back into a format

suitable for the next layer. We note that this process (RT)

can sometimes be computed together with the Initial

Representation (IR) of the following layer.

3.1. Notation

We use M [ Rh	w to represent a matrix M of dimensions

h	 w. Also, we use Mi,j to refer to the entry on row i and

column j of the matrix.
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In Section 2.2, we described the encoding, encryption,

decoding, and decryption routines. For simplicity, in the

algorithms, we assume that a vector’s encryption routine also

comprises the previous encoding. Similarly, the decryption

routine comprises the decoding after decryption. Thus, we

denote ct ¼ E(pk, M [ Rh	w), as the encryption of the encoded

matrix M, whose layout in the encrypted vector may be defined

depending on the algorithm.

Many of the algorithms rely on binary bitmasks to obtain

relevant information. These are composed of binary values. In

the description of the algorithms, we assume bitmasks are

initially filled with 0, and we express a condition to get the

positions (indexes) where entries are set to 1. We use the

parameter t (bitmask[t] [ ZN
2 ), which defines such indexes. For

example, for a bitmask where even indexes are 1, we denote the

mask as bitmask[t] {t mod 2 ¼ 0}.

In HE, the ciphertext representation uses integer ring

polynomial representation, unlike Deep Learning floating point

representation. This problem has multiple approaches, such as

fixed point representations or CKKS encoding (27). The

algorithms provided here are represented generically without

discussing the specific representation (i.e., the only requirement

is the availability of the operations defined in Section 2.2).

In the following sections, we provide the general algorithms

that allow the adaptation of common layers in CNNs, i.e.,

Convolutional and Dense blocks. Then, we provide a discussion

on how to use activation functions (which are non-linear) in the

context of Packed Homomorphic Encryption. Figure 3 provides

a summary overview of the application of the different

algorithms in a CNN pipeline.
3.2. SIMD convolutional layer

Computing a classical 2D Convolutional Layer involves a

relationship between an input bi-dimensional matrix region and

a bi-dimensional filter. As explained in 2.3, the convolution can

combine structures such as padding, stride, or pooling layers.

Accordingly, the algorithms defined for LHE should also account

for the use of these variants.

This section presents a new algorithm for convolution, dubbed

the Streamlined Convolution Algorithm. It allows combining

convolutional, pooling, and activation layers in subsequent

blocks, neglecting the cost of initial representation and executing

a single result transformation algorithm (i.e., we can use the

output representation of the algorithm arbitrarily). We first

describe the convolution algorithm with stride and the result

transformation algorithm (Section 3.2.1). Then, we provide its

integration with padding (Section 3.2.2). and Average Pooling

Layers (Section 3.2.3. For reference, Appendix A details the

convolution algorithms that extend and generalizes previous

work (18), which we use as a baseline comparison in Section 5.

3.2.1. Streamlined convolution algorithm
The convolution algorithm takes as input a plaintext filter

F [ R fx	fy of dimensions fx 	 fy . The filter is applied to a
frontiersin.org
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FIGURE 3

Overview of the different algorithms needed to perform a Convolutional Neural Network with Homomorphic Encryption.
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ciphertext vector ct [ ZQ½x�=hxN þ 1i that corresponds to an

encrypted input matrix, i.e., ct ¼ E(pk, M [ Rh	w), with pk
being the encryption key and M the plaintext input matrix

linearized. The algorithm leverages that the dimensions of filters

are shorter than input matrices, and we have plaintext access to

those. Thus, it computes the convolution between each filter

pixel and the input matrix (i.e., represented by a ciphertext) and
Algorithm 1 Streamlined 2D Convolution

Input: cSCBFt [ ZQ½x�=hxN þ 1i ¼ Eð pk;M [ Rh	wÞ, F [ R fx	fy , ðslx ; slyÞ,
p, ðSx ;SyÞ, h0;w0

Output: conv [ ZQ½x�=hxN þ 1i in SCBF format
function CONVOLUTION (ct ,F , sx ; sy , p, Sx ;Sy , h0;w0)

hout  bh� fx þ 2 � p
slx

c þ 1

wout  bw� fy þ 2 � p
sly

c þ 1

c padt  PADDINGðcSCBFt ; p; ðSx ;SyÞ; ðh0;w0Þ
for i 0; fx do

for j 0; fy do

rot  c padt � ði � w0 � Sx þ j � SyÞ
conv ¼ conv � rot � F i;j

end for
end for
return conv

end function
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adds the partial results for each pixel. The algorithm is described

in Algorithm 1.

We denote the linearized format of the matrix as Streamlined

Backward Convolution Format (SCBF) since it depends on the

information of previous layers. For multiple consecutive

convolutions, the algorithm requires some information to determine

the layout of the input vector. Concretely, in the execution of layer

l, the algorithm receives as input the product of strides from

previous layers, i.e., Sx ¼
Ql�1

i¼0 s
i
x and Sy ¼

Ql�1
i¼0 s

i
y , where six , s

i
y

are the strides on x and y axis of the ith consecutive convolutional

layer. Furthermore, the algorithm also requires the dimensions of

the first encoded matrix, i.e., (h0, w0). These define the capacity of

the algorithm to perform operations on the information. Whenever

we execute a convolution, the result format depends on these values.

For the first layer, we use the Row-Column format, a subset of

the SCBF format where Sx ¼ 1 and h, w ¼ h0, w0.

Finally, if the convolution uses padding, the algorithm relies on

the PADDING function, which we describe in the next section.

3.2.2. Streamlined padding algorithm
The insertion of padding is common in convolutional layers to

ensure the preservation of details in the corners of matrices when

using filters. In general, if the padding is added on the first layer of

the CNN, we can apply it on the cleartext matrix (i.e., by the client)
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Algorithm 2 Streamlined 2D Padding

Input: cSCBFt [ ZQ½x�=hxN þ 1i ¼ Eð pk;M [ Rh	wÞ, p, ðSx ;SyÞ, h0;w0

Output: c padt [ ZQ½x�=hxN þ 1i ¼ Eð pk;M0 [ Rhpad	wpad Þ, in SCBF format
function PADDING ct , p, Sx , Sy , h0, w0

hpad  hþ 2 � p
wpad  wþ 2 � p
c padt  cSCBFt � ðw0 þ 1Þ � Sx � p
bitmask½t�  ft ¼ i � w0 � Sx þ j � Sy j i ¼ bt=w0; j ¼ tw0 j i , p _ i  ðhpad � pÞ _ j , p _ p  ðwpad � pÞg
c padt  c padt � ð1� bitmask½t�Þ ▷ Inverted bitmask

return c padt

end function
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and encrypt afterward. However, if the padding is not present on

the initial layer, it is the responsibility of the server to execute it.

For that, we propose Algorithm 2, where based on the structure

of the SCBF format, it performs padding with little

computational effort, as opposed to the base algorithm described

in Appendix A. The algorithm has two main tasks. First, it

rotates the relevant information according to the padding needed

for the first row. Then, using a bitmask, it introduces zeroes in

the appropriate positions. Note that, for notation clarity, we

perform an inversion of the bitmask (i.e., zeroes become ones

and vice versa) denoted as 1� bitmask[t].
3.2.3. Streamlined average pooling layers
Similar to the usage of stride during the convolution operation,

Pooling Layers allow for reducing the overall complexity required

to process the information. Additionally, they highlight the most

relevant features for the classification, extracting higher

informative areas and discarding less informative ones. While

Max Pooling is a popular choice for Deep Learning since it

allows the extraction of pronounced and sharp changes (32) (e.g.,

edges in pictures for image segmentation), the max function is

non-linear. Thus, its usage with current Homomorphic

Encryption schemes remains complex and inefficient. In our

work, we cover linear average pooling, which results less

inefficient,3 but extracts smoother changes from pictures (32).

