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Background: Atrial fibrillation (AF) is the most common cardiac arrhythmia and
significantly increases the risk of stroke and heart failure (HF), contributing to a
higher mortality rate. Increasing age is a major risk factor for AF; however, the
mechanisms of how aging contributes to the occurrence and progression of AF
remain unclear. This study conducted weighted gene co-expression network
analysis (WGCNA) to identify key modules and hub genes and determine their
potential associations with aging-related AF.
Materials and methods: WGCNA was performed using the AF dataset GSE2240
obtained from the Gene Expression Omnibus, which contained data from atrial
myocardium in cardiac patients with permanent AF or sinus rhythm (SR). Hub
genes were identified in clinical samples. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also
performed.
Results: Green and pink were the most critical modules associated with AF,
from which nine hub genes, PTGDS, COLQ, ASTN2, VASH1, RCAN1, AMIGO2,
RBP1, MFAP4, and ALDH1A1, were hypothesized to play key roles in the AF
pathophysiology in elderly and seven of them have high diagnostic value.
Functional enrichment analysis demonstrated that the green module was
associated with the calcium, cyclic adenosine monophosphate (cAMP), and
peroxisome proliferator-activated receptors (PPAR) signaling pathways, and the
pink module may be associated with the transforming growth factor beta
(TGF-β) signaling pathway in myocardial fibrosis.
Conclusion: We identified nine genes that may play crucial roles in the
pathophysiological mechanism of aging-related AF, among which six genes
were associated with AF for the first time. This study provided novel insights into
the impact of aging on the occurrence and progression of AF, and identified
biomarkers and potential therapeutic targets for AF.
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Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia

and increases the risk of myocardial infarction (MI), heart failure

(HF), and stroke, contributing to a higher mortality rate (1).

Increasing age is a prominent risk factor for AF, and

approximately 70% of individuals with AF are between the ages

of 65 and 85 years (2, 3). One in three individuals of European

descent over the age of 55 has AF (4). With the aging

population, the prevalence of AF and the absolute number of AF

patients will continuously increase worldwide in the coming

decades. With the continuous development and promotion of

new technologies, such as radiofrequency ablation (RA) surgery

and left atrial appendage closure (LAAC), treatment options for

AF have evolved considerably. However, the mechanisms of how

aging contributes to the development and progression of AF are

still unclear. Aggressive antithrombotic therapy effectively

prevents AF complications, but the low awareness of AF results

in some patients not receiving timely and effective treatment,

eventually causing strokes or death (5). In addition, paroxysmal

and asymptomatic AF cannot be easily diagnosed using

electrocardiography (ECG) and Holter monitoring (6). Thus,

biomarkers for AF screening are urgently necessary.

AF is accompanied by a complex biological process under the

synergistic action of multiple genes (7, 8). The traditional biological

methods to study the expression and function of many genes

cannot reveal a more comprehensive systemic behavior through

gene interactions. Genetics plays an important role in studying

the etiology of many complex diseases. Individual genes do not

work alone but interact with other genes to influence human

health. Studies have shown that each gene interacts with an

average of 4–8 other genes and is involved in ten biological

functions (9). Gene networks can predict the function of new

genes and identify hundreds of genes associated with complex

diseases, thus, predicting relevant targets for therapeutic

intervention in diseases. Weighted gene co-expression network

analysis (WGCNA) is a commonly used method for constructing

gene networks, detecting gene modules, and identifying hub

genes in modules (10). The WGCNA has been widely used to

identify key genes involved in human disease progressions, such

as cancer, Alzheimer’s disease (AD), and mental disorders.

Moreover, WGCNA has been validated as a valuable method to

identify the underlying mechanisms, potential biomarkers, or

therapeutic targets by focusing on key modules (11–13). Previous

studies on the mechanisms of AF have concentrated on electrical

and structural remodeling, with relatively few identifying

comprehensive regulatory networks (14, 15). Li et al. (16)

screened several AF-related genes and pathways using the

WGCNA method and performed preliminary validation at the

animal level. In contrast, this study focused on the differences in

the expression of key genes between elderly patients with AF and

non-AF patients.

