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Introduction: Recent advances in machine learning provide new possibilities to
process and analyse observational patient data to predict patient outcomes. In this
paper, we introduce a data processing pipeline for cardiogenic shock (CS)
prediction from the MIMIC III database of intensive cardiac care unit patients with
acute coronary syndrome. The ability to identify high-risk patients could possibly
allow taking pre-emptive measures and thus prevent the development of CS.
Methods: We mainly focus on techniques for the imputation of missing data by
generating a pipeline for imputation and comparing the performance of various
multivariate imputation algorithms, including k-nearest neighbours, two singular
value decomposition (SVD)—based methods, and Multiple Imputation by Chained
Equations. After imputation, we select the final subjects and variables from the
imputed dataset and showcase the performance of the gradient-boosted
framework that uses a tree-based classifier for cardiogenic shock prediction.
Results: We achieved good classification performance thanks to data cleaning and
imputation (cross-validated mean area under the curve 0.805) without
hyperparameter optimization.
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Conclusion: We believe our pre-processing pipeline would prove helpful also for other
classification and regression experiments.
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cardiogenic shock
TABLE 1 Initial cohort selection based on ICD9-coded diagnoses and
procedures.

ICD9
diagnosis

title patients controls

78551 Cardiogenic shock x

78550 Shock, unspecified x

41000–41092 Various versions of Acute
myocardial infarction

x x

41189 Other acute and subacute forms of
ischemic heart disease, other

x x

4139 Other and unspecified angina
pectoris

x x

ICD9
procedures

title patients controls

0066 Percutaneous transluminal coronary
angioplasty (PTCA)

x x

3604 Intracoronary artery thrombolytic
infusion

x x

3606 Insertion of non-drug-eluting x x
1. Introduction

Modern technology, increasing computing power, and

advances in machine learning provide new possibilities to process

and extract maximum knowledge from available patient data that

can improve healthcare, patient outcomes (1–4), and new

frontiers in predictive medicine (5).

The MIMIC dataset (Medical Information Mart for Intensive

Care) (6) is a widely-used public data source including over fifty

thousand de-identified electronic health records (EHR) of patients

admitted to critical care units at Beth Israel Deaconess Medical

Center in Boston, MA, the USA, from 2001 to 2012. This database

contains a large amount of clinical data, which resulted in several

analytic studies in cardiovascular medicine (7–9).

Unfortunately, the data analysis requires a cautious pre-analytic

phase of meticulous data cleaning and processing which may be

particularly challenging in multi-national observational studies and

registries (10). In this paper, we describe in detail our methodology

for processing the MIMIC dataset as a part of developing a scoring

system for predicting cardiogenic shock (CS) in patients suffering

from acute coronary syndrome (ACS) (11).

Despite improvements in diagnostic and treatment options, CS

still affects 10% of ACS patients with unacceptably high, reaching

nearly 50% mortality (12). CS is not only an isolated decrease in

cardiac function but a rapidly progressing multiorgan

dysfunction accompanied by severe cellular and metabolic

abnormalities, and when developed, even the elimination of the

underlying primary cause is not to reverse this vicious circle

(13). The aim of the STOPSHOCK project is to derivate and

validate a simple scoring system able to identify high-risk

patients prior to the development of CS. Such patient

stratification could allow us to take pre-emptive measures, such

as the implantation of percutaneous mechanical circulatory

support, and thus prevent the development of CS, ultimately

leading to improved survival of ACS patients.

coronary artery stent(s)

3607 Insertion of drug-eluting coronary
artery stent(s)

x x

3609 Other removal of coronary artery
obstruction

x x

8855 Coronary arteriography using a
single catheter

x x

8856 Coronary arteriography using two
catheters

x x

8857 Other and unspecified coronary
arteriography

x x

3722 Left heart cardiac catheterization x x

3723 Combined right and left heart
cardiac catheterization

x x

total n. 703 3056

ICD, international classification of diseases.
2. Methods

2.1. First cohort selection

In our study, we included patients presenting with ACS

undergoing cardiac catheterization. The cohort was then divided

into two groups: a patient group, comprising patients who

developed cardiogenic shock during hospitalization, and a control

group, comprising patients who did not develop cardiogenic shock.

The patients were selected and assigned to a cohort based on the

diagnosis and procedures undertaken during the hospitalization.
02
The identification of diagnosis and management was made

using the ICD9 coding scheme (14).