The encrypted version takes an input ciphertext vector

ct [ ZQ½x�=hxN þ 1i ¼M [ Rh	w, and a pool P [ R px	py . The
adaptation to SIMD HE can be obtained by using the

convolution algorithm presented in Section 3.2.1, but using a

dedicated filter for the pooling, defined as:

P ¼ Pi,j ¼ 1
n
j 0 � i , px , 0 � j , py , n ¼ px � py

� �

Similar to the convolution algorithm, the pooling layer also

requires meta-information from previous layers.
3We note that so-called hybrid approaches, such as GAZELLE (20), are

potential options for evaluating boolean non-linearities. However, they rely

on other privacy-preserving computation techniques (e.g., Secure Multi-

Party Computation) and, thus, are out of the scope of this paper.
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3.2.4. Streamlined convolution result
transformation

The previously presented algorithms can be arbitrarily

combined between themselves and activation functions, incurring

a minimal multiplication depth and the number of

multiplications per layer. The only drawback is its combination

with other types of layers (e.g., the dense layer). For that, we

provide a function allowing the user to return to RC format to

become compatible with other layers. The process depicted in

Algorithm 3 may not be the most efficient depending on the

subsequent layer. If that is the case, the lines detailed as

formatting in blue and with the formatting comment may swap

for a more appropriate layout. This algorithm receives a

ciphertext vector ct [ ZQ½x�=hxN þ 1i ¼M [ Rhout	wout , being

the encrypted result of the convolutions of which we stored the

output dimensions hout 	 wout . Additionally, as in the previous

examples, it is necessary to keep track of the product of strides

in previous layers (Sx , Sy) and the initial dimensions (h0, w0).
3.3. SIMD dense layer

The Dense or Fully-Connected Layer of a Neural Network

performs a weighted connection of all the inputs to all outputs.

It is a linear transformation that a matrix-vector multiplication

can represent, where a weight matrix W [ Rh	w is multiplied by

the vector x [ Rn. The weights matrix contains parameters fine-

tuned during the training. The input vector comprises all the

outputs from the n neurons in the previous layer.

This section proposes algorithms for efficiently applying SIMD

operations over encrypted data on Dense Layers. These algorithms

generalize two previously proposed algorithms for DL inference: a

Diagonal Matrix-Vector multiplication (19) and a Matrix-Matrix

multiplication (18). While these matrix multiplication algorithms

report simplistic examples, in our work, we describe a

generalization together with all the transformation algorithms

required for the internal connections.

3.3.1. Diagonal matrix-vector multiplication
This algorithm is based on the multiplication of a ciphertext

vector x [ ZQ½x�=hxN þ 1i (i.e., data is encrypted, thus providing

input-privacy) by a cleartext matrix W [ Rh	w (i.e., the weights

are not encrypted, thus not providing weight-secrecy). The

algorithm decomposes the matrix in the extended diagonals (i.e.,
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Algorithm 3 Streamlined Convolution Result Transformation

Input: cSCBFt [ ZQ½x�=hxN þ 1i in format, Rhout	wout , h0 	 w0, ðSx ;SyÞ
Output: cRCt in RC format
function RT-SCR-RC (ct ;w0;Sx ;Sy)

for i 0; hout do
for j 0;wout do
bitmask½t�i  ft ¼ j � Sy þ ði � w0 � SxÞg
shifti  t � ði 
 hout þ jÞ ▷Formatting

cRCt ¼ cRCt � ðcSCBFt � bitmask½t�iÞ � shifti
end for

end for

return cRCt
end function

Algorithm 4 Diagonal Matrix Multiplication

Input: ct [ ZQ½x�=hxN þ 1i ¼ Eð pk; v [ RnÞ, M [ Rh	wÞ
Output: result
function DIAGONAL MATMUL (ct ;W)

hext  2dlog2ðhÞe

wext  2dlog2ðwÞe

a maxðhext ;wextÞ
spacing  N

a
cextt  SWITCHSPACINGðctÞ
for i 0;a do

di  fW|;ð〉þ|⊒Þ j ′ � | < 〈g
cextti  cextt � ði � spacingÞ
dexti  ENCðdi;NÞ
result  result � ðdexti � cextti Þ

end for
return result

end function

Algorithm 5 Initial Representation and Result Transformation for
Diagonal Matrix Multiplication

Input: ct [ ZQ½x�=hxN þ 1i ¼ Eð pk; v [ RnÞ, Di , Df

Output: cextt [ ZQ½x�=hxN þ 1i
function SWITCHSPACING (ct ;Di;Df )

shift ¼ Df � Di

for i 0; n do
bitmask½t�i  ft ¼ i 
 Dig
cextt  cextt � ððbitmask½t�i � ctÞ � ði 
 shiftÞÞ

end for
return cextt

end function
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diagonal vectors of length h). Then the input vector x is rotated,

multiplied by the diagonal matrix, and added. In this way, the

algorithm ensures that each entry of the ciphertext vector

multiplies each matrix value. Halevi and Shoup were the first to

describe this approach in HElib (19). In their algorithm, authors

do not cover the application to HE where the number of elements

in the ciphertext n is fewer than the size of the ciphertext N . To

solve this obstacle, we provide an explanation and an Initial

Representation algorithm. We also introduce a generalization of

the algorithm that enables its application to arbitrary size matrices

in Algorithm 4. We discuss the practical implications of its

application to HE and its relation to other layers in Section 4.

The algorithm takes advantage of the overflow of the input

vector during rotations, i.e., when the last values move to the

first positions. In HE, the size of the underlying slots is

determined by N, which is a power of 2. Introducing a small

plaintext vector within a larger ciphertext would prevent us from

preserving the overflow behavior. Thus we propose a

preprocessing step to keep the overflow happening.

The algorithm relies on two preprocessing steps for correctness.

First, to enforce an overflow in longer vectors, the matrix

W [ Rh	w is extended to the closest power of 2 in both

dimensions, resulting in (hext ¼ 2dlog2 (h)e, wext ¼ 2dlog2 (w)e). Second,
based on these new dimensions, a spacing (D) is computed to

move and split each entry of the plaintext vector uniformly within

the ciphertext vector. This way, the shifts can be weighted by the

spacing, and the overflow is kept. Concretely, the spacing is

computed as follows: D ¼ N=max (hext , wext) [ Z. The

denominator takes the maximum since a matrix multiplication

either reduces or increases the size of the matrix. Note that since

N is a power of 2, and so are hext and wext , the result is an integer

spacing value, also a power of 2. Algorithm 5 shows the

algorithm for these preprocessing steps. The algorithm is adapted

to switch from a Di spacing between vector elements to Df

spacing. In this way, the algorithm can be used both as the Result

Transformation of a Dense Layer and the Initial Representation of

a subsequent Dense Layer.
3.3.2. Matrix-matrix multiplication
We propose an algorithm for a matrix-to-matrix

multiplication, which takes as a starting point an example

provided in CHET for matrices of 3	 3 (18). Besides proposing

a general description to apply this in arbitrary size matrices, we
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also provide the Initial Representation and Result Transformation

algorithms so these matrix multiplications can be chained

together in a DL architecture.