The present study used the GSE2240 dataset downloaded from

the Gene Expression Omnibus (GEO) database to perform

WGCNA to identify the AF closely associated gene modules for
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further analysis of Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG). Hub genes in the modules

highly associated with AF were identified, and the biological

functions and pathways of genes in the key modules were

analyzed. Quantitative reverse transcription polymerase chain

reaction (RT-qPCR) was used to detect peripheral blood

leukocytes in elderly AF patients and controls to verify the

results of the hub genes in critical modules. This study revealed

the potential regulatory mechanisms underlying aging in AF and

identified novel biomarkers and therapeutic targets.
Materials and methods

Dataset information

The AF dataset, GSE2240, was obtained from the National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/). GSE2240

contained data on 30 right atrial appendages from 10 patients

with permanent AF, defined as AF duration longer than 3

months, and 20 patients with sinus rhythm (SR), with no history

of AF.
Data pre-processing

Raw data were pre-processed identically R for background

correction and normalization. R package annotation was

conducted to match probes and gene symbols, and the probes

matching several genes were removed. The median was regarded

as the final expression value for the gene matched by multiple

probes. We calculated the standard deviation (SD) for each gene

and ranked them from the largest to the smallest, and the top

5000 genes were chosen for WGCNA refer to the official tutorials.
Construction of the weighted gene co-
expression network

A gene co-expression network was constructed using the R

package WGCNA (10, 17). In this analysis, nodes represented

genes, and edges represented the degree of co-expression. Firstly,

the hclust function was used to cluster the samples to determine

whether there were outliers samples. Then, weighted correlation

coefficients were introduced to calculate the adjacency matrix

of the expression profile genes. The co-expression similarity

between genes i and j was defined as Sij = |cor(i,j)|. The

correlated adjacency of the genes was further analyzed using the

power function: aij = |Sij|
β. After that, soft threshold β was chosen

within a specific range to satisfy the scale-free network and

better network connectivity. Fit index R2 > 0.85 was set to make

the connections between genes obey the approximate scale-free

network distribution. And the pickSoftThreshold function was

applied to automatically filter the appropriate soft threshold β.

Finally, the blockwiseModules function was used for network
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construction and module detection to generate the topological

overlap matrix (TOM) with a minimum module size of 50 and a

merge cut height of 0.25 for co-expressed gene modules. Based

on the heterogeneity of TOM, the genes with similar expression

patterns were divided into the same module by means of average

link hierarchical clustering, and the gene modules were identified

by dynamic shearing tree method.
Correlation analysis of co-expression
modules with clinical traits

Gene modules are clusters of genes that are closely related to

co-expression. WGCNA uses a hierarchical clustering approach

to identify gene modules and represents each cluster with a

different color. Genes not assigned to any module are placed in

gray modules. Principal component analysis was performed for

each module, and the module eigengenes (MEs) were calculated

using the first principal component representing the overall

expression level of the module. Module-trait correlation

coefficients were calculated to provide a heat map of the

correlation coefficients between modules and traits (18). Then,

we screened the gene modules significantly associated with the

traits using the eigenvectors of modules, correlation coefficients

of traits, and module significance (P < 0.05). The values of

gene significance (GS) and module membership (MM) were

calculated. GS represents the correlation between gene expression

and traits within the calculated module, and MM represents the

correlation coefficient between the expression of a gene and

the expression of the main component of the gene within

the module. Finally, the list of genes calculated by the

networkScreening function was screened by setting the value

range of GS, MM, and q.weighted to identify and characterize

the key hub genes.
Network visualization and functional
enrichment analysis

Gene modules significantly associated with traits were selected,

and network maps were drawn by weighted co-expression

relationships between genes using the Cytoscape software.

Functional annotation analysis of genes in the core module based

on the Gene Ontology (GO) database and signaling pathway

enrichment analysis of genes in the core module based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

were performed to determine the biological functions and

potential biological pathways of genes in the trait-related modules.
Validation of the clinically related genes by
RT-qPCR

All protocols and the use of human blood samples were in

accordance with the Declaration of Helsinki and approved by the

Human Ethics Review Committee of the Chinese PLA General
Frontiers in Cardiovascular Medicine 03
Hospital. All leukocyte samples were obtained from the PLA

General Hospital Biosample Bank, including 9 elderly AF

patients and 9 elderly non-AF controls. Blood samples were

collected in EDTA anticoagulation tubes. Leukocytes were

isolated from human peripheral blood by Ficoll density gradient

centrifugation according to the manufacturer’s instructions and

stored at −80°C until further analysis. Detailed patient

characteristics are summarized in Supplementary Table S1.

