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mitophagy-related genes with
potential clinical utility in
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Background: Myocardial infarction (MI) ranks among the most prevalent
cardiovascular diseases. Insufficient blood flow to the coronary arteries always
leads to ischemic necrosis of the cardiac muscle. However, the mechanism of
myocardial injury after MI remains unclear. This article aims to explore the
potential common genes between mitophagy and MI and to construct a
suitable prediction model.
Methods: Two Gene Expression Omnibus (GEO) datasets (GSE62646 and
GSE59867) were used to screen the differential expression genes in peripheral
blood. SVM, RF, and LASSO algorithm were employed to find MI and
mitophagy-related genes. Moreover, DT, KNN, RF, SVM and LR were conducted
to build the binary models, and screened the best model to further external
validation (GSE61144) and internal validation (10-fold cross validation and
Bootstrap), respectively. The performance of various machine learning models
was compared. In addition, immune cell infiltration correlation analysis was
conducted with MCP-Counter and CIBERSORT.
Results: We finally identified ATG5, TOMM20, MFN2 transcriptionally differed
between MI and stable coronary artery diseases. Both internal and external
validation supported that these three genes could accurately predict MI
withAUC= 0.914 and 0.930 by logistic regression, respectively. Additionally,
functional analysis suggested that monocytes and neutrophils might be involved
in mitochondrial autophagy after myocardial infarction.
Conclusion: The data showed that the transcritional levels of ATG5, TOMM20 and
MFN2 in patients with MI were significantly different from the control group, which
might be helpful to further accurately diagnose diseases and have potential
application value in clinical practice.

KEYWORDS

machine learning—ML, mycardial infarction, mitophagy, signature gene, immune cells
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1. Introduction

In recent years, the global average life expectancy has been on the rise due to improved

quality of life. However, this has led to a surge in the number of individuals suffering from

cardiovascular diseases, which claim the lives of 3.8 million men and 3.4 million women

worldwide each year, according to the World Health Organization (1). Among these
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diseases, myocardial infarction (MI) is the most severe type of

cardiovascular disease and the primary reason for the yearly

increase in coronary artery disease mortality (2). Acute

myocardial infarction (AMI), which encompasses various

pathological changes such as ischemia and necrosis, represents

the early stage of MI (3). Currently, the diagnosis of MI is

typically reliant on electrocardiogram, physical examination, and

certain biomarkers (4). MI is frequently encountered during

clinical and forensic autopsies, and their diagnosis can present a

challenge, particularly when there is no evidence of acute

coronary occlusion (5). Hence, there is a need to investigate

novel biomarkers to achieve a more precise diagnosis of the

disease and gain a fresh understanding of it.

Presently, thrombolysis or percutaneous coronary intervention

(PCI) are effective treatment methods for coronary blood

revascularization after myocardial infarction. However, these

treatments may induce cardiac ischemia/reperfusion (I/R) injury

and other pathologies, including reactive oxygen species (ROS)

production, Ca2+ overload, and mitophagy dysregulation (6–8).

Mitochondria are the primary energy factories in heart muscle

cells and play a vital role in maintaining cardiac structure and

function. When a myocardial infarction occurs, damaged

mitochondria may be produced, which promotes oxidative stress

and apoptosis. Mitophagy, therefore, is essential in maintaining

cardiac structure and function (9–11). Studies indicate that irisin-

activated optic atrophy 1 (OPA1) could increase PINK1/Parkin-

mediated mitophagy, prevent myocardial cell damage after

myocardial infarction, and reverse cardiac dysfunction caused by

ischemia, playing a pivotal role in maintaining myocardial cell

vitality and mitochondrial function following myocardial

infarction (12). Mitophagy is a type of selective autophagy that

removes mitochondria with abnormal functions in cells. In

related studies, Beclin1+/− and FUN14 domain-containing 1

(FUNDC1) knockout and transgenic mouse models, in

conjunction with starvation and myocardial infarction models,

suggest that mitophagy, rather than general autophagy, plays a

cardioprotective role by regulating mitochondrial function (13).

