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Injury to the tunica media initiates
atherogenesis in the presence of
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Background and aims: Fatty streaks initiating the formation of atheromatous
plaque appear in the tunica intima. The tunica media is not known to be a nidus
for lipid accumulation initiating atherogenesis. We assessed changes to the
tunica media in response to a micro-injury produced in the pig aorta. In
addition, we assessed human carotid endarterectomy plaques for indication of
atheroma initiation in the tunica media.
Methods: Three healthy landrace female pigs underwent laparotomy to inject
autologous blood and create micro-hematomas at 6 sites within the tunica
media of the infrarenal abdominal aorta. These pigs were fed a high-fat diet
(HFD) for 4–12 weeks. Post-mortem aortas from all pigs, including a control
group of healthy pigs, were serially stained to detect lipid deposits, vasa vasora
(VV), immune cell infiltration and inflammatory markers, as well as changes to
the vascular smooth muscle cell (vSMC) compartment. Moreover, 25 human
carotid endarterectomy (CEA) specimens were evaluated for their lipid
composition in the tunica media and intima.
Results: High lipid clusters, VV density, and immune cell infiltrates were
consistently observed at 5 out of 6 injection sites under prolonged
hyperlipidemia. The hyperlipidemic diet also affected the vSMC compartment in
the tunica media adjacent to the tunica adventitia, which correlated with VV
invasion and immune cell infiltration. Analysis of human carotid specimens post-
CEA indicated that 32% of patients had significantly greater atheroma in the
tunica media than in the arterial intima.
Conclusion: The arterial intima is not the only site for atherosclerosis initiation. We
show that injury to the media can trigger atherogenesis.
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1. Introduction

The arterial wall is structurally composed of three layers,

starting with the inner layer or tunica intima, which is made up

primarily of a monolayer of endothelial cells. The middle layer,

or tunica media, consists of a thick layer of vascular smooth

muscle cells (vSMCs), connective tissue, and elastin fibers. The

outer layer, or tunica adventitia, contains connective tissue and

other cell types, including fibroblasts, and endothelial cells

forming a network of microvessels called vasa-vasora (VV) and,

immune cells (1, 2). The three layers are separated by an

internal elastic lamina (between tunica intima and tunica

media) and an external elastic lamina (between tunica media

and tunica adventitia).

It is commonly accepted that atherogenesis is initiated from the

luminal surface of the tunica intima, and begins with vascular

endothelial damage that allows the retention of plasma low-

density lipoprotein (LDL) in the sub-endothelial space, creating

fatty streak deposits in the tunica intima (3). Atherosclerotic

plaque is formed through the thickening of the tunica intima by

proliferating and migrating vSMCs from the tunica media to the

tunica intima, followed by accumulation of lipid-laden cells, and

other immune cell infiltrates (4–7). VV, resident in the

adventitia, respond to hypoxia and inflammation in the

expanding plaque by angiogenesis and sprout in a disorderly

fashion (8, 9). These new fragile, leaky microvessels function as a

conduit for more inflammation and lipids and are responsible for

intraplaque hemorrhage, particularly in areas subject to high

mechanical forces (10–12).

While the evidence base for plaque initiation and progression

within the tunica intima is extensive, less is known about other

mechanisms, which may exist elsewhere in the vessel wall. The

tunica media is a secondary location for the extension of

atheromatous plaque from the tunica intima (13, 14), and is not

known to be a site for atheroma initiation. With knowledge of

atherogenesis rapidly evolving to include a potential role for

other layers in the vessel wall (15), we investigated in this study

whether the tunica media can be a nidus for atherogenesis when

subjected to injury, a role that has not been explored previously.