Total RNA was extracted from leukocytes using an

RNAprep Pure Blood Kit (TIANGEN Biotech Corporation,

China), according to the standard protocol. Absorption

spectrophotometry using NanoDrop-1,000 (Thermo Fisher

Scientific, Yokohama, Japan) was used to determine RNA

concentrations and purity (260/280 ratio >1.8). The RNA (1 μg

per sample) was reverse transcribed using the High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems, CA, USA)

in a total reaction volume of 20 μl, following the manufacturer’s

instructions. Then, RT-qPCR was performed as follows: pre-

denatured at 95°C for 30 s; denatured at 95°C for 5 s, and 40

cycles at 60°C for 30–34 s. All experiments were performed in

triplicates. The housekeeping gene GAPDH was used as the

endogenous reference. The primer sequences of PTGDS, COLQ,

ASTN2, VASH1, RCAN1, AMIGO2, RBP1, MFAP4, and

ALDH1A1 used in this study are listed in Supplementary

Table S2. The relative mRNA expression levels were calculated

using the 2−ΔΔCt method. A flow chart of this study is shown in

Figure 1.
Statistical analysis

Statistical analyses were performed using SPSS statistical

package (version 21.0; SPSS Inc., Chicago, USA). Continuous

variables were presented as mean ± standard error (SE), and

categorical variables were expressed as percentages. Student’s t-

test or the chi-square test was used to determine the differences

between AF patients and controls. The sample size was analyzed

by PASS (version 15.0; NCSS, USA). Differences were considered

statistically significant at P < 0.05.
Results

Construction of WGCNA network

Gene expression values of all samples were subjected to sample

clustering and phenotypic heat map analysis. As shown in

Figure 2A, there were no significant outlier samples. Therefore,

all the samples were included in the subsequent data analysis.

Using the WGCNA, we calculated and selected β = 8 as the soft

threshold for the dataset based on the scale-free network fit

index and average connectivity (Figures 2B,C). The adjacency

and TOM matrices between genes were calculated. A hierarchical

clustering tree of the genes was constructed based on the TOM

matrix. Then, the genes were divided into 19 modules using the

dynamic shearing tree method. Each module was represented by
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FIGURE 1

The flowchart of analysis process.
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a colored rectangle, and the vertical coordinates were the gene

occupancy ratio. The tree branches correspond to 10 different

gene modules, each leaf on the tree corresponds to a gene, and

similar genes are clustered into modules of the same color

(Figures 3A,B). The module name and the number of genes

included in each module were as follows: turquoise (1,617), blue

(513), brown (489), yellow (430), green-yellow (105), black (188),

magenta (163), pink (177), red (199), purple (135), yellow (332),

grey (21), tan (95), salmon (92), cyan (91), midnight blue (79),

light cyan (68), grey60 (68), and light green (58). Genes from

each module are listed in Supplementary Table S3. The genes in

the gray module could not be clustered to any other module and

were removed from the subsequent analysis.
Correlation between modules and clinical
traits

The correlation heat map between co-expression modules and

clinical traits was drawn by calculating the relationship between

each gene module and clinical traits. Hierarchical clustering and

heat map analyses were performed for each module. The

correlations between the modules are shown in Figure 4A. The

pink and green modules are distributed in different clustering

subtrees. In this study, the pink module exhibited the highest
Frontiers in Cardiovascular Medicine 04
positive correlation (r = 0.76, P < 0.0001) with the SR phenotype,

and the green module exhibited the highest negative correlation

with the AF phenotype (r =−0.8, P < 0.0001) (Figure 4B).

Therefore, we focused on these two modules in the subsequent

analysis.

The pink and green modules were used as key modules for GS

and MM analyses, respectively. The correlation coefficient between

GS and MM was r = 0.75, P < 0.0001 (Figure 5A) and r = 0.65, P <

0.0001 (Figure 5B) for the green and pink modules, respectively.