Another research team discovered that the level of mitophagy

decreased significantly after myocardial infarction in a mouse

myocardial infarction model. Moreover, the expression of nuclear

dot protein 52 (NDP52) that promotes mitophagy could reduce

myocardial damage caused by myocardial infarction. This

suggests that myocardial damage caused by myocardial infarction

may be closely related to decreased autophagy. Therefore,

activation of autophagy may have a protective effect on

myocardial cells (6).

The mechanism of myocardial injury in patients with

myocardial infarction remains to be fully elucidated and

identifying intervention targets may have significant clinical

value. As such, exploring the relationship between myocardial

infarction and mitophagy is imperative to develop additional

therapeutic approaches and improve myocardial infarction

prognosis. In this article, we used a diverse range of

bioinformatics and ML methods to identify signature genes for

myocardial infarction and mitophagy.
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2. Methods and materials

2.1. Data sources and preparation

All data are free from Gene Expression Omnibus (GEO). The

GSE59867, GSE62646, GSE61144 datasets were available in NCBI

(https://www.ncbi.nlm.nih.gov/geo/). And these datasets were

based on GPL6106 platform of Sentrix Human-6 v2 Expression

BeadChip and GPL6244 platform of [HuGene-1_0-st] Affymetrix

Human Gene 1.0 ST Array [transcript (gene) version] (14–16).

GSE59867 and GSE62646 were combined as a training set and

GSE61144 as a test set for external validation. All blood samples

taken were within 24 h of the occurrence of myocardial

infarction. Finally, the training set had 139 MI (Myocardial

Infarction) and 60 CT (Stable coronary artery disease), and the

testing set had 14 MI and 10 CT. The genes of mitophagy were

downloaded from REACTOME (https://reactome.org). PCA

(Principal Component Analysis) plots were also produced to

show the differences before and after data merging

(Supplementary Figure S1A, B).
2.2. Differences in the expression of all
genes

Using the limma package of R software (17), all genes (n =

18,837) between myocardial infarction group and stable coronary

disease group were explored, then it intersects with the

mitophagy genes. This differential gene expression was visualized

using a volcano plot (only those with p < 0.05 were labeled),

while the comparison between MI group and control group was

shown utilizing a heatmap.
2.3. Pick up signature gene

The key genes were obtained by intersection of all genes and

mitophagy gene set. ML algorithm is more suitable than

traditional statistical methods when dealing with large, complex

and high latitude data (18). Thus, we explored genes using three

machine learning (ML) algorithms, namely Support Vector

Machine-Recursive Feature Elimination (SVM-RFE), least

absolute shrinkage and selection operator (LASSO) as well as

random forest.

The SVM-RFE algorithm of package “caret” is one of the

most popular gene selection methods at present, which is

designed for binary classification problems (19). The penalty

parameter tuning was performed using the LASSO algorithm

of the package “glmnet”, after tuning the penalty parameters

in a 10-fold cross-validation procedure. This method is more

effective than regression analysis in assessing high-dimensional

data (20). The genes were further classified using the R

package “randomforest”. An average error rate of key genes

determines how many variables to include in a random forest

model (21). We then calculated error rates for 1–1,000 trees.
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The top 10 genes were selected by SVM model and random

forest model respectively. The genes with the highest accuracy

were selected in lasso model. Signature genes of myocardial

infarction were identified by the intersection of the three ML

algorithms. The AUC was used to evaluate the models’

diagnostic ability. The AUC greater than 0.7 illustrate good

diagnostic effect.
2.4. Building machine learning models

Finally, it is decided to construct different supervised machine

learning models with three genes as variables, which are decision

tree (DT), K-nearest neighbor (KNN), random forest (RF),

support vector machine (SVM) and logistic regression (LR).