We injected autologous blood into pigs’ abdominal aorta and

treated the animals with a high-fat diet (HFD) for either 4 weeks

or 12 weeks. Treated tissues were harvested and stained for key

markers for atherogenesis including lipid deposits, VV and

inflammatory cells. Furthermore, using 25 human CEA

specimens we compared the distribution of atheromatous lipids

in the layers of tunica intima with/without plaques and within

the tunica media.
2. Materials and methods

2.1. Pig model of simulated medial injury

2.1.1. Animals
This study was approved by the Animal Ethics Committee at

the University of Western Australia (UWA) in accordance with
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the Australian Code for the care and use of animals for

scientific purposes. Three female Bacon pigs (Large white ×

Landrace × Duroc) aged 7–8 weeks, weighing 24 (±0.9) kg,

were used in this study. The pigs were sourced from Wandalup

Farms and acclimatized to the Large Animal Facility at the

UWA for two weeks before surgery. At this AAALAC

accredited (Association for Assessment and Accreditation of

Laboratory Animal Care) PC2 facility, the pigs were housed in

raised communal pens (4 × 5 metres), fed a commercial

maintenance diet with fresh pumpkin and apples, and allowed

free access to tap water. Environmental enrichment was

provided with music during the day, various toys for play, and

daily human interaction on multiple occasions. The room was

maintained at 22 ± 2°C and a 12:12 h with a light: dark cycle.

2.1.2. Surgery
Prior to general anesthesia food was withheld for 12–18 h but

free access to water was allowed. Anesthesia was induced by a

combination of zolazepam and tiletamine (4 mg/kg, Zoletil 100,

Virbac Australia Pty. Ltd., Australia) and xylazine (2 mg/kg

Xylazine, Ilium Xylazil 100 mg/ml, Troy Laboratories Australia

Pty. Ltd., Australia) via intramuscular injection in the

infraspinatus muscle of the neck.

A lower midline laparotomy was performed to expose 6–8 cm

of the infrarenal aorta. Blood was taken from the pig’s own

ear veins and then gradually injected into the tunica media

(50–100 µl) using a 1 ml syringe and 25-gauge butterfly needle.

Successful injection to the medial layer of the artery showed a

slightly raised hematoma visible externally, without rapid

spreading of hematoma to the adventitia layer. We performed 6

injections (1 cm apart) along the abdominal aortic artery

between the renal and iliac arteries, in each pig (Figure 1A). Pigs

were monitored twice daily until full recovery from surgery, and

their weight was monitored weekly. High-fat diet (HFD) was

introduced on day two post- laparotomy for 12 weeks (one pig)

or four weeks only (two pigs) (Figure 1B). In addition, for

environmental enrichment, the skin of fruits and vegetables was

provided.

2.1.3. Lipid profile
Overnight fasting blood samples (500–1000 µl) were collected

from the jugular vein at baseline, pre-surgery and during HFD

treatment. EDTA plasma was stored at −80°C. Total cholesterol
(T. Chol), high-density lipoprotein (HDL), low-density

lipoprotein (LDL) and triglyceride (TRIGL) levels in the plasma

were measured using COBAS INTEGRA® 400 plus (Roche

Diagnostics Ltd., CH-6343 Rotkreuz, Switzerland). Calibration

(C.f.a.s. Lipids) and quality control (PreciControl ClinChem

Multi 1 and PreciControl ClinChem Multi 2) measurements were

performed prior to sample quantification. Calculated CV %

(Coefficient of Variation, percentage) and the calculated Bias for

all QCs (Quality Controls) were less than 5.0%.

2.1.4. Tissue collection and processing
All pigs were euthanized at week 12 post- laparotomy. The

abdominal aorta with injected sites was excised from each pig,
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FIGURE 1

Autologous blood injection in the abdominal aorta of pigs and, treatment schedule post-laparotomy. (A) Schematic diagram indicating autologous blood
(50–100 ul) was injected into the medial layer of the lower abdominal aorta at 6 individual sites, following lower midline laparotomy. (B) High-fat diet
(HFD) was given ad-lib on day two post-surgery, until the end of the experiment (12 weeks, one pig) or four weeks only and then switched to normal
chow diet for 8 weeks (4 weeks, two pigs). Body weight and blood were collected weekly to measure plasma lipids. The aorta from all animals was
harvested for histology analysis. Image created by biorender.com, under license.
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measured, and cut into approximately 1 cm segments, each