We assume that we want to multiply two matrices A [ RhA	wA

and B [ RhB	wB , which are encrypted and formatted in Row-

Column format, cAt [ ZQ½x�=hxN þ 1i ¼ E(pk, A [ RhA	wA ) and

cBt [ ZQ½x�=hxN þ 1i ¼ E(pk, B [ RhB	wB ). The key concept for

the algorithm is the replication of the RC matrix representation.

These special and alternative replications permit linear

computation of all the necessary combinations. Thus, the main

complexity of the algorithm resides in the Initial Representation

algorithms. Once this is completed, the overall multiplication

complexity is very low.

For matrix A ¼ {Ai,j j 0 � i , hA, 0 � j , wA}, its placement

over the vector is repeated alternatively according to the formula
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Algorithm 6 Initial Representation for Matrix A in Matrix Multiplication

Input: cAt [ ZQ½x�=hxN þ 1i ¼ Eð pk;A [ RhA	wA Þ, wB

Output: cPAt
function PREPAREMATRIXA (cAt ;wB)

for i 0; hA � wA do
bitmask½t�i  ft ¼ ig
cAti ¼ bitmask½t�i � cAt
partial  partial � ðcAti � ði � ðwB � 1ÞÞ

end for
for i 0;wB do

cPAt  cPAt � ð partial � iÞ
end for

return cPAt
end function

Algorithm 7 Initial Representation for Matrix B in Matrix Multiplication

Input: cBt [ ZQ½x�=hxN þ 1i ¼ Eð pk;B [ RhB	wB Þ, hA
Output: cPBt
function PREPAREMATRIXB (cBt ; hA)

for i 0; hA do

result  result � ðcBt � ði � hB � wBÞÞ
end for
return result

end function

Algorithm 8 Matrix-Matrix Multiplication

Input: cPAt [ ZQ½x�=hxN þ 1i, cPBt [ ZQ½x�=hxN þ 1i, RhA	wA , RhB	wB

Output: cC
0

t [ ZQ½x�=hxN þ 1i
function MATRIXMATRIXMUL (cPAt ; cPBt )

cCt  cPAt � cPBt
for i 0;wA ¼ hB do

cC
0

t  cC
0

t � ðcCt � ðN � ði � wBÞÞ
end for

return cC
0

t

end function

Algorithm 9 Result Extraction Matrix-Matrix Multiplication

Input: cC
0

t [ ZQ½x�=hxN þ 1i, RhA	wB

Output: cA	Bt [ ZQ½x�=hxN þ 1i in RC format:

function RE-MATRIXMATRIXMUL (cC
0

t )

bitmask½t�  f0 � t , wBg
for i 0; hA do

bitmask½t�i  bitmask½t� � wB

cC
0

ti  ðcC
0

t � ði � wBÞÞ � bitmask½t�i
cA	Bt  cA	Bt � cC

0
ti

end for

return cA	Bt

end function
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cPAt ¼ {cPAtk ¼ Ai,j j 1 � i , hA, 1 � j , wA, 0 � k ¼ d(iþ j � wA)=

wBe , hA � wA � wB}. Thus, each element Ai,j of matrix A is

consecutively repeated wB times in the vector representation vA
(e.g., for A ¼ [1, 2, 3], cPAt ¼ [1, 1, . . . , 2, 2, . . . , 3, 3, . . . ]).

Algorithm 6, shows the process to prepare the matrix cPAt from a

Row Column representation of A denoted as cAt .

For matrix B ¼ {Bi,j j 1 , i , hB, 1 , j , wB}, its

transformation involves repeating multiple times the vector

according to the formula cPBt [ ZQ½x�=hxN þ 1i ¼ {cPBtk ¼
B(kwB),(dk=wBehA) j 0 � k , hB � wB � hA}. Thus, the Row-Column

representation of the matrix B is repeated hA times (e.g., for

B ¼ [1, 2, 3], cPBt ¼ [1, 2, 3, . . . , 1, 2, 3]. Algorithm 7 shows the

algorithm to prepare the matrix cPBt .

Once both matrices are transformed into the specified layout,

the algorithm performs element-wise multiplications of the

vectors, obtaining a result vector cCt ¼ cPAt � cPBt . Finally, it

applies hA rotations and sums to the resulting vector, obtaining

the final result: cC
0

t ¼
PhA

i¼0 c
C
t � N � (i � wB) (see Algorithm 8).

However, due to the nature of the algorithm, this result

contains extra spacing that needs to be discarded. Concretely, wB

relevant items in the vector (i.e., items from the actual result of

the multiplication) are followed by wB non-relevant ones (i.e.,

irrelevant artifacts). These are discarded in a Result Extraction

algorithm to finally get the Row-Column representation of the

multiplication (see Algorithm 9, where cC
0

t is the result with

spacing that needs to be transformed, and cA	Bt is the output of

the transformation).
3.4. Activation functions

Neural Networks have excelled at classification and regression

tasks because they can map non-linear distributions. Activation

functions are a crucial component of such success, and their

integration within FHE schemes is a hot research topic in the

literature. Linear approximations of various kinds are among the

most successful yet straightforward proposals to introduce

activation functions in HE-based DL. Authors have proposed

solutions ranging from alternative polynomials (35, 38), Taylor

and Chebyshev Polynomials (36) or simple linear regressions (39,

40). The common goal of these works is to obtain a low-degree

polynomial to approximate the non-linear behavior as accurately
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as possible. This paper assumes that the activation functions have

somehow been approximated to polynomials using any of the

existing proposals. Thus, computing an activation function to

Packed Homomorphic Encryption does not require any

particular format or construction as it applies the transformation

to all the slots of the ciphertext. We can often insert the

activation layers with other layers or building blocks of the layers

(i.e., algorithm execution and result transformation) without

changing the final result. In Section 4.3, we provide insights on

where introducing activation functions for the convolutional and

dense blocks would be more or less desirable.
4. Efficiency analysis of algorithms

The previous section presented algorithms for SIMD execution

of CNN inference. In this section, we formally analyze their

efficiency and performance impact. Indeed, efficiency is one of

the biggest challenges for applying Homomorphic Encryption for

Deep Learning. We first define the metrics used to measure

efficiency. Second, we provide some insights regarding applying

rotations and large ciphertext vectors. Finally, we analyze all the

algorithms in terms of the proposed metrics. That enables us to

provide a series of guidelines for their application.
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4.1. Efficiency metrics

Generally, HE operations are performance-wise heavy to

execute over ciphertexts. Our analysis focuses on the

transformations applied to ciphertexts. Plaintext operations have

a negligible impact on the computation; thus, we do not account

for them in the analysis. For evaluating these algorithms, we rely

on four metrics that define the efficiency of a circuit C:
Multiplication depth (DC) defines the maximum number of

consecutive products that an HE ciphertext needs to apply in a

given circuit C. The multiplication depth directly impacts the

parametrization of HE schemes, specifically in N and Q. In

terms of cleartext operations, N defines the polynomial degree.