Their accuracy, precision, recall, F1 score, and AUC were

compared, and the final value for each parameter was obtained

by taking the average of the values calculated through 5-fold

cross-validation.
2.5. Internal validation and external
validation

After the model performance comparison, a logistic

regression model was constructed, and draw 1,000 bootstrap

samples, and the model was rebuilt each time to draw the

ROC. Then the performance of the model was evaluated by

10-fold cross-validation of 199 samples. About external

validation, the GSE61144 dataset was downloaded (16), and

24 samples were predicted to verify the generalization ability

of the model.
2.6. Immune cell infiltration

The package “IOBR” was used to analysis (22). CIBERSORT

is a method that deconvolutes human immune cell subtype

expression matrices using linear support vector regression to

investigate the correlation between these genes and immune

cells (23). Additionally, the microenvironment cell population

(MCP)-counter algorithm was utilized. This method can

reliably quantify the abundance of various immune based on

transcriptomic data for each sample (24). The correlation

between some genes and some immune cells was analyzed by

spearman method.
2.7. Statistical analysis

R (version 4.2.2) was used for all statistical analyses in this

study. In all cases, a default p or adjust. p of less than 0.05 was

considered statistically significant. All p values were two-sided

tests. According to Figure 1, the flow chart about this research

was as follows.
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3. Results

3.1. Identification of differentially expressed
mitophagy genes

The intersection of all genes derived from “limma” package and

mitophagy genes was taken, and 24 related genes were obtained.

Only 17 of them were statistically different. The volcano plot was

made to display 24 genes of mitophagy (Figure 2A), the

heatmap showed the genes between MI group and control group

(Figure 2B) and made the boxplot (Figure 2C).

Three ML algorithms were utilized to pick up the signature

genes from 24 genes. For the SVM-RFE and random forest

algorithms select top 10 of genes respectively (Figures 3A, B).

The smallest error is on 159 trees. And LASSO analysis

selected the genes with the highest accuracy (based on ROC)

(Figures 3C–E). Table 1 presents the genes under

consideration. Finally, the three genes were determined by

taking the intersection of the three algorithms, including

ATG5, TOMM20, MFN2 (Figure 4). Detailed information

about the genes is shown in Table 2.
3.2. Diagnostic efficacy in predicting MI

Two of the signature genes were highly expressed in the MI

group and one was underexpressed, suggesting that three genes

could have a latent ability to diagnosis MI (Figures 5A–C).

Moreover, the AUC of the ROC of these key genes was 0.88

of ATG5, 0.83 of TOMM20, 0.71 of MFN2 respectively

(Figures 5D–F).
3.3. Model comparison

The metrics of each model are shown in Table 3. DT, KNN

and SVM have the highest accuracy of 0.814. LR has the highest

AUC (0.915) and precision (0.739). DT has the highest F1-score

(0.702). All algorithms have recall rates of more than 50%. The

roc curve of each model is shown in the attachment

(Supplementary Figure S3), along with the AUC shown in

boxplot (Supplementary Figure S4).

Subsequently, a multi-factor logistic regression model was

constructed with these three genes, the AUC of the model was

obtained by using 10-fold cross-validation, and then the average

value was obtained (Supplementary Table S1) (0.915), then the

fitting effect of the model was verified with the training set, and

1,000 bootstrap samples were drawn (Figure 6A). A nomogram

was generated using the logistic regression model (Figure 6B). A

calibration curve was drawn to evaluate the classifier’s predictive

ability, which revealed minimal differences between the predicted

and actual MI risks. This result indicates the model’s high

effectiveness, as depicted in Figure 6C. Finally, the data set

GSE61144 was used for external verification to obtain the ROC

(Figure 6D), the AUC was 0.93. These data indicate that three
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FIGURE 1

The flow chart of this research.
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signature genes have a good ability to predict MI. The results of

bootstrap method were displayed in Supplementary Figure S2.
3.4. Immune cell infiltration