The ICD9 codes for both cohorts are detailed in Table 1.

Briefly, the control group included patients with acute

myocardial infarction, ischemic heart disease, and angina pectoris

undertaking cardiac catheterization, but excluded cardiogenic or

unspecified shock. Conversely, the patient group contained

patients who developed cardiogenic shock, in addition to the

myocardial infarction diagnoses and catheterization codes.

The final number of unique hospital stays for our control group

reached 3,056, while we included 703 hospital stays for the patient

group.

However, based on coded data, it was not possible to reliably

distinguish between patients who were already admitted with

shock and those who developed shock during hospitalization.

Several methods were tested based on the variation of patient

variables (blood pressure, heart rate, use of inotropes, fluid
frontiersin.org
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replacement therapy, or similar) (15, 16). However, none of these

methods provided reliable results when verified based on textual

hospitalization summaries.

Ultimately, we analyzed individual discharge reports provided

within the dataset. A total of 703 summaries were manually

sorted, which resulted in 172 unique hospital admissions of

patients who developed cardiogenic shock during the hospital

course.
2.2. Data inspection

All available data were inspected, plotted, and sorted based on

missing values. Potentially relevant clinical variables to the aim of

the study were selected. As several variables are stored in the

database using multiple codes for the same variable, the ones

selected were clustered into aggregated variables. For example,

systolic blood pressure is available as Non-Invasive Blood Pressure

systolic, Arterial BP [Systolic], Manual Blood Pressure Systolic

Left, Manual Blood Pressure Systolic Right, Arterial Blood

Pressure systolic, ART BP Systolic, Manual BP [Systolic]. In our

case this clustering concerned mean, systolic and diastolic arterial

pressures. For this scoring system, the first recorded variables

were selected.
FIGURE 1

The percentage of missing values per variable in our selection of patients.
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When different units of measure were used, they were

converted to the international standard. Outliers were inspected

manually. Some values were manually corrected (e.g., 375 °C to

37.5 °C). Extremal values above the common threshold—clearly

incorrectly entered values (e.g., the body temperature of 5 °C)

were deleted.

In the preselected 84 variables, 7.86% of missing values were

found (Figure 1) and the missing data were missing completely

at random (17).
2.3. Pre-imputation cohort and variables
selection

In order to improve the predictive ability of the scoring system,

missing values of preselected features were imputed. Many

different univariate (18, 19) and multivariate techniques (18, 20)

have been described for data imputation. We used multivariate

techniques considering the rate of missing values that were

missing completely at random and the relatively high number of

variables. Additionally, multivariate imputation techniques can

accommodate and mimic interdependencies between variables

(21), which seemed more appropriate for the current study. To

improve the predictive value of multivariate imputation
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techniques, we decided to enlarge our initial groups, include more

variables, and expand our original dataset both in terms of patients

and variables included.
TABLE 2 Overview of the variables from the MIMIC III database that were
used as a pre-imputation dataset.

variable missing
values (%)

variable missing
values (%)

Pre-Admission
Intake

83.2 RBC 2.68

BSA 46.99 WBC (4–11,000) 2.55

Admit Hit 46.92 Braden Score 2.52

Pain Cause 33.97 Activity 2.46

Arterial BP [Systolic] 30.66 Hemoglobin 2.44

Arterial BP Mean 30.49 Orientation 2.33

Pain Management
[Route/Status #1]

30.1 Glasgow Coma Scale 2.29

Arterial BP
[Diastolic]

29.49 Heart Rhythm 2.24

Admit Wt 23.31 Platelets 2.15

age 23.5 Oral Cavity 2.15

sex 17.74 Bowel Sounds 2.11

Procedures 17.8 Sodium (135–148) 2.0

Riker-SAS Scale 15.63 Abdominal Assessment 1.92

Calcium (8.4–10.2) 14.15 Level of Conscious 1.89

Phosphorous (2.7–4.5) 13.6 BUN (6–20) 1.87

Marital Status 13.45 Glucose (70–105) 1.87

O2 Flow (lpm) 12.38 RLL Lung Sounds 1.85

Service Type 11.19 RUL Lung Sounds 1.85

PT (11–13.5) 9.42 LUL Lung Sounds 1.83

INR (2–4 ref. range) 9.23 Respiratory Pattern 1.83

PTT (22–35) 9.8 Creatinine (0–1.3) 1.83

Religion 8.27 LLL Lung Sounds 1.81

Pain Location 8.3 Hematocrit 1.57

Temperature F 6.88 Potassium (3.5–5.3) 1.55

NBP [Systolic] 6.59 DG: Tobacco 0.0

Temperature C 6.46 DG: Pure
hypercholesterolem

0.0

NBP Mean 6.38 EKG0 0.0

Position 5.81 DG: Hypertension
NOS

0.0

Behavior 5.72 Dorsal PedPulse [Left] 0.0

PostTib. Pulses
[Right]