containing an injection site according to preoperative injection

diagrams. Abdominal aortic arteries from healthy pigs were

also included as controls. Tissue segments were embedded

individually in O.C.T (Tissue-Tek®) as frozen (unfixed) and

stored at −80°C for histology assessment. Tissue blocks were

serially cut into 7 µm cross-sections using a cryostat (CM3050

S, Leica Biosystems) and mounted on superfrost plus adhesion

glass slides (Bio-strategy). To compare the injected segments

for all pigs, the arterial segments (one cm in length, each

contained an injection site) were sectioned and analyzed

individually. Each segment was continuously cut, stained for

detecting lipid clusters and analyzed in batches. This batched

analysis was carried out until we reached the tissue sections

that were positive for lipid clusters (positive for Oil Red O,

ORO) at the corresponding injected sites.
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2.1.5. Oil red O staining
To determine lipid deposition in the arterial samples, fresh

frozen tissue sections were fixed in 10% neutral buffered saline

for 5 min followed by incubation in: 60% isopropanol (5 min),

60% ORO (10 min) (Sigma, in 0.5% isopropanol stock diluted in

1% dextrin solution in distilled water and filtered) and dipped 6

times in 60% isopropanol. The slides were counterstained in

hematoxylin (5 min), washed with 3 changes of distilled water

and mounted with VECTASHIELD® VibranceTM Antifade

Mounting Medium (vectorÒ).
2.1.6. Immunofluorescence staining
Tissue sections were fixed in ice-cold acetone and incubated

with 4% FCS/TBS (4% foetal calf serum in TRIS buffered

saline) for 1 h then stained with the following primary
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antibodies for 1–2 h: anti-alpha smooth muscle actin (Polyclonal,

Abcam, cat# 32575), anti-CD105 (MEM-229, Novus Biological,

cat# nb110–58718), anti-CD31 (Polyclonal, Thermofisher

Scientific, cat# PA5-16301), anti-CD68 (BA4D5, Bio-Rad, cat#

MCA2317GA), anti-CD163 (2A10/11, Bio-Rad, cat#

MCA2311GA), anti-CD45 (K252/1E4, Bio-Rad, cat# ab10558),

anti-Ly-6G (Gr-1, Thermofisher Scientific, cat# 14–5931), anti-

CD161c/NK1.1 (Polyclonal, Bioss Antibodies, cat# bs-4682R),

anti-CD19 (6D5, Abcam, cat# ab25232), anti-MCP1/CCL2

(Polyclonal, Abcam, ab25124), anti-CCL21 (Polyclonal, R&D

systems, cat# AF457), anti-MMP2 (Polyclonal, GeneTex, cat#

GTX104577), anti-MMP9 (Polyclonal, Abcam, cat# ab124513),

and ADAM10 (Polyclonal, Abcam, cat# ab1997). For secondary

detection, fluorescence-labelled, 488-conjugated anti-rabbit IgG

(Abcam), 546-conjugated anti-mouse IgG (Invitrogen), 546-

conjugated anti-rabbit IgG (Thermofisher Scientific), 594-

conjugated anti-rat IgG (Life Technologies) and, 546-

conjugated anti-goat IgG (Invitrogen), were used. To detect the

origin of foam cells, tissue sections (fixed in 4%

paraformaldehyde) were stained with BODIPYTM 493/503 (4,4-

Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-

Inndacene), (Invitrogen, cat # D3922). The nuclei were

counterstained with 4′,6-diamidino-2-phenylindole (DAPI,

Sigma). High resolution microscopic images were captured on

an automated whole-slide brightfield/fluorescence slide scanner

(3DHITECH, Hungary) and viewed using slideViewer

(3DHISTECH, Hungary). The signal intensity was quantified

using HistoQuant software (3DHISTECH, Hungary).
2.2. Human carotid endarterectomy study

This study was approved by Sir Charles Gairdner and Osborne

Park Health Care Group Human Research Ethics Committee.

Human plaques from carotid endarterectomy surgery were

freshly collected after consent from 25 patients (76% male, mean

age 72 ± 6 years, 52% asymptomatic) recruited by the department

of Vascular and Endovascular Surgery at Sir Charles Gairdner

Hospital, Crawley, Western Australia.

The endarterectomy involved excision of plaque intima

through natural dissection plane within the tunica media. The

excised tissues were approximately 3 cm in length, which

contained plaque as well as intima and media layers extending

from the common carotid artery into and along the internal and

external carotid arteries tailing off to normal intima. The

arteriotomy in the patients was closed with a patch sutured to

the outer layer of the media and adventitia.