Immune characteristicswere evaluated byCIBERSORTmethod, 24

genes andT cells CD4naive, neutrophils,monocytes,macrophagesM2,

macrophages M0 has a strong relevance among which MFN2 was

positively correlated with monocytes and neutrophils, and negatively

correlated with T cell CD4 naive and T cell CD4 memory resting, and

ATG5 was positively correlated with T cell CD4 memory resting and

NK cells resting, and negatively correlated with Tregs and monocytes

(Figure 7A). According to MCP-counter method, 24 genes were

strongly correlated with T cells, NK cells, neutrophils, monocytic

lineage and cytotoxic lymphocytes (Figure 7B), there was a negative

correlation between ATG5 and neutrophils (Figure 7C). And a

positive correlation between TOMM20 and T cells (Figure 7D).

Subsequently, correlation diagrams of 3 diagnostic genes and

inflammatory factors were also made, indicating that the 3 genes

screened in this study were strongly correlated with TNF, IL11,

TGFB1, CD4 and IL10 (Figure 8).
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4. Discussion

Globally, CVDs continue to be the primary cause of mortality

on a global scale, and they also play a significant role in the global

burden of illness (25). MI is also the leading cause of death and

morbidity (2). Employing bioinformatics techniques, this study

identified differences in genes in patients with myocardial

infarction and patients in stable condition. Thereafter, the SVM-

RFE algorithm, random forest algorithm, and LASSO algorithm

were utilized to identify mitophagy genes associated with

myocardial infarction, including ATG5, TOMM20, and MFN2.

Next, various supervised machine learning algorithm models

were constructed, with logistic regression exhibiting the highest

AUC value (0.915). Subsequently, a logistic regression model was

constructed to validate the genes internally and externally.

Finally, the CIBERSORT algorithm and MCP-counter algorithm

were employed to explore the correlation between immune cell

infiltration and the signature genes.

Cardiac mitochondria are responsible for oxidative

phosphorylation (OxPhos) to produce ATP energy, which is

crucial for cardiac function (26). Therefore, mitochondrial

dysfunction may represent a latent mechanism in the
frontiersin.org
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FIGURE 2

(A) Volcano plot about mitophagy genes. (B) Heat map of the 24 differentially expressed mitophagy genes in MI samples and healthy samples. (C) Boxplot
of 24 gene expression levels.
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pathogenesis or prognosis of myocardial infarction. Mitophagy is

known to increase during cardiac stress and injury, helping to

clear damaged mitochondria and prevent oxidative damage as

well as cell death (27, 28). Therefore, additional research is

necessary to ascertain whether the induction of mitophagy

following myocardial infarction is indicative of a distinct prognosis.

ATG5 is a pivotal component of the ATG12-ATG5-ATG16

complex that plays a crucial role in promoting phagophoric

membrane elongation in autophagic vesicles (29, 30). Wang et al.

have demonstrated that Atg5-dependent autophagy is an

evolutionarily conserved autodigestive process that is essential for

induced cardiomyocyte reprogramming (iCM) (31). Meanwhile,

Schriner et al. suggest that increased autophagy activity may lead

to thinner and longer survival time of Atg5 transgenic mice (29).

Further studies have revealed that ATG5 defects can lead to

increased ubiquitination levels in heart tissue, sarcomere

disorders, mitochondrial aggregation, and other related

abnormalities. Knockout of the ATG5 gene leads to myocardial

cell necrosis and increased cross-sectional area of myocardial

cells, indicating that ATG5 is involved in myocardial

hypertrophy and obesity, and the regulation of lipid metabolism

(32–34). Although few studies have explored the relationship

between ATG5 and AMI, we speculate that ATG5 is related to MI.
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Translocase of Outer Mitochondrial Membrane 20

(TOMM20). When intracellular mitochondrial autophagy occurs,

mitochondrial degradation occurs, resulting in the reduction of

marker proteins in the inner and outer membrane of

mitochondria. It has been reported to be involved in many

cancers (35, 36). Studies have demonstrated a correlation

between increased TOMM20 expression and elevated

mitochondrial mass in certain tumors (37). TOMM20 expression

directly impacts mitochondrial processes, such as ATP

production and membrane potential maintenance (37).