5.35 DG: Hyperlipidemia
NEC/NOS

0.0

NBP [Diastolic] 4.98 DG: Fam hx-ischem
heart dis

0.0

Magnesium (1.6–2.6) 4.48 DG: CHF NOS 0.0

PostTib. Pulses [Left] 4.31 EKG 0.0

Urine [Color] 3.58 Allergy 3 0.0

Urine [Appearance] 3.74 Ectopy Type 0.0

Activity Tolerance 3.55 Diet Type 0.0

SpO2 3.44 Dorsal PedPulse
[Right]

0.0

Assistance Device 3.33 Allergy 1 0.0

Pain Type 3.18 Ectopy Frequency 0.0

Heart Rate 2.89 Allergy 0.0

Chloride (100–112) 2.76 O2 Delivery Device 0.0

Carbon Dioxide 2.72 Readmission 0.0

Respiratory Rate 2.7 Pain Present 0.0

The table shows the percentage of missing values per variable in our selection of

4595 patients.

Frontiers in Cardiovascular Medicine 04
We merged patient and control groups into one cohort for the

imputation. Next, we included similar patients by reducing the

inclusion criteria to:

Patients with at least one ICD9 diagnosis code:
78551: Cardiogenic shock

78550: Shock, unspecified

41000–41092: various versions of Acute myocardial

infarction

41189: Other acute and subacute forms of ischemic heart

disease, other

4139: Other and unspecified angina pectoris
The advantage of selecting patients with a related diagnosis

compared to random selection is a greater similarity of data,

which should theoretically result in higher imputation accuracy

(22).

As for additional variables used for the sole purpose of missing

data imputation, we included 19 clinically relevant additional

variables with minimal missing values. These 19 additional

variables are detailed in Table 2. The final pre-imputation

dataset contained 4,595 patients in one grouped cohort and 86

variables.
2.4. Data imputation

We utilized Multiple Imputation by Chained Equations

(MICE) (23–25) as our primary algorithm for the missing data

imputation. The MICE algorithm imputes missing data through

an iterative series of predictive models. In each iteration,

specified variables in the dataset are imputed using other

variables. These iterations are run until it appears that

convergence has been met. Gradient-boosted, tree-based

predictive models were implemented as a part of the LightGBM

package (26). Moreover, the predictive mean matching technique

(PMM) was also used during the imputation (27). PMM entails

the selection of a data point from the original, non-missing data

with a predicted value close to the predicted value of the missing

sample. The closest five values are chosen as candidates, from

which a value is sampled randomly. By using PMM, we could

correctly impute variables with the multimodal empirical

distribution. By exploiting the stochastic nature of tree-based

predictive models, we could impute multiple versions of the

dataset. This allowed us to run a sensitivity analysis and assess

the effect of missing data on our final classification model. As a

good balance between computational time and statistical power,

we decided to run the imputation ten times. In order to have a

benchmark for our stability analysis, we further selected three

additional imputation algorithms: k-Nearest Neighbors (KNN)

(28), “Soft Impute” (performs matrix completion by iterative soft

thresholding of SVD decomposition) (29), and “Iterative SVD”

(performs matrix completion by iterative low-rank SVD

decomposition) (30).
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2.5. Final cohort and variable selection

After successfully imputing all 13 datasets (10 with MICE, 1

with KNN, 1 with Soft Impute, and 1 with Iterative SVD), the

final selection of the control and patient group, and variables to

be used for the diagnostic model was made. Here, we used our

initial selection and discarded added patients and variables.
2.6. Computational methods

All analyses were performed in python version 3.8.13 (https://

www.python.org) with appropriate packages (pandas 1.4.2, scipy

1.8.0, pingouin 0.5.1, miceforest 5.4.0, lightgbm 3.3.2, seaborn 0.11.