Figures 5C,D represent the heat map of eigengene expression for

the two modules. Figures 5E,F show the heat and clustering map

between the genes of the two modules and each clinical trait.

Finally, three criteria were used to screen for key hub genes in

the pink and green modules: GS > 0.65, MM > 0.8, and q.weighted

<0.01. After excluding non-coding genes, 16 hub genes were

screened in the green module (Table 1) and 23 hub genes in the

pink module (Table 2).
Network visualization and functional
enrichment analysis

The size of the node shape represents the number of edges

connected to that node, and the width of the edge represents the

weight of the connection between two nodes. GO enrichment
frontiersin.org
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FIGURE 2

Data preparation of co-expression network. (A) Clinical feature heatmap and hierarchical clustering dendrogram. The degree of heatmap from white to
dark red recognizes low to high levels of clinical characteristics, and gray indicates unavailable data. The clinical feature includes sex, age, ejection fraction
(EF), SR and AF. (B,C) A scale-free co-expression network estimated by the soft-thresholding powers, and the best power value β was obtained as 8.
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analysis was performed on the hub genes in the two modules

separately; the respective module genes are shown in

Figure 6. The gene functions of the green module were enriched

in cyclic adenosine monophosphate (cAMP)-mediated

signaling (GO:0019933), activation of protein kinase A activity

(GO:0034199), regulation of inflammatory response

(GO:0050727), cellular calcium ion homeostasis (GO:0006874),

and other biological processes. In addition, the gene functions of

the pink module were mainly enriched in the reactive oxygen

species (ROS) metabolic process (GO:0072593), Wnt signaling
Frontiers in Cardiovascular Medicine 05
pathway (GO:0060071), aging (GO:0007568), calcium ion

transport (GO:0006816), and regulation of mitochondrial

membrane potential (GO:0051881).

The KEGG pathway analysis showed that the green module

was mainly enriched in the calcium signaling pathway

(hsa04020), cAMP signaling pathway (hsa04024), and

peroxisome proliferator-activated receptors (PPAR) signaling

pathway (hsa03320). The pink module gene was mainly enriched

in the transforming growth factor beta (TGF-β) signaling

pathway (hsa04350). The corresponding data are presented in
frontiersin.org
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FIGURE 3

Construction of co-expression network. (A) Nineteen co-expression modules constructed by clustering dendrograms and partitioned into different
module colors (non-clustering genes shown in gray). (B) The bar plot of numbers in modules.
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Supplementary Tables S4, S5. The screened hub gene list was

inputted into the Cytoscape software. The interaction

relationship graph between the co-expression network genes was

made according to the weights of the genes, as shown in

Figures 7A,B.
Frontiers in Cardiovascular Medicine 06
Validation of hub genes in human peripheral
blood leukocytes

We performed RT-qPCR to detect gene expression levels in

peripheral blood leukocytes collected from elderly AF patients and
frontiersin.org
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FIGURE 4

Correlation between co-expression modules and clinical traits. (A) Hierarchical clustering trees and heatmap of different modules. The red shows positive
correlation and blue shows negative correlation. (B) Correlation relationship between each network module and traits. The values in the matrix cell
indicate the correlation coefficient and the related p-value.
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FIGURE 5

Correlation between green and pink modules with SR and AF. (A,B) Scatter plot in green (A) and pink (B) modules with GS (y-axis) and MM (x-axis). (C,D)
The expression level of genes in green (C) and pink (D) modules. In the heatmap, green indicates the low expression and red indicates the high expression
for samples. (E,F) Heatmap and clustering map of clinical traits in green (E) and pink (F) modules. In the clustering map, the varying shades of color
recognizes low to high levels of expression in each clinical trait.
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TABLE 1 Hub genes screened in the green module.