Tissue specimens were examined and compartmentalized

according to the severity of atherosclerosis lesions using the

American Heart Association classification (16). Segmented

tissues were freshly embedded in O.C.T and stored at −80°C
as previously described. Segmented tissue sections were

stained for ORO as described above to detect lipids and the

presence of elastin fibers. Tissues were scanned using

3DHISTECH slide scanner and viewed using Slide Viewer as

described above.
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2.3. Statistical analysis

Given the exploratory nature of this study protocol, no formal

sample size calculations were undertaken. For the pig study, the

sample sizes were based on the number of injected sites in each

pig (n = 6 sites). Statistical analyses were performed using

GraphPad Prism 8 (GraphPad Prism Software, San Diego, CA,

United States). All studies were not blinded. Data were analyzed

by the Student’s t-test (two-tailed) or one-way analysis of

variance (ANOVA). For non-parametric data sets, a Mann–

Whitney U test was used. A p-value less than 0.05 was

considered statistically significant. Error bars indicate the

standard error of the mean (SEM).
3. Results

3.1. Increase in body weight and
hyperlipidemia in response to HFD

Laparotomy and autologous blood injection in the tunica media

were successfully performed in all three pigs. In this study, the sample

sizes were provided by 18 injection sites on the aortic media, n = 6

injection sites per pig. We compared the effects of 6 hematoma

injections in initiating atherogenesis under prolonged 12 weeks

HFD in one pig and 12 hematoma injections over a short-term

duration of 4 weeks HFD in two pigs (Figure 1). Laparotomy had

no effect on overall health. Figure 2A shows all animals recovered

quickly, as evidenced by continuous weight gain post-surgery. The

pig under prolonged HFD had the highest weight gain over time.

Importantly, this pig showed elevated total cholesterol and LDL

indicating hyperlipidemia. In comparison, the remaining two pigs

showed comparable increase in total cholesterol and LDL only

during the 4 weeks of HFD, but the levels dropped to the baseline

after 8 weeks on normal chow diet (Figure 2B).
3.2. Presence of lipid clusters in the tunica
media at the micro-injection site under
prolonged HFD

Since fatty streaks are the first sign of atherosclerosis in the

vascular wall (1, 7, 17), we analyzed the six segments of the

abdominal aorta injected with hematomas from each pig for

detection of lipid deposits (positive for ORO staining). Lipid

clusters (ORO+) were consistently observed in 5 out of

6 injected segments of the tunica media under prolonged

(12 weeks) HFD (Figure 3A). The overall ORO+ staining in

these areas of trauma were significantly higher than the

irregular deposits that were observed in the non-injected region

of the tunica media and tunica intima (Figure 3B). Lipid

clusters in the tunica media were not observed in all 12 injected

sites in the aorta of pigs placed on 4 weeks HFD only

(Figures 3A,B). This finding indicates the source of cholesterol

in the observed lipid clusters came from the blood circulation

and not from the hematoma injection.
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FIGURE 2

Weight gain and increased plasma lipids in response to HFD. (A) Graph plots of body weight gain (kg) of individual pigs monitored weekly from the initial
weight before surgery. (B) The levels of plasma total cholesterol (Total chol), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride
(TRIG) (mmol) were monitored for individual pigs during 12 weeks period.
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3.3. Detection of vasa vasora, immune cells
and vascular smooth muscle-derived foam
cells within the injured tunica media under
prolonged HFD

To determine the cellular composition at the injured sites with

detectable lipid clusters, serially-cut tissue sections corresponding

to those clusters as shown in Figure 3 were also stained for

markers of angiogenesis (18) (Figure 4) and inflammatory cells

(19–22) (Figure 5A). The marker for VV, CD105 (Endoglin), was

expressed in the lipid cluster regions observed at the injected sites

in the pig under 12 weeks HFD. Endoglin expression was

minimally detected in the aortic tunica media from pigs that

received 4 weeks HFD as well as control healthy pig aorta not

subjected to hematoma injection and HFD (Figures 4A,B). CD105

staining was compared with CD31, a mature endothelia marker

(18). In hyperlipidemic arterial tissue, CD105 did not colocalize

with CD31 at the injury site in the medial layer, as seen in

Figure 4C (indicated arrows). CD31 expression was limited to the

endothelial barrier and adventitial VV in untreated and non-injury

hyperlipidemic arteries, with or without CD105 co-expression.

