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Objectives: The aim of this study was to develop a deep-learning pipeline for the
measurement of pericardial effusion (PE) based on raw echocardiography clips, as
current methods for PE measurement can be operator-dependent and present
challenges in certain situations.
Methods: The proposed pipeline consisted of three distinct steps: moving window
view selection (MWVS), automated segmentation, and width calculation from a
segmented mask. The MWVS model utilized the ResNet architecture to classify
each frame of the extracted raw echocardiography files into selected view types.
The automated segmentation step then generated a mask for the PE area from
the extracted echocardiography clip, and a computer vision technique was used
to calculate the largest width of the PE from the segmented mask. The pipeline
was applied to a total of 995 echocardiographic examinations.
Results: The proposed deep-learning pipeline exhibited high performance, as
evidenced by intraclass correlation coefficient (ICC) values of 0.867 for internal
validation and 0.801 for external validation. The pipeline demonstrated a high
level of accuracy in detecting PE, with an area under the receiving operating
characteristic curve (AUC) of 0.926 (95% CI: 0.902–0.951) for internal validation
and 0.842 (95% CI: 0.794–0.889) for external validation.
Conclusion: Themachine-learningpipelinedeveloped in this studycanautomatically
calculate the width of PE from raw ultrasound clips. The novel concepts of moving
window view selection for image quality control and computer vision techniques
for maximal PE width calculation seem useful in the field of ultrasound. This
pipeline could potentially provide a standardized and objective approach to the
measurement of PE, reducing operator-dependency and improving accuracy.
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Introduction

Pericardial effusion (PE) is a condition characterized by the

accumulation of fluid within the pericardial space, which is

typically diagnosed using transthoracic echocardiography. The

buildup of fluid increases pressure within the pericardial sac,

potentially leading to cardiac tamponade and decreased cardiac

output. PE is a serious condition that requires timely

intervention, making early detection and accurate measurement

of the width of the effusion critical (1).

Echocardiography is considered the gold standard for the

detection of PE due to its accessibility, portability, and ability to

provide a comprehensive assessment of both anatomy and

function (2–5). However, the presence and severity of PE can be

uncertain, with mild effusion sometimes indicating pericardial fat

rather than true effusion (6). Additionally, image quality can be

compromised by factors such as breast tissue or obscuration

from bone or lung. These challenges highlight the need for an

accurate and reliable method for measuring PE that is not

dependent on operator experience.

Artificial intelligence (AI) has been applied in various clinical

settings to aid in the diagnosis of conditions based on

echocardiograms, with considerable effort devoted to areas such as

left ventricular function assessment, regional wall motion

abnormality, right ventricular function, valvular heart disease,

cardiomyopathy, and intracardiac mass (7–10). In particular, a

study conducted in 2020 employed a deep learning model to

detect PE in echocardiography and achieved an accuracy of 0.87–

0.9 (11). In clinical practice, information on PE width and severity

is crucial for initiating appropriate interventions. To the best of

our knowledge, no study has yet analyzed the grading of PE using

machine learning. Therefore, our study aimed to develop a deep

learning model using echocardiography for PE detection and PE

width measurement. Additionally, to facilitate the deployment of

the deep learning model, we proposed an end-to-end guideline

that can output detection results from raw ultrasound files.
Method

The data collection and protocols utilized in this study were

authorized by the Institutional Review Board of E-Da Hospital

(EDH; no: EMRP24110N) and the Institutional Review Board of

Kaohsiung Chang Gung Memorial Hospital (CGMH; no:

20211889B0 and 202101662B0).
Data collection

In this study, images from routine echocardiography were

generated at two medical centers, EDH and CGMH, in southern

Taiwan. The deep learning model was trained and internally

validated in EDH and externally validated in CGMH.

During the data collection process, we utilized the keyword

“pericardial effusion” to search the Hybrid Picture Report System
Frontiers in Cardiovascular Medicine 02
in EDH in order to gather a list of examination records. We

obtained raw data from transthoracic echocardiography

examinations with a diagnosis of pericardial effusion, which were

performed at EDH between January 1, 2010, and June 30, 2020.

These data were divided into training and validation datasets

based on the respective examination dates. Examinations with

dates prior to December 31, 2018, were used for the development

of the model, and examinations with dates after January 1, 2019,

were used for internal validation. To evaluate the generalizability

of the model, we also retrieved echocardiography data from

CGMH between January 1, 2019, and June 30, 2020, for external

validation. The study flowchart and data summary are presented

in Figure 1.
Echocardiography

Images were gathered in a normal manner, with patients lying

in the left lateral decubitus position. The ultrasound system (IE33,

Philips Healthcare; S70, GE Healthcare; or SC2000, Siemens

Healthineers) was used to perform echocardiographic

examinations in EDH. Data from CGMH for external validation

were acquired using EPIC7 (Philips Healthcare), Vivid E9 (GE

Healthcare), or SC2000 (Siemens Healthineers). All examinations

were saved in picture archiving and communication systems in

the Digital Imaging and Communications in Medicine (DICOM)

format.