Gene GS q.Weighted p.Weighted
SFRP5 0.76 6.17 × 10–7 3.27 × 10–9

ASTN2 0.78 3.80 × 10–7 1.46 × 10–9

IGFBP2 0.78 1.14 × 10–6 1.03 × 10–8

GPR22 0.83 6.15 × 10–7 3.02 × 10–9

PPP1R1A 0.76 2.00 × 10–7 2.99 × 10–10

COLQ 0.79 2.50 × 10–7 5.94 × 10–10

COG5 0.79 2.00 × 10–7 2.98 × 10–10

DDAH1 0.69 2.50 × 10–7 5.87 × 10–10

VASH1 0.85 1.74 × 10–5 4.13 × 10–7

RCAN1 0.78 2.50 × 10–7 6.95 × 10–10

MARCH3 0.70 6.48 × 10–6 1.09 × 10–7

RPS6KA5 0.69 4.98 × 10–5 1.67 × 10–6

DGKD 0.70 6.65 × 10–6 1.14 × 10–7

ART3 0.74 7.94 × 10–5 3.25 × 10–6

C9orf16 0.71 5.06 × 10–7 2.35 × 10–9

PTGDS 0.69 7.19 × 10–6 1.29 × 10–7

TABLE 2 Hub genes screened in the pink module.

Gene GS q.Weighted p.Weighted
ALDH1A1 0.72 3.80 × 10–7 1.36 × 10–9

ABCA8 0.71 2.50 × 10–7 6.34 × 10–10

FBLN1 0.72 1.92 × 10–5 4.77 × 10–7

AKAP12 0.66 3.53 × 10–5 1.10 × 10–6

PLP1 0.75 2.50 × 10–7 4.81 × 10–10

C7 0.66 5.32 × 10–6 8.29 × 10–8

MFAP4 0.71 8.64 × 10–7 5.72 × 10–9

RBP1 0.71 1.72 × 10–6 1.95 × 10–8

PPAP2B 0.70 7.50 × 10–7 4.44 × 10–9

EPB41L2 0.69 1.03 × 10–6 8.45 × 10–9

CD34 0.66 0.000123 5.97 × 10–6

AMIGO2 0.75 6.47 × 10–7 3.59 × 10–9

MCF2L 0.80 6.17 × 10–7 3.29 × 10–9

FAT4 0.69 9.29 × 10–7 6.34 × 10–9

DCLK1 0.68 5.58 × 10–6 9.06 × 10–8

TGFBR2 0.74 8.23 × 10–7 5.27 × 10–9

AMD1 0.73 5.06 × 10–7 2.38 × 10–9

TIAM1 0.68 8.26 × 10–6 1.59 × 10–7

GRIP2 0.73 7.50 × 10–7 4.48 × 10–9

ID2 0.69 1.60 × 10–5 3.65 × 10–7

LPAR1 0.67 3.48 × 10–5 1.07 × 10–6

ZCCHC24 0.71 1.02 × 10–6 8.05 × 10–9

DCN 0.71 1.60 × 10–5 3.70 × 10–7

CACNA2D3 0.67 1.51 × 10–5 3.39 × 10–7

PTTG1 0.72 7.59 × 10–6 1.39 × 10–7

CALHM2 0.65 0.00028 1.64 × 10–5
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controls to validate the hub genes further. As shown in Figure 8A, we

found that the expression of PTGDS, COLQ, ASTN2, VASH1, and

RCAN1 genes from the green module was significantly increased in

the AF group compared with those in the control (SR) group. In

contrast, the expression of AMIGO2, RBP1, MFAP4, and ALDH1A1

genes in the pink module was decreased in the AF group compared

with those in the SR group, suggesting that these genes can

potentially be involved in the molecular mechanisms of AF.

Furthermore, based on gene expression levels, receiver

operating characteristic (ROC) analysis was used to investigate
Frontiers in Cardiovascular Medicine 09
whether the nine genes could predict AF in the elderly. As