Therefore, CD105+/CD31− staining reflects the characteristic of

immature, newly formed microvessels in response to injury.

We next studied the expression of immune cell infiltrates at the

corresponding regions of lipid clusters. Figure 5A compares the

distribution of immune cells including leukocytes (CD45+) and

inflammatory macrophages (CD163+ and CD68+) at the sites of

injury in the pigs under prolonged and short HFD, as well as the
Frontiers in Cardiovascular Medicine 05
healthy control. The expression of CD45, CD163 and CD68 were

visibly higher within the lipid clusters at the injection sites in

response to prolonged hyperlipidemia. In addition to

macrophages, the injection sites were also positive for the

expression of markers for T cells (CD4 and CD8), B cells (CD19),

granulocytes and neutrophils (Ly6G), and natural killer cells

(NK.1) (Figure 5B). We also evaluated the inflammatory status of

the arterial wall by examining the expression of chemokines and

matrix metalloproteinases (MMPs) linked with the onset and

advancement of atherosclerosis (23–25). Figure 5C shows high

expression of monocyte chemoattractant protein 1 (MCP1),

chemokine (C-C motif) ligand 21 (CCL21), MMP2, MMP9 and a

disintegrin and metalloproteinase 10 (ADAM10) at injury sites in

hyperlipidemic arteries. Healthy arteries or injected arteries from

pigs on short HFD had minimal expression of these inflammatory

markers (Supplementary Figure S2). These results imply that

hyperlipidemia an inflammatory response and leads to immune

cell infiltration at the injury sites.

To identify the source of foam cells present in lipid clusters,

arterial tissue sections were stained with a lipophilic fluorescent

probe, BODIPYTM 493/503. Figure 6A demonstrates that the

fluorescence intensity of BODIPYTM matches with the ORO-

positive lipid clusters present at the injured site. Figure 6B

illustrates that the BODIPYTM-positive lipid clusters were mainly

co-localized with alpha smooth muscle actin (aSMA) expression

expression, indicating that the foam cell population in the tunica

media was predominantly comprised of vascular smooth muscle

cells (vSMCs), rather than macrophage foam cells. However, a
frontiersin.org
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FIGURE 3

Detection of lipid clusters at the injury sites in the tunica media under prolonged hyperlipidemia. (A) Aortic tissue cross-sections from each injection site
(n= 6) in the indicated groups, stained with ORO and counterstained with haematoxylin. The magnified fields of view detect lipid clusters (red) in 5 out of
6 injected sites within tunica media in prolonged HFD group. No lipid clusters are seen in all 6 injection sites in both pigs under short-term 4 weeks HFD.
Adventitial ORO-positive staining in random areas was not considered injury-related. Scale bars: 100 µm. (B) Bar charts show the quantification of the area
positive for lipid clusters (mean ± SEM, n= 5 injected sites out of 6, ****p < 0.0001 by one-way ANOVA test).
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smaller portion of BODIPYTM-positive foam cells was also observed

to co-localize with CD163-positive cells.
3.4. Hyperlipidemia induced vSMC
disruption, vasa vasora and immune cell
invasion through the adventitia-media
interface

Lipid accumulation in vascular smooth muscle-derived foam

cells, VV formation and immune cell infiltrates (Figures 3–6)

occurred at the 5 out of 6 injured sites under atherogenic

conditions. Without a prolonged hyperlipidemic diet, all 12

injection sites exhibited no lipid clusters, foam cells, VV infiltration

or inflammatory cells. Our findings suggest that the tunica media is

reactive to high circulating lipids. To investigate the effect of

hyperlipidemia on the overall structure and composition of the

tunica media, we compared the entire vSMC compartment

corresponding to the aortic segments shown in Figures 3–6.

Figure 7A shows transverse tissue sections of tunica media

primarily composed of vSMCs, identified by αSMA expression.