Thus, a bigger N would involve operating over larger degree

polynomials (i.e., more coefficients to compute per ciphertext

operation). Also, working with bigger Q involves computing

more remainders. In Levelled Homomorphic Encryption

Schemes, each multiplication usually requires a rescaling

operation to reduce the underlying noise. Therefore, we consider

the need for one rescaling per DC (i.e., per multiplication). In

this case, we need DC different moduli (qi) in a polynomial

coefficient modulus Q. In direct relation with Q, N often defines

a maximum capacity for a Q (i.e., increasing the DC may not

only involve increasing Q but also N). The optimization of these

parameters is of paramount importance to obtain better

runtimes. For all these reasons, keeping a minimal depth of the

circuit is very important for achieving efficiency in the desired

computation, which justifies why DC is one of the metrics

analyzed for the efficiency of the algorithms.

Operation cost differs across the different available

computations in HE. Multiplication is the most costly since it

not only requires multiplication but is paired with a

relinearization phase (i.e., preventing the polynomial degree from

growing) and a rescaling phase (i.e., reducing the noise scale).

The next more costly operation is rotation, which involves

generating different Galois Keys. In CKKS, if the encoding scale s

is chosen the same as the smallest modulus prime qi, we can

neglect the noise and depth cost. Element-wise additions are the

lowest cost operation and are considered linear in computation

and noise growth. For the rest of the analysis, we denote the

addition and subtraction complexity (Osum) as the number of

sums (and subtractions) required by a circuit. Likewise, we

consider the multiplication complexity (Omul) and rotation

complexity (Orot) as the number of multiplications and rotations

in the circuit.

Memory complexity (Omem) accounts for the number of

ciphertexts needed in memory to execute one of the algorithms.

Given the large memory size of ciphertexts, minimizing the

number of ciphertexts simultaneously residing in the main

memory is essential.

Memory constraints (Ocon) determines the constraints that

an algorithm imposes on the size of plaintext vectors n it

operates with, so these can fit in ciphertext with N slots (i.e.,

n , N). If the plaintext vectors do not fit in the ciphertext,

the circuit would require an extended vector representation

(i.e., the plaintext vectors are packed within multiple
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ciphertexts). In general, for most algorithms, we consider that

for an input matrix M [ Rh	w, we can compute the

algorithm if h � w � N (i.e., if the full matrix size fits in a

ciphertext vector slot). However, some specific algorithm

representations of information may define harder or softer

limits for the execution. As we detail in the following section,

the memory constraints Ocon directly impact the operation

cost. In the following sections, we use r to define the number

of ciphertext vectors of size N needed to host a plaintext

vector of size n.
4.2. Rotations on large ciphertexts

The effect of the “Memory Constraints” Ocon is important for

the Rotation operation. In HE programming, most algebra

circuits present memory constraints, given the difficulty of

packing all the information within the same ciphertext. In

parallelism with classical (non-HE) programming, we could

consider when a program does not fit into the available

memory and uses swap space. At that point, computation

becomes a constraint and is more expensive. In HE circuits

with packing, when we need multiple ciphertexts to represent

the plaintext data, rotations have a worse impact on the

efficiency of algorithms. Indeed, many algorithms rely on

rotations to benefit from SIMD operations (e.g., to transform

output layouts). Previous works assume rotations as “cost-free”

operations and thus use them arbitrarily (18). We observe,

however, that when an algorithm is generalized to work on

arbitrary-size plaintext inputs (often large scale), the

assumption does not hold anymore. Suppose the plaintext

vector entries n extend over the available slots N . In that case,

multiple ciphertexts are required, and the plaintext vectors and

rotation cost are no longer neglectable since at least r ¼ dn=Ne
ciphertext vectors are required.

To demonstrate this performance decrease, we depict in

Figure 4 the rotation procedure for n . N , i.e., when more than

one ciphertext is needed. In the example, we represent one input

vector with two ciphertexts. Considering a 2-left rotation (� 2),

we observe that individual rotations of the vectors are partial.

Thus, this involves further modifications, such as an additional

multiplication of the vectors by a mask, which increases DC .
Table 1 shows the overall complexity of this process. We provide

the details in Algorithm 10.
4.3. Analysis and takeaways for application
to deep learning

In this section, we provide a detailed analysis of the

algorithms presented in Section 3 concerning the efficiency

metrics proposed. Table 2 presents the performance formal

complexity extracted from the different algorithms. Next, we

give key insights extracted from the analysis and discuss future

directions and best practices to apply the algorithms for Deep

Learning Inference.
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FIGURE 4

Operations performed for privately rotating twice (ct� 2) a vector of dimension n ¼ 16 in with homomorphic encryption ciphertexts of size N ¼ 8 and
r ¼ 2. The vector is encoded in two ciphertexts. The ciphertexts need to be rotated, masked and then reorganized to obtain the same result as in the
plaintext rotation.

TABLE 1 Efficiency analysis of Rotation of a big cleartext vector when it is
packed over multiple ciphertexts (Algorithm 10).

Metric DC Osum Omul Orot Omem Ocon

Value 1 2 � r r r 2 � r –

Algorithm 10 Rotation r times of V cleartext vector encoded in multiple
ciphertexts v0; v1; . . . ; vn.

function ROTATE ({fct0; ct1; :::; ctr [ ZQ½x�=hxN þ 1ig ¼ Eð pk;MÞ, rot)
q; rot  d
erot=r; rotr
bitmask½t�  fN � r � t < Ng
for i 0; r do

c0ti  cti � rot

c0ti  c0ti � bitmask½t�
c1ti  c0ti � c0ti

end for
for i 0; r do

crotti  c0tði�qrÞ � c1tði�1�qrÞ
end for
return fcrott0 ; c

rot
t1 ; :::; c

rot
tr g

end function
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4.3.1. The streamlined convolutional blocks
reduce the multiplication depth

The improved version of the algorithm we propose in

Section 3.2 introduces many efficiency improvements to the base

algorithm. The streamlined version of the algorithms allows to

insert lconv convolutions, lstride strided convolutions, l pad padding

layers, l pool average pooling layers or lact activation functions

(with cost Dact
C ). This results in a depth cost of:

DC ¼ lconv þ lstride þ l pad þ l pool þ lact �Dact
C þ 1

The cost is one operation per layer and the Result Transformation

algorithm. Also, it does not make any difference in using stridden
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or non-stridden convolutions. On the other hand, the base version

proposed in previous work requires applying a result

transformation function after each convolution, and the stride

makes it more expensive in the Omul . The overall cost of the base

version is:

DC ¼ 2lconv þ 2lstride þ l pad þ 2l pool þ lact �Dact
C

In summary, the base version heavily affects the depth because it

requires result transformation algorithms.

4.3.2. The Streamlined Convolutional Blocks
reduce the overall cost of auxiliary convolution
routines

If we analyze the cost of operations, we can see how the overall

cost of the streamlined convolution algorithm does not change

concerning the base algorithm. However, looking at the rest of

the streamlined routines (i.e., padding or stride), we can observe

how the cost is highly reduced. Although the padding occupies

the same multiplication depth slot, it reduces its cost to a single

multiplication and rotation. Furthermore, the reduction in the

cost of stride permits using it freely, allowing for faster training

algorithms over higher dimensionality data. If we used the

baseline algorithm, it would be preferable not to use padding and

stride to 1 as much as possible to keep efficiency.