After extracting the raw DICOM files, we processed the image

from each patient to select the proper echocardiography views for

developing a deep learning pipeline. The selected views were the

parasternal long-axis (PLAX), parasternal short-axis (PSAX),

apical four-chamber (A4C), and subcostal (SC) views. Two

cardiologists manually measured the thickest point of pericardial

effusion during each cardiac cycle as ground truth for width of

PE. We employed ImageJ, an open-source software platform

specifically designed for the scientific analysis and processing of

images, to label and annotate the segmented masks

corresponding to the echocardiography images. Upon completing

the labeling process, the data was subsequently stored as CSV

files on a secure, encrypted hard drive to ensure data integrity

and confidentiality.
Deep learning model development

In this study, we developed an end-to-end pipeline for the

automated measurement of PE based on the steps outlined below

(Figure 2). The training subset of videos from EDH was used for

the three main tasks of our pipeline:
Step one: moving window view selection
(MWVS)

We proposed a pipeline for managing echocardiography files

directly from the workstation, similar to the work done by Zhang
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FIGURE 1

Flow chart illustrating the study design and data summary.
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et al. and Huang et al., with some adjustments (Figure 2A) (10,

12). To distinguish the four primary views (PLAX, PSAX, A4C,

and SC) from other views during each examination, we

developed the first deep neural network model. This model was a

ResNet-50-based two-dimensional model that aimed to classify

each frame from the extracted DICOM files of echocardiography

into the selected view types (13). To train this model, we

randomly selected 6,434 images from the training dataset of

EDH and labeled them according to the four primary views or

other views, including low-quality views. We trained the model

with a data split of 80% for the training set and 20% for the

validation set. The model weight with the best detection

performance in the validation set during the training process was

preserved. The detection accuracy was assessed for each view

class and weighted average result.

In order to effectively manage the input video from patients

during data collection, a 48-frame moving window was utilized

to filter all videos. For each video, the best 48 frames with regard

to specific view type and image quality were selected using a

majority voting method (Figure 3). This process, known as

MWVS concept, served not only as a view classifier but also as a

quality control measure. Videos that did not contain at least 48

consecutive frames that met the image quality criteria of 50% or
Frontiers in Cardiovascular Medicine 03
higher from one of the four primary views were excluded from

further analysis. Additionally, the average view-classifying

confidence levels for all images obtained from the selected 48-

frame clip were used to evaluate the overall image quality and its

correlation with performance. Videos with an average confidence

level of less than 0.8 were also excluded from automated

segmentation.
Step two: automated segmentation

From the dataset, we randomly selected and annotated 2,548

frames in the EDH training dataset, ensuring an even

distribution across the four primary views. We manually

labeled the segmented area for pericardial effusion (PE) at three

different phases in the cardiac cycle: end-systolic, end-diastolic,

and the middle phase between the two aforementioned phases.

The differentiation between epicardial adipose tissue and

pericardial fluid was established. During this labeling phase,

experienced clinicians manually segmented the area of PE based

on its characteristic appearances in ultrasound images, while

explicitly excluding epicardial adipose tissue. Additionally, we

labeled the segmented areas for the four cardiac chambers to
frontiersin.org
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FIGURE 2

End-to-end pipeline for the automated measurement of pericardial effusion.

FIGURE 3

Moving window view selection concept.
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enhance the model’s performance in separating these fluid-

containing areas.

To train object instance segmentation based on the labeled

ground truth, we utilized a Mask Region-Convolutional Neural

Network (R-CNN) framework (Figure 2B). The model was

trained with a data split of 80% for the training set and 20% for

the validation set. Mask R-CNN is commonly used in medical

applications for instance segmentation tasks as it can

simultaneously perform pixel-level segmentation and classification

of multiple target lesions (14). The implemented model generates

bounding boxes and targeting masks for each instance of an object
Frontiers in Cardiovascular Medicine 04
in an image. The input comprised consecutive ultrasound frames,

and the output was a segmented mask indicating the

corresponding four cardiac chambers and PE. The accuracy of the

segmentation model was assessed using the Dice coefficient metric.
Step three: measurement of pericardial
effusion

After generating a segmented mask for pericardial effusion

(PE), we proposed a computer vision technique, known as the
frontiersin.org
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TABLE 1 Demographics, basic characteristics, and clinical findings of the
patients.