As indicated at higher magnification (Figure 7A, right panel),

hyperlipidemia triggered disruption of vSMCs around the outer
Frontiers in Cardiovascular Medicine 06
layer of tunica media towards the tunica adventitia. The vSMC

compartment adjacent to the tunica intima remained intact. We

measured the width of vSMC misalignment, and our data

showed significantly wider disruption in the outer layer of the

tunica media towards the tunica adventitia in response to

prolonged and short-term hyperlipidemia (Figure 7B). A co-

staining analysis detecting VV (CD105+) and immune cell

infiltrates (CD45+ and CD163+) revealed invasion of micro-

vessels and immune cells through the adventitia-media interface

within the misaligned vSMCs (Figure 7C).

Irrespective of circulating lipid levels and microinjection of

hematoma, the tunica intima regions were unaffected and showed

no changes to vSMC alignment, VV density and immune cell

abundance (Figure 4 and Supplementary Figure S1). Our

findings therefore, suggest an “outside-in” initiation of

atherogenesis in response to injury and hyperlipidemia.
3.5. Identification of high atheroma in the
tunica media of human carotids

Since the presence of lipid deposits in the arterial wall marks

the formation of early-stage atheroma, we analyzed the
frontiersin.org
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FIGURE 4

Presence of VV at the injury sites in the tunica media under prolonged hyperlipidemia. (A) Corresponding aortic tissue sections positive for lipid clusters
(described in Figure 3A) were stained by immunofluorescence for detecting VV (CD105, red), and nuclei DAPI (blue). Scale bar: 100 µm. (B) Bar graphs
show quantification of the area positive for VV in the indicated groups (mean ± SEM, n= 3, ****p < 0.0001 by one-way ANOVA test). (C) Tissues as
shown in (A) were stained for VV (CD105, red) and mature endothelia (CD31, green). Representative micrographs are shown. Arrows: areas positive for
VV, lacking the expression of CD31, a marker for mature endothelia. TA, tunica adventitia; TM, tunica media; TI, tunica intima; L, lumen. Scale bar: 100 µm.
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FIGURE 5

Presence of inflammation and immune cells at the injury sites in the tunica media under prolonged hyperlipidemia. (A) Corresponding aorta tissue
sections positive for lipid clusters and VV (described in Figure 3A) were stained with markers of immune cells and inflammation, CD45, CD163, and
CD68 (red). TA, tunica adventitia; TM, tunica media; TI, tunica intima; L, lumen. Scale bar: 100 µm. (B) Arterial tissues at indicated sites show the
detection of immune cell markers, including CD45, CD4 and CD8 T cells, CD19 (B cells), Ly6G (granulocytes/neutrophils) and NK1.1 (NK cells). Scale
bar: 20 µm. (C) Corresponding injected sites under hyperlipidemic condition were stained for detection of chemokines (MCP1, CCL21) and
metalloproteinase markers (MMP2, MMP9 and, ADAM10). Nuclei DAPI (blue). Scale bar: 100 µm.
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distribution of lipid deposits in 25 human carotid specimens

following CEA. For each patient specimen, we first divided each

tissue into areas containing plaque and areas which were lesion-

free, based on visual inspection prior to histology analysis

(Figure 8A).

Figures 8B, C compares two types of carotid plaques based on

the levels of ORO+ lipid staining in the tunica media and intima,

with one type exhibiting higher ORO staining in the intima and

the other exhibiting higher ORO staining in the media. Carotid

samples from 8 out of 25 (32%) patients showed greater

atheroma in the tunica media than the tunica intima (Figure 8D

and Supplementary Figure S3). In several of these carotids, as
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depicted in Figure 8, the media atheroma preceded intima-

atheroma, suggesting that atheroma was initiated in the tunica

media.
4. Discussion

Our investigation demonstrates that injury to the tunica media

in pig aorta in the presence of dyslipidemia can initiate

atherogenesis. We chose pigs in this study because they are

susceptible to HFD and their lipid metabolism, hemodynamics,

and atherosclerosis development are similar to humans (26, 27).
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FIGURE 6