Nonetheless, the precise manner in which TOMM20 expression

contributes to tumor development and progression remains

unclear. In addition, TOMM20 has also been used to evaluate

the degree of mitophagy (38). The decreased expression of

TOMM20 can greatly reduce the damage of myocardial

mitochondria and reduce the apoptosis of myocardial cells (39).

The reason for this phenomenon in this study may be that the

blood samples were collected within 24 h after the occurrence of

myocardial infarction, and this phenomenon occurs in order to

reduce the damage of the heart.

Mitochondrial fusion associated protein 2 (Mfn2), mostly

found in mitochondria, is involved in inhibiting Ras-Raf-MEK-

ERK/MAPK and Ras-PI3K-Akt signaling pathways, thereby
frontiersin.org
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FIGURE 3

(A) The error rate confidence intervals for random forest model. (B) The relative importance of genes in random forest model. (C) Penalty plot of the
LASSO model with error bars denoting standard errors. (D) The least absolute shrinkage and selection operator (LASSO) coefficient profiles. (E) ROC
curves of two gene sets based on LASSO algorithm.
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suppressing proliferation and promoting apoptosis of vascular

smooth muscle cells (40). Overexpression of Mfn1 or Mfn2 has

been found to inhibit the opening of the mitochondrial

permeability transition pore (mPTP) and reduce cell death after

myocardial ischemia-reperfusion injury (41). However, Mfn2

deficiency has been shown to impair cardiac function, cause

heightened myocardial fibrosis, increase mitochondrial damage,

and worsen oxidative stress (42). Furthermore, the increased

expression of Mfn2 has been reported to contribute to

mitochondrial hyperfusion (43).
TABLE 1 The key genes from different algorithms.

SVM-RFE Random forest LASSO
TOMM70, ATG5, MFN1,
PGAM5, MAP1LC3A,
ATG12, TOMM20,
RPS27A, ULK1, SQSTM1

ATG5, TOMM20,
MFN1, TOMM70,
UBA52, SQSTM1, UBC,
MFN2, ULK1,
CSNK2A2

Min: MFN2, TOMM20,
PGAM5, UBC,
MAP1LC3B, UBA52,
SQSTM1, ATG5, PRKN
1se: MFN2, TOMM20,
UBC, UBA52, SQSTM,
ATG5, PRKN

FIGURE 4

The interaction of the three algorithms.
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TABLE 2 Detailed information on three genes.

Official full name Official
symbol

Gene
ID

Location Function

Autophagy related 5 ATG5 9474 6q21 The protein encoded by this gene, in combination with autophagy protein 12, functions as
an E1-like activating enzyme in a ubiquitin-like conjugating system. The encoded protein is
involved in several cellular processes, including autophagic vesicle formation, mitochondrial
quality control after oxidative damage, negative regulation of the innate antiviral immune
response, lymphocyte development and proliferation, MHC II antigen presentation, adipocyte
differentiation, and apoptosis.

Translocase of outer
mitochondrial membrane 20

TOMM20 9804 1q42.3 Enables protein-transporting ATPase activity and unfolded protein binding activity. Involved in
protein targeting to mitochondrion. Located in mitochondria-associated endoplasmic reticulum
membrane and mitochondrial outer membrane.

Mitofusin 2 MFN2 9927 1p36.22 This gene encodes a mitochondrial membrane protein that participates in mitochondrial fusion
and contributes to the maintenance and operation of the mitochondrial network. This protein is
involved in the regulation of vascular smooth muscle cell proliferation, and it may play a role in
the pathophysiology of obesity.

FIGURE 5

(A–F) Boxplot and ROC of three diagnostic genes.

TABLE 3 Performance of supervised machine learning algorithms in MI
prediction.