4.3.3. Prioritize IR prepare Matrix B over IR prepare
Matrix A

Comparing both algorithms, we observe a clear advantage in

the algorithm used to prepare Matrix B in the Matrix-Matrix

multiplication. Indeed, both DC and Omul are smaller than in

Prepare Matrix A. Furthermore, we consider the weights matrix
frontiersin.org
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TABLE 2 Detailed analysis of the different metrics proposed in Section 4.1 (Ocon, DC , Osum, Omul , Orot and Omem). Additionally, it shows the performance
variation if Rotations are as in Algorithm 10.

Formal analysis of algorithms

Algorithm Metrics

Name Ocon DC Osum Omul Orot Omem

ALG (1) str. convolution h�w � N 1 fx �fy fx �fy fx �fy 3

h�w . N 2 3r�fx �fy 2r�fx �fy r�fx �fy 4r

ALG (11) convolution h�w � N 1 fx �fy fx �fy fx �fy 3

h�w . N 2 3r�fx �fy 2r�fx �fy r�fx �fy 4r

ALG (2) str. padding h0�w0 � N 1 0 1 1 2

h0�w0 � N 2 2r 2r r 3r

ALG (14) private padding h�w � N 1 h h h 3

h�w . N 2 3r�h 2r�h r�h 4r

RT (3) SCBF to RC h�w � N 1 hout �wout hout �wout hout �wout 3

h�w . N 2 3r�hout �wout 2r�hout �wout r�hout �wout 4r

RT (12) CRF to RC h�w � N 1 hout hout hout 3

h�w . N 2 3r�hout 2r�hout r�hout 4r

RT (13) SCRF to RC h�w � N 1 hout �wout hout �wout hout �wout 3

h�w . N 2 3r�hout �wout 2r�hout �wout r�hout �wout 4r

IR/RT (5) diag. mat. mult. n�(Df � Di þ 1) � N 1 n n n 3

n�(Df � Di þ 1) . N 2 3r�n 2r�n n�r 4r

ALG (4) diag. mat. mult. max (a, n) � N 1 a a a 4

max (a, n) . N 2 3r�a 2r�a r�a 5r

IR (6) prepare matrix A hA�wA�wB � N 1 hA�wA þ wB hA�wA hA�wA þ wB 3

hA�wA�wB . N 3 3r�hA�wA þ wB r(2�hA�wA þ wB) r�(hA�wA þ wB) 4r

IR (7) prepare matrix B hB�wB�hA � N 0 hA 0 hA 2

hB�wB�hA . N 1 3r�hA r�hA r�hA 3r

ALG (8) mat-mat. mult. max (hA�wA�wB , hB�wB�hA) � N 1 wA ¼ hB 1 wA ¼ hB 4

max (hA�wA�wB , hB�wB�hA) . N 2 3r�wA r(wA þ 1) r�wA 5r

RE (9) mat-mat. mult. n � N 1 hA hA hA 4

n . N 2 3r�hA 2r�hA r�hA 3r
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to be provided in cleartext for Deep Learning Inference. In such a

case, we recommend prioritizing IR Prepare Matrix A over the

cleartext matrix (i.e., executing the heavy algorithm over

the plaintext matrix); thus, the IR Prepare Matrix B algorithm on

the ciphertext space. It allows for improving the overall

performance of the multiplication routine while maintaining

input privacy as a constraint.
4.3.4. Avoid using the Matrix-Matrix Algorithm for
large input matrices

We observe that the Matrix-Matrix Algorithm

(Algorithm 8) imposes significant limits on the size of

matrices that can be multiplied (Ocon). For example, for a

latent vector size N of 1024, the maximum size of two

square matrices A, B that we can privately multiply is

around 10	 10. Introducing a larger size of N (e.g., 16,384

or 32,768) would improve this factor slightly (e.g., 25	 25

and 32	 32, respectively). This problem occurs due to the

replication factor introduced by the algorithm, i.e., it

requires the replication of A’s RC format wB times and B’s

RC format wA times. In a real-world setting, Neural

Networks often involve larger matrices. Encoding those

input matrices often involves using multiple ciphertexts to

represent the plaintext vector. The performance would be

less in the encoding and execution time (as rotations
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demand). It also increases the memory requirements and

the number of required operations (as described in Table 2).
4.3.5. The Matrix-Matrix multiplication Algorithm
improves when B is a one-dimensional vector

This optimization partially overcomes certain of the previously

presented weaknesses of this algorithm. Indeed, if we consider a

real use case, often Dense Layers are flattened, representing

information as a one-dimensional vector. If matrix B is a vector

(i.e., wB ¼ 1), the constraint Ocon is reduced to

max (hA � wA, hB � wA) ¼ max (hA � wA, h2B) � N . Furthermore, for

reducing Dense layers, where the size of the output vector is

smaller than the size of the input vector (i.e., hA � wA ¼ hB), the

constraint would be just on the shape of the underlying vector to

the ciphertext. This constraint still imposes hard constraints for

the underlying vector size (e.g., around 180 elements for

N ¼ 32, 768 or 128 for N ¼ 16, 384).
4.3.6. Choosing between Matrix-Matrix or
diagonal matrix multiplication mostly depends on
Ocon

Table 3 shows both algorithms’ overall cost of an arbitrary

l-layer dense architecture. First, it is essential to consider the

memory constraints of ciphertexts Ocon. In general, the Matrix-

Matrix multiplication remains more efficient for small underlying
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TABLE 3 Detailed comparison of the different complete matrix multiplication algorithms described in the paper according to the different metrics
proposed in Section 4.1 (Ocon, DC , Osum, Omul , Orot and Omem) for a generic l-layer Neural Network. Additionally, it shows the performance
variation if Rotations are as in Algorithm 10. Note that, for Algorithms 4 and 5, we can consider a ¼ n. In Algorithms 7, 8, and 9, we consider
the optimization of not using Preprocessing A and considering B is a one-dimensional vector.

Matrix multiplication algorithm comparison on l-layer dense neural network

Algorithm Metrics

Name Alg. Ocon DC Osum Omul Orot Omem

Diagonal matrix multiplication 5, 4 max (a, n) � N 2l þ 1 a(2l þ 1) a(2l þ 1) a(2l þ 1) 4

max (a, n) . N 4l þ 2 3r�a(2l þ 1) 2r�a(2l þ 1) a�r�(2l þ 1) 5n

Matrix-matrix multiplication 6, 7, 8, 9 max (hA � wA , h2B) � N 2l l(2hA þ wA) l(hA þ 1) l(2hA þ wA) 5

max (hA � wA , h2B) . N 5l 3r�l(2hA þ wA) 2r�l(3hA þ wA þ 1) l�r�(2hA þ wA) 6n

TABLE 4 Parametrization of the different tests performed for each of the
four takeaways considered in Subsection 4.3.