Lipid clusters localised mainly in vSMCs. (A) Comparison of lipid cluster distribution at the injured site by ORO staining and lipophilic fluorescent probe,
BODIPYTM 493/503 (green). Nuclei DAPI (blue). Scale bar: 100 µm. (B) Co-staining analysis of the indicated tissue section with BODIPYTM 493/503 and
αSMA or CD163 (red). Images indicate all markers and individual channel. Scale bar: 50 μm.
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We used two different treatment timelines of hyperlipidemia (4

weeks and 12 weeks), to explore the effect of wall injury in

initiating atherogenesis in the tunica media of the artery. We

created an artificial injury by injecting autologous blood into the

tunica media of the lower abdominal aorta at multiple sites in

three pigs. Under prolonged HFD, we observed the sites of

trauma consistently form lipid deposition, accompanied by VV

invasion and local inflammation. Importantly, this finding

corroborates with our human data, indicating that not all

atheroma were initiated from the luminal side of the tunica

intima. We found 8 out of 25 human carotid plaques showed

lipid accumulation in the tunica media precedes lipid build-up in
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the sub-endothelial space. These two findings support an

“outside-in” theory of atherogenesis, suggesting that injury within

the tunica media, in the presence of high blood lipids, can

initiate atheroma.

The role of tunica media as a site for plaque initiation has not

been experimentally studied and it is unclear how injury in tunica

media can occur in real-time. A potential explanation for this

occurrence is provided by our previous computational fluid

dynamics modelling (28). This modelling investigated the

relationship between wall stress (also called normal stress) and

plaque location using pulsatile non-Newtonian flow in arterial

vessel with anisotropic layers for increased accuracy. Based on
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FIGURE 7

Disruption of VSMCs in response to hyperlipidemia correlates with high infiltration of VV and immune cells. (A) Tissue cross-sections of the aorta from
HFD groups and normal chow diet (obtained from identical sections of the abdominal aorta) were stained for vSMCs (αSMA, green). The magnified field of
view shows disruption of vSMCs from the media towards the adventitia (arrow). Scale bar: 100 µm. (B) Bar graphs show the distance of vSMC disruption in
µm for each group (mean ± SEM, n= 5, **p= 0.0159 and p= 0.0079 by Mann–Whitney test). (C) Tissues, as shown in (A), were stained for vSMCs (αSMA,
green) and VV (CD105, red) or inflammatory cells (CD45, CD168, red). Nuclei DAPI (blue). Scale bars: 100 µm.
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this modelling, we showed that the highest magnitude of shear

stress in the wall, occurred in the inner media; adjacent to the

tunica intima. Most importantly, the order of magnitude of shear
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stresses in the wall that vary with pulse pressure creating a

fatiguing motion, was significantly greater than the well-known

shear stress on the endothelium responsible for the current
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FIGURE 8

Identification of patients’ post-CEA with elevated atheroma in the tunica media compared to the tunica intima. (A) Photographic images of arterial
specimens obtained from patients post-CEA. Selected regions representing early-stage disease without plaques were compared for lipid content
(ORO+). (B) Micrographs show lipid deposition (ORO+) in tunica media (TM) or tunica intima (TI) in the indicated groups. (C) Magnified fields of view
from (B) showing elastin fibers (black arrows) in the tunica media. Scale bars in B,C: 100 µm. (D) Estimation plots showing percentages of atheroma
based on ORO+ staining in tunica intima (TI) compared to tunica media (TM). Data are shown for individual patients; n= 8 patients with greater
atheroma in TM than in TI and n= 17 patients with atheroma higher in TI than in TM. (**p= 0.0019 and ****p < 0.0001 by paired Student’s t-test). The
right panel graphs show the mean difference between the compared groups and the 95% confidence intervals.
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theory of endothelial dysfunction and atherosclerosis. The pulsatile

maximum/minimum stress ratio was highest in the media layer at

approximately a four-fold increase compared to less than a two-

fold increase in the intima and adventitia layers, thus resulting in

the tunica media being more prone to injury.

Furthermore, a recent study by Rubies et al. (29) showed that

long-term intensive exercise induced tunica media damage in rats

and led to aortic vSMCs stiffening, fibrosis and rupture of elastin

fibers. However, no infiltration of macrophages was seen through

the luminal side and the endothelium remained unaffected.

Similarly, in a human tissue study by Matsumura et al. (30), the

responder to electrical burns was the tunica media of arteries

from the lower extremities, displaying mild degeneration and

fibrosis of the vSMCs. Meanwhile, the tunica intima appeared

normal. Together, these findings point to the tunica media as the

primary site of response. Although changes to the tunica media

from injury settings differ from that concerning atheroma, there

is agreement on the impact of mechanical and chemical trauma

on tissue structure and homeostasis (31–34).