2). The repository containing the analysis code will be available

after the finalization of this study or upon reasonable request.
3. Results

3.1. Imputed final dataset statistics

As the first step, the percentage of missing values of

preselected variables was plotted (cf. section Pre-imputation
FIGURE 2

Violin plots showing distributions of initially non-missing data (purple), imputed
method, we imputed ten datasets). The distributions are shown for a selection
Systolic Blood Pressure, and Riker-SAS scale.

Frontiers in Cardiovascular Medicine 05
cohort and variables selection). The results are shown in

Figure 1.

Evaluating the imputation quality is not straightforward, and

universally accepted pipelines do not exist (31). We opted for

visual assessment to qualitatively estimate the quality of

imputation and compare distributions of imputed data with

original, non-missing data employing the Kolmogorov-Smirnov

test (32) for distribution equivalent for the quantitative

assessment. The example of imputation quality for selected

variables is shown in Figure 2.

The MICE imputation algorithm correctly captured the data

distribution in most cases (Figure 2) including multimodal

distribution (e.g., O2 flow) differently from other imputation

techniques, such as Iterative SVD, KNN, or Soft Impute.

The quality of imputation on the whole dataset was performed

by comparing the distributions demonstrating approximately 20

significant differences between the original and imputed datasets.

At the same time, other methods exhibit almost twice as many

(Figure 3).

The right panel of Figure 3 shows the number of significant

differences per variable in all imputation methods. Variables with

a high number are “hard to impute”. Naturally, this correlates

with the percentage of initially missing data (cf. Figure 1), and

categorical variables with many different categories (e.g., Lung
data (blue), and all data (red) for three imputation methods (with the MICE
of variables: Heart rate, Respiratory rate, O2 flow [lpm], Glucose, Arterial
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FIGURE 3

The number of significant differences between original non-missing data and imputed data. Significance was estimated using a 2-sample Kolmogorov-
Smirnoff test with p < 0.05. P-values are corrected for multiple comparisons using a Benjamini-Yekutieli FDR procedure (32). Shown are counts of
significant differences per dataset (left panel) and variable (right panel).
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Sounds, Hearth Rhythm, Respiratory Pattern, and others) are

harder to impute. The ability to correctly impute a variable, as

shown in Figure 3, will be considered for a final variable selection.

Finally, we also visualized a detailed plot of the ability of our

imputation algorithms to estimate the variable distribution, as

shown in Figure 4. With very few exceptions, MICE-imputed

datasets generally show lower K-S statistics, therefore achieving a

better match between imputed and original distribution.

Overall, we observed the superior performance of the MICE

method, as for most of the variables, it provides distributions of

imputed values closer to the original (i.e., lower Kolmogorov-

Smirnoff statistic). However, some variables are better imputed

using alternative methods, e.g., Lung Sounds or Assistance

Devices.

Numerical variables were all unanimously imputed using the

MICE method. Moreover, the variables of medical importance

for cardiogenic shock classification (e.g., Heart Rate, O2 flow,

Glucose, O2 saturation) were all imputed using the MICE

method with relatively low Kolmogorov-Smirnoff statistic, and

p-values were in most cases not significant, i.e., we could

conclude that MICE imputation provides us with imputed

variables that closely resemble original non-missing data.
Frontiers in Cardiovascular Medicine 06
Our results clearly show the superior ability of the MICE

method to reasonably impute data missing completely at

random, as in the case of the MIMIC III database. We also

suggest imputing more datasets, given the stochastic nature of

the imputation. Apart from assessing imputation quality,

multiple imputed datasets can be used in later stages for, e.g.,

sensitivity analysis, in which all datasets are used in grid search

for hyperparameter tuning or to increase the number of samples

for cross-validation of any diagnostic model. Although an

external cohort is critical to validate the model performance of

the medical model, cross-validation allows the estimation of the

prediction model error. It helps with optimizing the model and

classifier selection. Obtaining external medical data for validation

is especially difficult due to the sensitive nature and associated

protection regulations, so thorough model testing and robust

results are usually prerequisites for establishing collaboration.
3.2. Cardiogenic shock prediction

We trained a classifier on a subset of 9 clinically relevant

variables to test model performance on the imputed dataset. In
frontiersin.org
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FIGURE 4