Convolution test case
Test Num. Initial shape Kernel size Stride Padding Speedup

0 10 20	 20 3	 3 (1, 1) 1 7.51

1 10 30	 30 3	 3 (1, 1) 1 8.37

2 10 40	 40 5	 5 (1, 1) 1 11.75

3 5 30	 30 3	 3 (2, 2) 1 6.86

Matrix-Matrix multiplication test case
Test Matrix shape N

0 2	 2 16

1 3	 3 32

2 4	 4 2048

3 5	 5 2048

4 20	 20 8192

Diagonal dot multiplication test case
Test Matrix shape N

0 3	 3 16

1 3	 24 64

2 24	 3 64

3 4	 50 2048

4 50	 4 2048

5 50	 50 64

6 50	 50 128

7 50	 75 2048

8 75	 100 2048

Matrix-Matrix vs diagonal matrix multiplication test case
Test Matrix shape N

1 5	 5 512

2 10	 10 1024

3 20	 20 8192

4 40	 40 65536

5 50	 50 65536
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plaintext vectors n. The improvement is due to having a lower DC
and half the number of multiplications Omul than the Diagonal

Matrix Multiplication. However, this only holds under the Ocon

assumption, where we can represent the plaintext information

under a single ciphertext. If not, the diagonal matrix

multiplication becomes more efficient (i.e., the algorithm accepts

larger matrix dimensions). At the same time, we must consider

that increasing N to permit using more underlying plaintext

elements n and working with the Matrix-Matrix multiplication

may be counterproductive. This deficiency is due to the cleartext

operations performed to execute a ciphertext operation. When
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we increase N , so does the number of cleartext operations to

compute on each polynomial. Therefore, keeping a minimal N

becomes likewise critical for efficiency. Before increasing N , using

the Diagonal Matrix Multiplication would be better for

performance. Finally, if the constraint Ocon requires multiple

vectors in both instances, it would be needed a trade-off between

DC and Omul based on the number of layers l. While the overall

complexity remains similar for both algorithms, it is important

to note two things. First, Omul grows double as the number of

layers l grows. Indeed, the Diagonal Matrix multiplication is less

efficient for the same number of layers. Second, the increase of

DC of l reduces in the Diagonal Matrix Multiplication with a

comparison 4l þ 2 � 5l. For neural network architectures with

one dense layer l ¼ 1, the DC is better with the Matrix-Matrix

multiplication algorithm. In the rest of the cases l . 1, the

overall DC of the Diagonal Matrix is smaller.
5. Performance evaluation of
guidelines

To study the impact of the algorithms in real-world inference

and to corroborate the formal analysis and the critical findings

from Section 4, we conduct different experiments. These

experiments implement variations from the base use case

described in Appendix A (18). In each experiment, we conduct

various tests varying the architectures and parameters to examine

the performance impact of the different designed routines. All

the experiments were run in a computer with processor MD

Ryzen 3950X (16 cores at 3.5 GHz), and 32GB of RAM memory.

The first experiment compares the baseline and streamlined

convolution algorithms. The use case executes a set of c

convolutions in a row. All the convolutions have the same

properties, with the parameter values described in Table 4. The

results are depicted in Figure 5. As expected by the formal

analysis, the streamlined convolution algorithm does not impact

the convolution operation since the execution times are similar.

However, the algorithm produces an output format where the

placement of the elements allows for efficient integration with

the following layers. It impacts the execution time of the padding

and the results transformation algorithms achieving a speedup of

8 times faster on average. Also, we can observe that in the

baseline algorithm, the result transformation involves a
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FIGURE 5

Convolution Performance Evaluation between Streamlined and Baseline approaches to algorithms.
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substantial part of the computational effort, with a high impact on

the overall performance.

In the second experiment, we evaluate the Matrix-Matrix

Multiplication algorithm. We compute a sequence of Prepare

Matrix Multiplications (for both A and B), the matrix

multiplication algorithm, and the result transformation. We show

the test cases evaluated in the second section of Table 4 and the

results in Figure 6. As demonstrated in Section 4, the IR

Algorithm executed for Matrix A is highly inefficient. However,

the IR for Matrix B is much more efficient, supposing a relatively

minor difference. Therefore, if we consider one of the matrices to
FIGURE 6

Performance evaluation of Algorithm 8. The graph compares the preprocessin
subroutines.
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be cleartext (e.g., the weights of a Dense Layer are not private), we

should always choose it to be matrix A. Another conclusion

drawn from Figure 6 is the relevance of the Initial Representation

and Result Transformation algorithms. Even in the most optimal

use case, the matrix multiplication itself only supposes 40% of the

total amount of processing. Therefore, in other works that omit

the Initial Representation or Result Transformation, the overall

performance is only partially shown, as the transformations

involve a significant portion of the overhead.

The third experiment analyses the Diagonal Matrix

Multiplication. For comparison purposes, we provide a
g algorithms, Prepare A and Prepare B, in absolute terms, including other
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FIGURE 7

Performance evaluation of the Diagonal Matrix Multiplication of two matrices. The graph shows the overall cost of the two main routines for Initial
Representation/Result Transformation and the algorithm in absolute terms and relative to the execution time.
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detailed analysis of the diagonal matrix multiplication

algorithm in Figure 7. This algorithm generally shows the

lesser Ocon requirements of the Diagonal Matrix

multiplications. For bigger matrix sizes, the underlying

ciphertext vector needs a smaller size of N than the Matrix-

Matrix Multiplication Algorithm. The tests executed on these

algorithms can be found in the third subdivision of Table 4.

As we can observe, the ordering of dimensions influences the

preprocessing algorithm’s time. In general, the maximum

dimension of the matrices defines the dimension of the

extended diagonal. Therefore, the test with matrices of 50	 4

(test 4) obtains similar performance times to the test with

matrices of 50	 50 (tests 5 and 6). Also, given the small
FIGURE 8

Performance comparison of the Matrix-Matrix Multiplication Algorithm and th
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dimensions, the differences between the two tests with

matrices of 50	 50 (tests 5 and 6) are negligible.

The fourth experiment compares the different matrix

multiplication algorithms. We perform the fourth experiment with

the exact dimensions of the Matrix-Matrix and the Diagonal Dot

multiplication algorithms. It enables us to compare the algorithms

accurately. We provide the results in Figure 8 and the executed

tests at the bottom of Table 4. Overall, we can observe how for

smaller sizes of matrices, the lower execution time of the Matrix-

Matrix Multiplication Algorithm imposes better runtimes.

However, once the dimensions grow, the Diagonal Matrix

Multiplication provides better runtimes. However, we note that the

tests may give misleading information since, for the same N , the
e Diagonal Matrix Multiplication Algorithms.
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FIGURE 9

Performance evaluation Cryptonets Neural Network based on the CheXpert dataset. Average runtime of the execution of 250 random samples of the
dataset. The ordering of the x-axis corresponds to the layer execution order (i.e., Conv. 0 is the first layer, and Act. 2 is the last layer).
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Diagonal Matrix Multiplication enables working with more

significant matrices and generally involves less computation.