Our work has established crucial data on atherogenesis in the

medial layer supporting the “outside-in” pathway from the tunica

adventitia as the primary source of lipids and immune cells to

injury sites in the tunica media via the VV. The tunica media is

potentially more exposed to circulating lipids and immune cell

infiltration from the adventitia, through these microvessels (35).

Specifically, it is well established that the angiogenic VV can be a

conduit for lipid deposition and inflammation within tunica

media in advanced plaque (9, 10, 36–39). In addition, a study by

Herrmann et al. (40) has demonstrated an immediate increase in

coronary VV density in pigs after 2 weeks of hyperlipidemic diet.

Whereas the development of epicardial endothelia dysfunction
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occurred later, after 6 weeks of hyperlipidemic diet. This finding

suggests earlier involvement of VV neovascularization in the

initiation of atherosclerotic disease.

We have demonstrated that tunica media is inherently sensitive

to lipids. Disruption of the vSMC compartment in the outer tunica

media towards the adventitia occurred in response to a

hyperlipidemic diet (Figure 7). This vSMC disruption persisted

in pigs that were no longer hyperlipidemic following diet

replacement after 4 weeks on HFD. Interestingly, greater VV

invasion and immune cell infiltration into the tunica media was

observed at the sites of vSMC disruption. In contrast, the

innermost layer towards the intima layer, irrespective of HFD,

showed lack of lipid deposition or changes to luminal endothelia,

VV density and immune cell infiltrates.

Prolonged duration of HFD beyond 12 weeks would have

enabled us to determine how lipid clusters in the tunica media

progress into atherosclerotic plaque. However, we were limited by

the inability to house and manage pigs over 100 kg, and this

point was reached by 12 weeks. Nevertheless, our analysis of

human carotid specimens provided further validation in 32% of

the samples where, we found the entire tunica media were

substantially loaded with lipids. These media-atheroma were

formed earlier than the intima-atheroma.

Our observation that vSMCs in tunica media are sensitive to high

circulating lipids is consistent with other published studies. VSMCs

from the tunica media are known to extensively proliferate and

migrate to the tunica intima forming intimal hyperplasia and a

fibrous cap in the innermost layer of the wall (41, 42). A single

vSMC from the tunica media can migrate to the tunica intima and

clonally gives rise to SMC-derived cells in atherosclerotic plaques

(43). In addition, it has been established that vSMCs, contribute to
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a predominantly large fraction of foam cells in human atheroma and

experimental models of atherosclerosis (44–46). In agreement with

these findings, our study demonstrates that the formation of lipid

clusters in the injured tunica media is primarily due to the

accumulation of lipids in vSMCs.

Critical to the arterial function in regulating blood flow and

blood pressure, the contractility of vSMCs provides tensile

strength for the tunica media to mechanically control blood

vessel diameter through vasoconstriction and vasodilation (42,

47). However, in response to atherogenic conditions, vSMC

contractility ceases, and the cells have been shown to change

phenotypes (42). For instance, exposure to cholesterol or

oxidized phospholipids can transform vSMC into a macrophage/

fibroblast–like cell, resembling those cells found in atherosclerotic

plaques (48).

Our pig study has established early stage atherogenesis via

localized iatrogenic injury in normal abdominal aortic media.

This model was designed to recreate microhemorrhage within

the arterial wall to determine whether lipid deposition might

result in atherogenesis (36). The predictable locations of plaque

in the human at branch points and vessel origins or at areas of

external constraint, implicates mechanical forces from pulsatile

pressure. Forty-two million arterial pulse pressure cycles per year

of life, after several decades of resultant cyclical strain and

interlayer movement (49), will impact arterial integrity. This is

supported by computational modelling which showed that the

relative values of stress in the artery wall are far greater than any

shear stress on the endothelium (28).

In summary, the tunica media is not only a secondary

responder to fatty lipid build-up in the tunica intima but a

location where atheroma formation can be initiated. Further

studies are warranted to unravel how atheroma within the media

layer differs from that within the tunica intima, and what the

implications are for pharmacological manipulation to reduce wall

stress. Further investigation should determine whether intense

exercise programmes are beneficial in people with stiffer vessels

where the pulsatile pressure-related injury will be greater.
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