Variables Training
set

Internal
Validation set

External
Validation set

Number of patients 582 155 258

Age(y) 67.4 ± 15.4 59.8 ± 19.2 66.4 ± 16.1

Gender Male 49.5% Male 53.2% Male 58.1%

Height, cm 157.9 ± 9.2 162.1 ± 8.4 161.6 ± 8.4

Weight, kg 53.7 ± 35.6 65.9 ± 16.8 61.8 ± 13.3

BMI, kg/m2 23.3 ± 5.2 24.4 ± 1.5 23.6 ± 4.5

Mode EF % 61.1 ± 13.8 64.3 ± 7.1 61 ± 13.9

Mode EF < 50 (%) 12.8% 8.4% 19.3%

Patients with PE 582 (100%) 72 (46.5%) 163 (63.2)
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maximal width calculator, to calculate the largest width of the PE in

each ultrasound frame (Figure 2C). To accomplish this, we iterated

through the vertical axis in each frame and hypothetically drew a

horizontal line to determine if there was an intersection between

the segmented mask and the horizontal line. If an intersection

existed, we obtained a normal line from the edge of the mask

over the intersection point. The length of the normal line that

passed through the segmented mask was counted as the width of

the PE at that intersection point. The largest width of the PE

obtained through the iteration over the vertical axis was regarded

as the width of the PE of the frame. This technique was applied

to all 48 frames in the ultrasound video to provide the optimal

PE width. Detailed explanation of this process was demonstrated

in Supplementary Appendix 1.
Statistical analysis

In this study, continuous variables are presented as either the

mean and standard deviation if they are normally distributed or

as the median and interquartile range if they are not.

Dichotomous data are presented as numbers and percentages.

The chi-squared test was used to analyze categorical variables,

while continuous variables were analyzed using either the

independent-sample t-test if they were normally distributed or

the Mann-Whitney U test if they were not.

The performance of the proposed pipeline for PE width

measurement was evaluated using metrics such as the mean

absolute error, intraclass correlation coefficient, and R-square

value when comparing the ground truth and detection.

Additionally, the detection of the existence of PE and moderate

PE was evaluated using sensitivity, specificity, and the area under

the receiver operating characteristic curve. The deep learning

models in the pipeline were developed using the TensorFlow

Python package, image manipulation was performed using

OpenCV 3.0 and scikit-image, and all analyses were conducted

using SPSS for MAC version 26.
Results

In this study, a total of 995 echocardiographic examinations

were analyzed. Of these, 737 examinations were from the EDH

dataset, with 582 being utilized for training and 155 for internal

validation. Additionally, 258 examinations from the CGMH

dataset were included for external validation. However, due to

the limited number of SC views present in the CGMH dataset,

this view was not included in the external validation analysis.

The demographic and clinical characteristics of the patients

who underwent echocardiography are presented in Table 1. The

mean age of patients in the training, internal validation, and

external validation sets were 67.4 ± 15.4, 59.8 ± 19.2, and 66.4 ±

16.1 years, respectively. Additionally, 46.5% and 63.2% of

patients in the internal and external validation groups,

respectively, had PE. The average ejection fraction was 64.3 ±
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7.1% in the internal validation group and 61 ± 13.9% in external

validation group.

The performance of the view classifier was evaluated with an

average accuracy of 0.91 and 0.87 in predicting image classes in

the training and validation sets, respectively. The independent

accuracy in the validation set for each class was 0.90, 0.87, 0.93,

0.76, and 0.88 for PLAX, PSAX, A4C, SC, and others, respectively.

The MWVS was used to select the right views from all DICOM

files in one examination and to improve video quality. The results

of MWVS showed that 80%–100% of the four selected ultrasound

views in EDH were successfully passed through for the

segmentation model. In the external validation (CGMH dataset),

686 ultrasound videos from the four selected views were

obtained. Our MWVS scanned through all DICOM files and 365

(53.2%) ultrasound videos were preserved for segmentation

inference. The videos selected by our pipeline were further

checked by a cardiologist, and none of them were misclassified as

other cardiac views.

We employed a mask R-CNN-based model for image

segmentation to effectively localize the cardiac chambers and PE

area within four different views (Figure 4). The validation set,

consisting of 510 images, showed an average Dice coefficient

ranging from 0.67 to 0.82 among the four views, with the short-

axis view (SC) achieving the lowest result. The best Dice

coefficient was observed in the parasternal long-axis view (PLAX)

at 0.72, while the SC view had the poorest result of 0.56

(Table 2). Using the segmented PE area, we calculated the

maximal PE width from each frame.