Heatmap representing the match between imputed data and initially non-missing data for all variables and all imputed datasets. Variables are encoded as
rows, imputed datasets are encoded as columns, and color encodes the Kolmogorov-Smirnoff statistic as estimated using a 2-sample Kolmogorov-
Smirnoff test (lower is better), and stars mark significance (p < 0.05 *, p < 0.01 **, p < 0.001 ***). P-values are corrected for multiple comparisons
using a Benjamini-Yekutieli FDR procedure (33).
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the first step, we performed a simple bivariate analysis with

appropriate statistical tests (chi-squared, unpaired t-test, or

Mann-Whitney U-test) for each variable. We chose the ones with

a proven or potential pathophysiological connection to

cardiogenic shock from the subset of variables with a statistically

significant difference. In the next step, we narrowed down the

selection to only those variables that are available at the first

contact with the patient:

• Heart Rate

• Blood glucose level

• Oxygen saturation

• O2 flow of oxygen delivery device

• Arterial blood pressure

• Age

• ECG classification of acute coronary syndrome

• Sex

• History of chronic heart failure

This cohort consisted of 2,253 patients (123 patients and 2,130

controls). The overview table of statistics in patient and control

cohorts is displayed in Table 3. We utilized gradient-boosted
Frontiers in Cardiovascular Medicine 07
trees for the classifier type, representing a strong baseline for

these problems. In particular, we utilized a LightGBM (26)

implementation in python with traditional gradient-boosted

decision trees and 100 estimators, each using 31 leaves with

balanced class weight. Due to a relatively low incidence of

cardiogenic shock in patients with the ACS (between 5 and 10%)

(12), there was a relatively large class imbalance within our

cohort (approximately eight times more controls than patients).

To compensate for this fact (and after testing various methods

and techniques including manually setting class weights, or using

solely under- or over-sampling), we used a combination of over-

and under-sampling using the Synthetic Minority Over-sampling

Technique (SMOTE) algorithm (34) for over-sampling, followed

by Edited Nearest Neighbours (35) cleaning, as implemented in

the imblearn python package (36). The overall performance of

our trained model is summarized in Figure 5.

The average AUC for our trained model, as estimated using

repeated stratified K-Fold cross-validation technique with five

splits and 50 repeats, reached 0.805 ± 0.039 (CI95% 0.739–0.867).

The mean accuracy of our trained classifier using the same cross-

validation technique reached 0.893 ± 0.014 (95% CI 0.870–0.915).
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TABLE 3 Summary of datasets.

no CS CS p-value

[n = 123] [n = 2130]
Sex (male) 64.46% 62.3% 0.698

Heart Rhythm <0.001

Sinus tachycardia 10.27% 28.69%

Sinus bradycardia 5.3% 1.64%

Ventricular tachycardia 0.14% 0.82%

1st degree AV block 0.85% 1.64%

Other 83.44% 67.21%

AH hist. (no) 47.47% 65.57% 0.001

chHF hist. (no) 64.32% 32.79% <0.001

Hypercholest. hist. (no) 72.93% 87.7% <0.001

EKG <0.001

Anterior STEMI or LBBB 17.61% 32.79%

Other STEMI 24.85% 31.15%

NSTEMI 47.18% 28.69%

Other 10.36% 7.38%

Heart Rate [bpm] 82.1 ± 16.343 94.1 ± 18.912 <0.001

Respiratory Rate [bpm] 17.1 ± 5.549 20.1 ± 5.917 <0.001

Saturation—SpO2 [%] 97.8 ± 3.037 96.3 ± 4.699 0.001

Glucose [mg/dl] 157.8 ± 80.429 227.5 ± 135.491 <0.001

Systolic BP [mmHg] 125.6 ± 24.112 108.9 ± 20.538 <0.001

Age [y] 67.0 ± 12.401 71.0 ± 11.997 <0.001

Shock Index 0.69 ± 0.221 0.90 ± 0.285 <0.001

For continuous variables the table shows mean and standard deviation per dataset

and per group. For categorical variables, the table shows percentages of each. AH

hist., history of arterial hypertension, chHF hist., history of chronic heart failure,

Hyperchol. hist., history of hypercholesterolemia, EKG, electrocardiography, BP,

blood pressure, CS, cardiogenic shock.
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Considering all issues with missing data, class imbalance, and the

number of features used, this preliminary result is more than

acceptable and serves as a reasonable basis for further

improvement. After hyperparameter tuning or using a different

classifier, we expect higher AUC and better performance.
4. Discussion

Our results provide a methodical pipeline for data pre-

processing for use in extensive EHR such as the MIMIC

database. Although some processing steps, such as patient

selection, are unique to this specific database, general data

processing strategies and imputation techniques are applicable in

most medical research working with large datasets.