shown in Figure 8B, the area under the curve (AUC) and P

value of PTGDS, COLQ, ASTN2, VASH1, and RCAN1 from the

green module were 0.8272 (0.0193), 0.7840 (0.0423), 0.8765

(0.0071), 0.7901 (0.0380), and 0.8519 (0.0118), respectively. The

AUC and P value of AMIGO2, RBP1, MFAP4, and ALDH1A1 in

the pink module was 0.7654 (0.0576), 0.8519 (0.0118), 0.7531

(0.0703), and 0.8765 (0.0071), respectively (Figure 8C). These

results indicate that the seven genes PTGDS, COLQ, ASTN2,

VASH1, RCAN1, RBP1, and ALDH1A1 could be gene markers to

differentiate AF patients and controls.
Discussion

AF results from multiple factors; thus, its mechanism is

complex. Genetic factors, advanced age, hypertension, and

diabetes can cause metabolic, electrical, and structural

remodeling of the myocardium, eventually leading to AF (7, 8,

19, 20). Aging is an important risk factor for AF, and most

patients with AF are elderly (2). The mechanisms and factors

that predispose the development, progression, and regression

during aging need to be urgently investigated. The study of

aging-related factors and the occurrence of AF has an important

role in revealing the pathogenesis of AF and providing a

theoretical and experimental basis for the early diagnosis and

targeted intervention of AF, which is of great importance.

The traditional gene-level analysis focuses more on strong-

effect genes. However, it is challenging to find weak-effect genes.

The systematic mining idea of WGCNA is a good complement

to the analysis of weak-effect genes. WGCNA strengthens the

correlations of strongly-correlated genes after power function

treatment. In contrast, the correlations of weakly-correlated genes

weaken significantly after power function treatment, thus making

the network relationships obey an approximate scale-free

network distribution (10, 21). Compared with conventional

clustering methods, scale-free network distribution is more

characteristic of biological data and can effectively restore the

role of genes in biological processes. Therefore, constructing a

WGCNA network can help identify and screen important

modules and hub genes associated with specific clinical traits.

In this study, RNA-seq datasets downloaded from the GEO

were analyzed using WGCNA, identified, and clustered into 19

color modules. The correlation between genes and clinical traits

was performed for each module. The green module was most

correlated with the AF phenotype, and the pink module was

most significantly correlated with the SR phenotype. Finally, 16

hub genes were screened from the green module, and 23 hub

genes from the pink module. In line with this finding (2, 22–26),

we observed that gene functions were mainly enriched in cAMP-

mediated signaling, activation of protein kinase A activity,

regulation of inflammatory response, and cellular calcium ion

homeostasis in the green module. The pink module gene

functions were mainly enriched in the ROS metabolic process,

Wnt signaling pathway, aging, calcium ion transport, and

regulation of mitochondrial membrane potential. In addition,
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FIGURE 6

Go and KEGG enrichment analysis of green and pink modules. (A) GO analysis of biological process of green module. (B) GO analysis of biological process
of pink module. (C) KEGG pathway analysis of green module. (D) KEGG pathway analysis of pink module. The size of the bras represents the number of
genes, and the color of the dots represents the −log10(P) value, the x-axis represents the RichFactor of genes.

FIGURE 7

Hub gene map of the green module (A) and pink module (B).
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KEGG pathway analysis showed that the green module gene was

mainly enriched in the calcium signaling pathway, cAMP

signaling pathway, and PPAR signaling pathway, while the pink

module gene was mainly enriched in the TGF-β signaling

pathway, suggesting that the main causes of AF were abnormal

calcium homeostasis, energy metabolism, and fibrosis, which is

consistent with previous studies (7, 8, 19, 20).
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We screened 16 hub genes in the green and 23 in the pink modules

andvalidated thisfinding inperipheral blood leukocytes fromelderlyAF

patients and controls. RT-qPCR showed that PTGDS, COLQ, ASTN2,

VASH1, and RCAN1 were highly expressed in the AF group, whereas

AMIGO2, RBP1, MFAP4, and ALDH1A1 were highly expressed in the

control group. In addition, ROC analysis indicated that seven of

these genes have high diagnostic value as biomarkers for AF.
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FIGURE 8

Validation of hub genes in human peripheral blood leukocytes. (A) Relative mRNA expression level of nine hub genes in AF patients and controls (* P <
0.05, **P < 0.01). (B) ROC curve for five hub genes from the green module. (C) ROC curve for four hub genes from the pink module.
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PTGDS, a member of the lipocalin superfamily, plays dual roles

in prostaglandin metabolism and lipid transport, which are

involved in various cellular processes. PTGDS expression is

correlated with advanced tumor stages, metastasis, and poor

prognosis (27–29). Mallmann et al. have reported that PTGDS

also regulates voltage-gated CaV2.2 Ca2+ channels (30, 31).

However, the role of PTGDS in AF has not been investigated.