Figure 5 illustrates the scatter plot of the PE width

measurement between the ground truth and model detection,

which was determined by finding the largest normal line passing

through the segmented mask in each frame. We compared the

automated and manual measurements of PE width in both the

internal (EDH) and external (CGMH) validation datasets,

reporting the mean absolute error and correlation between the

two. The mean absolute error was 0.33 cm and 0.35 cm in the

internal and external datasets, respectively. Additionally,

the interobserver variability was found to be highly correlated for

the measurement of PE width between our model and human

expert (ICC = 0.867, p < 0.001, EDH; ICC = 0.801, p < 0.001,

CGMH). The R-square value was 0.594 for the EDH dataset and

0.488 for the CGMH validation dataset.
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FIGURE 4

Image segmentation over cardiac chambers and pericardial effusion.
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Our model accurately detected the existence of PE in the

internal validation [AUC = 0.926 (0.902–0.951)] and external

validation [AUC = 0.842 (0.794–0.889)]. With regard to

recognizing moderate PE or worse, the AUC values improved to
Frontiers in Cardiovascular Medicine 06
0.941 (0.923–0.960) and 0.907 (0.876–0.943) in the internal and

external validation groups, respectively.

We further performed a stratified analysis of the model

detection in the different echocardiography views. In the internal
frontiersin.org
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TABLE 2 Dice coefficient of image segmentation.

Dice coefficient

PE RV LV RA LA Average
PLAX 0.72 0.86 0.85 0.84 0.82

PSAX 0.69 0.59 0.85 0.71

A4C 0.58 0.81 0.86 0.82 0.83 0.78

SC 0.56 0.66 0.71 0.70 0.72 0.67

Cheng et al. 10.3389/fcvm.2023.1195235
validation, the model detection of PE width was highly correlated

with the ground truth in the four different views, with ICC

ranging from 0.802–0.910. The PLAX and A4C views appeared

to have the best detection results with ICCs of 0.910 (0.876–

0.935) and 0.907 (0.871–0.932), respectively. In the external

validation, similar to internal validation, the model performed

better in the PLAX and A4C views, with ICCs of 0.807 (0.726–

0.864) and 0.897 (0.846–0.931), respectively. The other

performances are listed in Table 3.
Discussion

In recent years, computer vision and deep learning techniques

have been utilized to aid in the interpretation of echocardiography,

estimate cardiac function, and identify local cardiac structures.

Deep learning algorithms have also been applied to facilitate the

diagnosis of PE (15). Nayak et al. developed a CNN that detected

PE in the apical four-chamber (A4C) and short-axis (SC) views

with accuracies of 91% and 87%, respectively (11). In this study,

we propose a deep learning pipeline that can process raw

DICOM files from ultrasound and predict the PE width in a

clinical setting. This pipeline combines two deep learning models

and one technical calculation algorithm to accurately predict PE

width. There have been few efforts to predict PE existence, with

some studies being based on computed tomography scans

(16, 17). To the best of our knowledge, this is the first video-

based machine learning model to measure PE width using
FIGURE 5

Scatter plot of pericardial effusion width measurement between model and m
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echocardiography. The correlation between the measurement of

our model and human experts was high in both the internal and

external validation datasets, with the best performance observed

in the parasternal long-axis (PLAX) view. The inference speed of

our model, using one graphics processing unit (NVIDIA RTX

3090), was approximately 30–40 s for one examination, which is

usually faster than human assessment.

The present study introduces two novel concepts for

echocardiography analysis: the MWVS and the maximal width

calculator of the segmented mask. These methods are particularly

important for real-world applications, particularly when working

with relatively smaller datasets. Previous studies often rely on

datasets manually selected by human experts during dataset

cleaning, and use only “textbook-quality” images for training

(18–21). In contrast, the present study proposes an analytical

pipeline that can automatically analyze echocardiograms and be

easily applied to personal devices or web applications, thus

eliminating the need for expert sonographers or cardiologists.

Madani et al. developed a CNN that simultaneously classified 15

standard echocardiogram views acquired under a range of real-

world clinical variations, and the model demonstrated high

accuracy for view classification (21). Similarly, this study used

echocardiogram video clips obtained from the real world, taken

for a variety of clinical purposes, including ejection fraction

calculation, and detecting PE, valve disease, regional wall

abnormality, cardiomyopathy, and pulmonary arterial

hypertension. An initial screening model for view classification

and quality control was developed. All raw images from the

medical image database were input into the screening model,

leaving a specific view of sufficient quality for diagnosis.