We have used stochastic and non-stochastic imputation

methods in our pipeline to handle missing data. We relied on

Multiple Imputation by Chained Equations (MICE) (23–25) as

our primary imputation algorithm. We included three additional

well-established imputation algorithms (KNN, Soft Impute, and

Iterative SVD) (37) to benchmark our stability and sensitivity

analysis. Multivariate techniques were chosen for their ability to

model interdependencies between variables, thus keeping the

covariance structure of the dataset. The evidence based on

extensive clinical and epidemiological trials is the cornerstone of

modern medicine. Although considerable efforts and fidelity are

put into preparation, data collection, and processing, but no
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dataset is perfect, and missing and incomplete data are

unavoidable. Despite the potential of missing data to alter and

undermine the validity of research results, this problem has often

been overlooked in the medical literature (38). The study by

Wood et al. (39) demonstrated that the inadequate handling of

missing values with consequent impact on research results is a

common problem even in top-tier medical journals (including

BMJ, JAMA, Lancet, and New England Journal of Medicine.

Moreover, this study has shown that only 21% of the 71 trials

included a sensitivity analysis to inspect the quality of imputed

data.

Evaluating imputation quality is not well defined, and

universally accepted pipelines do not exist (31). In our work, we

opted for the visual assessment using heatmaps and violin plots

to estimate the characteristics of the imputation qualitatively and

for comparison of distributions of imputed data and original,

non-missing data by means of the Kolmogorov-Smirnov test (32)

with correction for multiple comparisons using a Benjamini-

Yekutieli FDR procedure (33) for distribution equivalent for the

quantitative assessment. In the pipeline we have studied, MICE

imputed datasets have shown a superior ability to impute

variables with multimodal distribution compared to other

methods. This method’s stochastic nature allows imputing

multiple datasets and inspecting and comparing their variability.

Furthermore, testing the performance of diagnostic models

derived from multiple imputed datasets gives more robust results

thanks to hyperparameter tuning and increased samples for

cross-validation.

Another essential step in our imputation pipeline was the

expansion of our original dataset by including more patients and

variables. EHR include large quantities of data; usually, only a

subset of patients is selected for the specific research based on

the inclusion and exclusion criteria. Increasing sample size leads

to improved model performance. However, including all available

variables in the imputation model would significantly increase

model complexity leading to a non-linear increase in

computational power needed (with a consequent increase in time

and resources needed) and may even lead to model overfitting

(40). Selecting patients with similar profiles and variables with

clinical and pathophysiological relationships to studied outcomes

may lead to optimization and improved model performance (22).

In our case, this methodology enabled us to create a model for

predicting CS in ACS patients, which would otherwise be

impossible due to the number and distribution of missing values.

The ability to identify high-risk patients prior to the

development of CS could allow to take pre-emptive measures,

such as the implantation of percutaneous mechanical circulatory

support, and thus prevent the development of CS leading to

improved survival. Predictive medicine is the future of

healthcare, ultimately leading to improved patient morbidity

mortality and cost reduction (41, 42). Analysis of large EHR is

key in developing predictive medicine algorithms, so there is

definitely an emerging need for effective processing methodology.

We believe this proposed data processing pipeline offers good

instructions for analyzing sizeable electronic health records,

mainly focusing on managing missing data. Furthermore, it
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FIGURE 5

Receiver operating characteristic curve for gradient boosted tree classifier. Shown are all curves from repeated stratified K-Fold cross-validation using five
splits and 50 repeats on all 10 MICE-imputed datasets (thin black lines) and mean ± standard deviation over all runs (thick red line). The classifier scored
AUC 0.805 ± 0.039.
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offers good reproducibility and promotes further research using

different cohorts.
5. Limitations

Our pipeline was not tested on other datasets. Therefore, the

performance might differ in other EHR. Models were selected

based on available literature and team experience. Superior

computational power would allow imputing and analyzing more

datasets and include more models for analysis.
6. Conclusion

This proposed data processing pipeline offers good instructions

for analyzing sizeable EHR, mainly focusing on managing missing
Frontiers in Cardiovascular Medicine 09
data. Appropriate pre-processing with emphasis on handling of

missing data is crucial in analyzing large EHR.
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