Finally, our fifth experiment combines the different algorithms

in a Neural Network use case for cardiology and healthcare. This

test analyzes the implications of putting together the algorithm

in a real use case. For that, we develop a Convolutional Neural

Network model based on the CheXpert dataset (41) with the

typical Homomorphic Encryption-based architecture of

Cryptonets (35). We perform inference on 250 samples and

obtain the average runtime of the layers for the different

proposed algorithms. The results of such tests are depicted in

Figure 9. First, we observe a noticeable difference between the

first layers of the Neural Network and the last layers. As we

showed in Section 4, the complexity of the algorithms is often

determined by the dimensionality of the treated matrices. The

first layers deal with larger dimensions; thus, the computation is

more affected by such dimensionality. This fact is especially

noticeable with the Convolution and Average Pooling layers,

where the Result Transformation is affected by such high

dimensionality. Furthermore, when using Homomorphic

Encryption, this behavior is emphasized with the existence of

LHE, which introduces the concept of levels. Levels are treated

with the Chinese Remainder Theorem and operate with more

levels before dropping them with each rescaling. On the first

layers, the efficiency is worse before rescaling, as HE operates on

more remainders than in the latest layers, where most of the

moduli have been dropped. Intermediate layers introduce a

reduced delay due to being fundamentally a processing-based

layer requiring no internal reorganization of the vectors. As a last

factor, we analyze the algorithms’ precision compared to classic

algorithms and obtain an equivalent absolute precision difference

of 3:79	 10�6, which we consider negligible for this application.
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6. Related work

Various works have explored the use of packing within

Homomorphic Encryption tasks. With the discovery of FHE

by Gentry (15), research on ML tried to discover options for

basic statistical models. Wu et al. (39) focus their research on

linear regression, mean, and covariance with Somewhat

Homomorphic Encryption. Due to the nature of SHE, their

work tackles noise management to ensure the operations

performed allow correct decryption of the result. The work of

Duong et al. (42) goes one step beyond by implementing

different embeddings applied when the encoding is performed

and used to speed up matrix multiplications. Specifically, they

cover two different embeddings, the binary and non-binary,

whose placement varies in size and efficiency. These are

similar to the replication factors covered in the Matrix-Matrix

multiplication algorithm; however, they only cover m	m

matrix multiplication, which could often result inefficient.

More recent works have focused on algorithms for Packed

SIMD LHE. Halevi and Shoup (19) were the first to propose HE

SIMD algorithms in their adaption to HELib (43). In their paper,

they provide details on various algorithms, specifically those that

allow using HE Packed vectors as usual operations. They cover

various algorithms, from individual entry selection to replication

and matrix multiplication. In contrast to our work, they provide

more general algorithms that consider the minimization of the

overload of HE parameters but do not strictly relate them to

Deep Learning. Additionally, in our paper, we specifically cover

the execution of algorithms for matrix multiplication on arbitrary

matrix dimensions, while they only cover square matrices. In our

paper, we consider a leveled approach to reduce the overall cost

of the circuits in terms of efficiency.
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Intel nGraph HE Transformer (44–46) and MP2ML (47) are

the first examples of privacy-preserving usability-oriented APIs

for DL inference though users still need to incorporate the

parametrization manually. Furthermore, the implementations of

the different DL routines are opaque.

In CHET (18), the authors proposed a compiler for Deep

Learning Inference which considers an analysis of the code to

generate efficient HE code. EVA (48) improves CHET

parameter selection and reduces it to a multiplication depth

parameter. As mentioned before, for the algorithms for

Convolution and Matrix Multiplication, we take as a basis

the descriptions shown for CHET (18, 48). However, what

is shown in CHET is only valid for small matrices. We

provide a deeper understanding of the dimensionality of

matrices and efficiency guidelines together with the initial

representation and result in transformation algorithms.

In GAZELLE (20), the authors propose a framework

combining Packed Additively HE with Yao’s Garbled

Circuits (49) to speed up DL inference. As part of the

packing, they introduce a new method of computing matrix

multiplications based on computing halves of the matrix,

but whose explanation makes it very difficult to replicate.

In our work, we strive for replicability of the algorithms

and provide source code for those.

HELayers (50) is a recent framework that aims to provide

efficient abstraction layers that fully manage tiling (i.e., the

packing of ciphertext vectors, enabling process applications such

as DL). In HELayers, the basis for the automatization and

interactions between different algorithms is explored.

Finally, Jiang et al. (51) propose a new method to

compute matrix multiplication based on multiple iterations

where they achieve better efficiency at the cost of a deeper

circuit but only cover Matrix Multiplication and not other

DL operations.

In comparison to other works, we provide a holistic

analysis of the algorithms both individually as an algorithm

and collectively within a Deep Neural Network.

Furthermore, our analysis through metrics enables us to

extract guidelines for use in DL inference. Future works

also look in the line of automatic parametrization,

combining SIMD algorithms with Homomorphic Encryption

for Automated Parametrization (52)
7. Conclusions

Classically, healthcare has been limited to treatment in

hospitals and health centers. Regulatory and privacy

concerns limit the analysis of distributed medical data. It is

crucial to allow for secure and efficient sharing and

processing of sensitive data, such as health records and

medical images, to adapt to the healthcare ecosystem and

profit from computational improvements. Deep Learning

and Cloud Computing arise as promising game-changing

technologies in many fields. However, they still present

privacy and security issues related to sensitive data.
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Homomorphic Encryption introduces a new way to preserve

data privacy while performing computation. Not only does

it enable secure data sharing and analytics, but it also

guarantees privacy, security, and legal implications.

This work describes algorithms to adapt standard linear

algebra routines to Packed Homomorphic Encryption

(PHE). We focus on operations used in the inference

process of Convolutional Neural Networks. In these

settings, adapting classical to PHE operations poses

additional challenges not covered in previous works.

Concretely, our proposed algorithms consider the individual

perspective (i.e., the algorithms working in a standalone

scenario) and a holistic view (i.e., when different layers

work connected in a neural network). A fundamental

contribution is the generalization of the algorithms so we

can apply them to theoretically arbitrary size inputs. Also,

we propose routines such as the Initial Representation (IR)

and the Result Transformation (RT) algorithms to deal with

the data format inter-dependencies of the layers.

We elaborate on a set of metrics to represent the impact on the

efficiency of PHE operations. The formal analysis of the algorithms

shows that their application comes with a cost. Accordingly, we

provide analysis for optimal application to DL to adapt existing

architectures in the form of key findings. Our experimentation

with different tests and use cases shows that the algorithms

required to interconnect the layers (i.e., IR and RT) considerably

impact the overall performance of the neural network. Thus, we

propose optimizations to existing algorithms in the literature that

streamline the layers so these additional transformations are

optimized. We also provide key findings that can serve during

the architectural design of the neural network to optimize its

adaption to PHE.

This paper shows practical challenges arising from Packed

Homomorphic Encryption with DL, providing a better

understanding of the impact of the algorithms. It also provides

guidelines for improving algorithms based on efficiency metrics.

Also, with this work, we aim to reduce the inherent complexity

of the area and understand the base factors upon which data

scientists or security experts can design and implement efficient

systems. Our experimentation with basic programs and neural

networks shows that, in general, the modifications required to

the base programs (so they can be used on top of the proposed

algorithms) entail negligible computational overhead at no cost

in terms of accuracy. This provides a step towards setting up

practical, efficient, and private MLaaS services.