Studies have shown that mutations in COLQ can lead

to congenital myasthenic syndrome (CMS), which causes

cardiac autonomic dysfunction (32, 33). Interestingly,

Çubukçuoğlu et al. (34) found that the expression of COLQ was

higher in degenerative mitral regurgitation patients with AF than

in those with SR (P = 0.003), which is consistent with the results of

our study.

ASTN2, a large vertebrate-specific transmembrane protein, is

primarily expressed in the developing and adult brain, with the

highest levels detected in the cerebellum (35, 36). Behesti et al.

(37) demonstrated that ASTN2 binds to and regulates the surface

expression of multiple synaptic proteins in postmigratory

neurons by endocytosis, resulting in the modulation of synaptic

activity. In addition, by systematic analysis, Burt et al. (38) found

that ASTN2 has pleiotropic effects on cardiometabolic and

psychiatric traits. However, ASTN2 role in AF remains unclear.
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VASH1 is an endothelium-derived negative feedback regulator

of angiogenesis (39). VASH1 is involved in tumorigenesis,

atherosclerosis, age-dependent macular degeneration, and diabetic

retinopathy (40, 41). Wang et al. (42) reported that the

expression of VASH1 increased rapidly in the ischemic

myocardium following AMI. However, the role of VASH1 in AF

has not been explored.

RCAN1, previously known as DSCR1/MCIP1/Calcipressin-1/

Adapt78 in mammals, belongs to a family of endogenous

regulators of calcineurin activity (43). RCAN1 has been

implicated in maintaining heart function. Mutations in RCAN1

can lead to congenital heart disease (44). In addition, RCAN1

contributes to the maintenance of mitochondrial function and

modulates tissue damage during myocardial ischemia-reperfusion

(45). Xiao et al. (46) recently reported that RCAN1 might be a

novel biomarker for persistent AF.

AMIGO2, a novel member of the gene family encoding type I

transmembrane proteins, has been studied in cancer research (47).

Ma et al. (48) showed that the loss of AMIGO2 causes dramatic

damage to cardiac preservation after ischemic injury. However,

the role of AMIGO2 in AF has not been studied.

RBP1, an intracellular chaperone that binds retinol and retinal

with high affinity, protects retinoids from non-specific oxidation
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and delivers retinoids to specific enzymes (49). Yu et al. (50) found

that altered RBP1 expression affects epithelial cell retinoic acid,

proliferation, and microenvironment. However, its role in AF

remains unclear.

MFAP4, also known asMAGP-36 in some species, is produced by

vascular smoothmuscle cells and is highly enriched in the blood vessels

of the heart and lungs, contributing to the structure and function of

elastic fibers (51, 52). MFAP4 is involved in cardiac remodeling and

its deletion attenuates the progression of angiotensin II-induced atrial

fibrosis and AF (53). In addition, MFAP4 is associated with

aneurysms and peripheral arterial diseases (54).

ALDH1A1, a member of the ALDH family, is highly expressed

by stem cells in cancer (55). Da et al. (56) recently found that

ALDH1A1 was associated with cardiac development and

protection after MI. However, the role of ALDH1A1 in AF has

not been explored.

In summary, WGCNA analysis showed that the green and pink

modules were highly relevant to AF. Hub genes screened from the

modules, such as PTGDS, COLQ, ASTN2, VASH1, RCAN1,

AMIGO2, RBP1, MFAP4, and ALDH1A1, may be involved in the

occurrence and progression of AF by regulating biological processes,

including calcium homeostasis, energy metabolism, fibrosis,

inflammatory response, and mitochondrial function. Experiments

using samples of patients further validated the differential

expression of hub genes screened by WGCNA analysis in different

groups and explored their feasibility as biomarkers of AF. This study

also identified six novel AF-related genes not previously reported,

such as PTGDS, ASTN2, VASH1, AMIGO2, RBP1, and ALDH1A1,

which may be important regulators of AF. However, given the

limited samples of vitro experiment in our study, the role of hub

genes and mechanisms need to be further identified through in the

larger vitro or vivo study(such as heart tissue of AF patients), in

order to pave the way for the biomarkers development of AF. In

conclusion, our findings provide a theoretical and experimental

basis for screening and preventing AF.
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