Algorithms Accuracy Precision Recall F1-score AUC
DT 0.814 0.692 0.712 0.702 0.816

KNN 0.814 0.683 0.719 0.701 0.881

RF 0.799 0.679 0.641 0.659 0.905

SVM 0.814 0.736 0.641 0.685 0.897

LR 0.808 0.739 0.618 0.673 0.915

Bold values denote the highest value in the column.
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In Figures 7A, B, it is evident that a significant proportion of

genes are strongly correlated with monocytes and neutrophils.

Monocytes, which rapidly accumulate in the injured area after
Frontiers in Cardiovascular Medicine 07
myocardial injury, exhibit a pro-inflammatory and phagocytic

role on necrotic substances, as indicated by previous studies, with

the expression of cytokines and growth factors in the infarct

area, the environment in the infarct area changes, and the

infiltrated monocytes transform into mature macrophages (44).

Furthermore, neutrophils are known to exert an anti-

inflammatory effect through apoptosis-related mechanisms.

Specifically, they secrete factors such as annexin A1 and

lactoferrin, which inhibit further recruitment of neutrophils and

promote macrophage aggregation to accelerate the apoptosis

process. Neutrophils also stimulate macrophages to release anti-

inflammatory substances such as IL-10 and TGF-β by activating

the anti-inflammatory program in macrophages (45). This may
frontiersin.org
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FIGURE 6

(A) Logical regression and bootstrap validation based on three gene constructs. (B) Nomogram to predict the occurrence of MI. (C) Calibration curve to
assess the predictive power of the logistic model. (D) ROC based on GSE61144.

FIGURE 7

(A) Correlation map of genes and immune cells based on CIBERSORT algorithm. (B) Correlation map of genes and immune cells based on MCPcounter
algorithm. (C) Correlation between ATG5 and neutrophils based on MCPcounter calculations. (D) Correlation between TOMM20 and T cells based on
MCPcounter calculations.

Yang et al. 10.3389/fcvm.2023.1166324
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FIGURE 8

Correlation diagram of three diagnostic genes and inflammatory factors.

Yang et al. 10.3389/fcvm.2023.1166324
explain why these factors have a significant meaning in Figure 8.

Recent studies suggest that MFN2, in addition to regulating

mitochondrial fusion, has the capacity to regulate immune

responses (46). However, the mechanisms underlying the effect

of mitophagy on myocardial infarction through immune cells

warrant further exploration.

Most drugs that target mitophagy are non-specific and may

affect other cells. Thus, identifying new therapeutic approaches to

regulate mitophagy is crucial (47). The three genes discussed in

this paper, namely ATG5, TOMM20, and MFN2, may provide

potential targets for improving the prognosis of myocardial

infarction. Myocardial infarction is a multifaceted condition that
Frontiers in Cardiovascular Medicine 09
results from the heart’s inability to adequately fulfill the

metabolic needs of body tissues, ultimately leading to impaired

function. Multiple research studies have demonstrated the

indispensability of mitophagy as a critical protective mechanism

for repairing damage associated with this syndrome.

The strength of this study lies in the use of bioinformatics

methods and multiple machine learning algorithms to identify

critical genes associated with myocardial infarction and

mitophagy. Nonetheless, certain limitations and deficiencies must

be acknowledged. Firstly, the study relied mainly on public

databases, which may introduce bias due to the small amount of

data. Nevertheless, our results were validated using K-fold cross-
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validation and bootstrap resampling, which demonstrate their

reliability and generalizability to some extent. Secondly, the blood

samples were collected within one day after myocardial

infarction, and therefore the findings pertain to short-term

effects. Furthermore, further studies involving larger clinical

samples are required to confirm our results. Finally, the

mechanism underlying the immunological infiltration of the

selected genes remains to be elucidated.
Conclusion

With bioinformatics analysis on a GEO dataset and utilizing

three distinct machine learning algorithms, we successfully

identified three mitophagy-related genes closely associated with

MI. Furthermore, a prediction model with desired accuracy has

been established. Our research provides critical insights into

the molecular mechanisms underlying MI and mitophagy,

thereby offering potential valuable avenues for further

investigation.
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