Further works should explore the automatic adaptation of

algorithms from a classical setting to a vectorized SIMD

setting for Homomorphic Encryption, exploiting the relations

and the results present in algorithms when performing

streamlined operations. Furthermore, establishing tiling

frameworks should allow for providing standard

representations for input and output, which standardizes the

guidelines presented in this paper. Obtaining automatic

parameters for Homomorphic Encryption is something that

remains relevant as it is one of the more complex tasks in the

procedure of Homomorphic Encryption code elaboration.
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Algorithm 12 Result Transformation CRF to RC

Input: cCRFt [ ZQ½x�=hxN þ 1i in CRF format, Rh	w , R fx	fy

Output: cRCt [ ZQ½x�=hxN þ 1i ¼ Eð pk;M [ Rhout	wout Þ, in RC format

function RT-CRF-RC (ct , h, w, fx fy)

hout  h� fx þ 1
wout  w� fy þ 1
onull  wout � w
for i 0; hout do

bitmask½t�i  fi � wout � t , wout � ðiþ 1Þg
rowi  cCRFt � ði � onullÞ
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Appendix A. Baseline convolution
algorithms

In this appendix we overview the base algorithms upon which

we improve the proposed in Section 3.2. First we describe the base

convolution algorithm (Section A.1), its base result transformation

(Section A.2 and the introduction of Stride (Section A.3) and

padding (Section A.4).
cRCt ¼ cRCt � ðrowi � bitmask½t�iÞ
end for

return cRCt
end function
A.1. Convolution

We propose a general algorithm that permits the application of the

convolution operation to arbitrary matrices using SIMD operations. As

a starting point, we based the algorithm on examples proposed for

matrices of 3	 3 using kernel filters of 2	 2 (18).

The algorithm takes as input a plaintext filter F [ R fx	fy of

dimensions fx 	 fy . The filter is applied to a ciphertext vector

ct [ ZQ½x�=hxN þ 1i (in RC format) that corresponds to an

encrypted input matrix, i.e., ct ¼ E(pk, M [ Rh	w), with pk
being the encryption key and M the input data in cleartext. The

algorithm leverages the fact that the dimensions of filters are

shorter than input matrices and that we can operate them in

plaintext. Thus, it computes the convolution between each pixel

of the filter and the input matrix (i.e., represented by a

ciphertext) and adds the partial results for each pixel. The

algorithm is described in Algorithm 11.

Depending on whether we use stride or not, we consider a

different result layout. In our work, we name two, the

Convolution Resulting Format (CRF) for non-stridden

convolution and the Stridden Convolution Resulting Format

(SCRF) for stridden convolutions. These layouts include onull
meaningless values between the values of the result (wout)

designated by the input matrix M [ Rh	w and filter size

F [ R fx	fy . Generally, these formats are not valid for

consecutive operations (layers), therefore Result Transformation

algorithms are needed, and we describe them next.
A.2. Result transformation for CRF
format

In the CRF format, the amount of onull values is given by

wout ¼ w� fy þ 1 and onull ¼ w� wout ¼ fy � 1. Therefore, a
Algorithm 11 2D Convolution

Input: ct [ ZQ½x�=hxN þ 1i ¼ Eð pk;M [ Rh	wÞ, F [ R fx	fy

Output: conv [ ZQ½x�=hxN þ 1i in CRF or SCRF format
function CONVOLUTION (ct ,F )

for {i 0; fx do
for (j 0; fy do

rot  ct � ði 
 wÞ þ j
conv ¼ conv � rot � F i;j

end for
end for
return conv

end function
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Result Transformation algorithm is developed to transform the

CRF format to the Row-Column format (named RT-CRF-RC).

The original layout splits the useful rows wout by onull values,

therefore, the algorithm creates bitmasks for the rows and shifts

them to the appropriate position on the resulting RC format.

This processing is described in Algorithm 12.
A.3. Stride

Sometimes, the input matrices to a convolutional layer are high

resoultion images (i.e., have long dimensions (h, w)). Processing

these images demands high performance cost, since the

convolutions extract features from small areas (as defined by the

kernel). To avoid processing large portions of the images, the

process can be optimized by skipping the result of parts of the

convolutions. The amount of data to be skipped is defined by a

stride tuple (sx , sy). That is, considering that in a normal

convolution the output shape is defined by

hout ¼ h� fx þ 2 � pþ 1 and wout ¼ w� fy þ 2 � pþ 1, stridden

convolutions reduce the output shape by a factor of the stride

(sx , sy) such that hout ¼ (h� fx þ 2 � pþ 1)=sx and

wout ¼ (w� fy þ 2 � pþ 1)=sy .

Given the convolution algorithm is based on the filter size, the

reduction of output elements does not affect the convolution

algorithm itself, but it does provide a different layout for the

output format. In such a layout, the elements are more scattered

than without stride. For reference, we name this layout Strided

Convolution Resulting Format (SCRF). As with the CRF format,

we cannot directly use the output layout in consecutive layers.

Thus, we propose an algorithm that translates from this layout to

the RC, dubbed RT-SCRF-RC, described in Algorithm 13. In

this algorithm, we use a formula to determine where the wout

elements for the stride output are placed and extract them

iterative addition through bitmasks.
A.4. SIMD padding

In many modern CNN architectures, it is common to chain

multiple convolutional layers. While in the first convolutional
frontiersin.org
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Algorithm 14 2D Padding

Input: ct [ ZQ½x�=hxN þ 1i ¼ Eð pk;M [ Rh	wÞ, in RC Format, p

Output: c padt [ ZQ½x�=hxN þ 1i ¼ Eð pk;M0 [ Rhpad	wpad Þ, in RC format
function PADDING (ct , p)

hpad  hþ 2 � p
wpad  wþ 2 � p
for i 0; h do

bitmask½t�i  fi � w � t � w � ðiþ 1Þg
shifti  ðwþ 1Þ þ ð p � iÞ
c padt ¼ c padt � ððct � bitmask½t�iÞ � shiftiÞ

end for

return c padt

end function

Algorithm 13 Result Transformation SCRF to RC

Input: cSCRFt [ ZQ½x�=hxN þ 1i in SCRF format, Rh	w , R fx	fy , ðsx ; syÞ, p
Output: cRCt in RC format

function RT-SCRF-RC (ct ; h;w; fx ; fy ; sx ; sy ; p)

hout  b
ch� fx þ 2 � pþ 1sx
wout  b
cw� fy þ 2 � pþ 1sy
for i 0; hout do

for j 0;wout do
bitmask½t�i  ft ¼ j � sy þ ði � w � sxÞg
shifti  t � ði 
 hout þ jÞ
cRCt ¼ cRCt � ðcSCRFt � bitmask½t�iÞ � shifti

end for
end for

return cRCt
end function
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layer it is possible to introduce padding in “cleartext” (i.e., the data

owner can add it at the end of the ciphertext before encryption), for

consecutive ones, it is required to do it privately.

The proposed algorithm takes a bidimensional linearized

ciphertext array ct [ ZQ½x�=hxN þ 1i ¼ E(pk, M [ Rh	w) and

pads it uniformly with p zeroes on each dimension. It initially
Frontiers in Cardiovascular Medicine 22
assumes a Row-Column format where the remaining entries of

the vector are set to zero. The algorithm extracts each row, and

computes the necessary shifting for a row, defined by the

formula shifti ¼ (wþ 1)þ (p � i) j 0 � i , h. The details are

described in Algorithm 14. This algorithm outputs a Row-

Column format directly usable by the convolution algorithm

described in Section 3.2.1. Furthermore, it does not affect the

Result Transformation algorithm.
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