Additionally, the “moving window” concept was used to retrieve

only clips with 48 consecutive frames that fulfilled the image

quality criteria. By avoiding limited or idealized training datasets,

it is believed that this model is broadly applicable to clinical

practice.

The method of MWVS is a novel concept that has not yet been

proposed in the field of echocardiography assisted by machine
anual annotation.
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TABLE 3 Stratified analysis of the model detection in the different echocardiography views.

Number before
view selection

Number after moving
window selection

Mean Absolute
Error (cm)

ICC R2

Internal validation
PLAX n = 155 n = 146 0.28 0.910 (0.876–0.935) 0.700

PSAX n = 155 n = 155 0.46 0.802 (0.728–0.856) 0.469

A4C n = 155 n = 155 0.32 0.907 (0.871–0.932) 0.754

SC n = 155 n = 124 0.40 0.865 (0.808–0.905) 0.590

External validation
PLAX 222 n = 127 0.32 0.807 (0.726–0.864) 0.457

PSAX 252 n = 138 0.44 0.714 (0.600–0.796) 0.337

A4C 212 n = 100 0.11 0.897 (0.846–0.931) 0.662
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learning. MWVS serves as an image quality filter and plays a

crucial role in ensuring that the images are of sufficient quality

for the next step in the pipeline. In the EDH dataset,

echocardiography is performed by well-trained technicians who

adhere to a protocol established by the echocardiologist

consensus committee. As such, the original images from EDH

were of relatively homogeneous quality, and MWVS filtered out

fewer patients. Conversely, at CGMH, echocardiography is

performed by individual echocardiologists who may have varying

techniques. As a result, the original images from CGMH were

less homogeneous, and MWVS filtered out more patients. This

finding highlights the significance of MWVS in maintaining

image quality and highlights the importance of image

homogeneity in the applicability of machine learning models.

After segmenting the PE area, we developed a novel computer

vision-based technique to calculate the largest PE width in

ultrasound video. The current categorization of PE size relies on

linear measurements of the largest width of the effusion at end-

diastole, and is graded as small (<1 cm), moderate (1–2 cm), or

large (>2 cm) (22). This semiquantitative classification method is

prone to errors due to asymmetric, loculated effusions and shifts

in fluid location during the cardiac cycle (23). Therefore, an

automated calculation system could help identify the largest

width of the PE in every ultrasound frame without any errors. In

comparison to AI-based models, the computer vision technique

is more similar to the method used by human experts. AI-based

models not only consume more computing resources, but also

require a large number of datasets for training and validation. To

the best of our knowledge, our study is the first to not only

detect but also classify the grade of PE.

Our model’s ability to automate the process of classifying PE

severity, traditionally categorized as mild, moderate, or severe,

signifies a meaningful advancement in this field. Although this

may appear straightforward for experienced clinicians, automated

segmentation and measurement can be invaluable, especially in

contexts where echocardiography expertise may be limited or

entirely absent. Importantly, even though our model does not

currently provide prediction on hemodynamic instability such as

cardiac tamponade, its ability to differentiate moderate to severe

PE from none or mild is crucial. This feature allows for early

risk stratification in patients, prompting clinicians to initiate

appropriate assessments and interventions as early as possible.
Frontiers in Cardiovascular Medicine 08
Moreover, our work lays the groundwork for the future

development of models designed to predict complex clinical

scenarios, such as early hemodynamic instability. The integration

of our model’s segmentation and classification capabilities with

other clinically relevant parameters may, in time, lead to major

advancements in the prediction and management of such

conditions.

This study had certain limitations that should be considered

when interpreting the results. Firstly, the study was conducted

retrospectively and the model was trained using data from only

one hospital. This resulted in a limited sample size and a lack of

ethnic diversity, which may impact the generalizability of the

findings to other populations. To address this, future studies

should utilize a multicenter design with greater heterogeneity in

the dataset. However, it is important to note that the images

used in this study were obtained using different ultrasonography

machines and were interpreted by multiple echocardiographers,

and the model achieved similar results during external validation.

Secondly, while the proposed pipeline did grade the amount of

PE, there was no information on whether there were signs of

cardiac tamponade, as PE volume does not necessarily correlate

with clinical symptoms (24). Additionally, due to the small

sample size, we were unable to conduct subgroup analysis to

distinguish the algorithm’s performance on transudative vs.

exudative effusions. To increase the clinical applicability of the

findings, larger studies and validation cohorts are needed to

reproduce the results of this study. Further research should also

evaluate the collapsibility of the cardiac chambers and the

presence of tamponade signs.
Conclusion

In this study, we developed a deep-learning pipeline that

automatically calculates the width of the PE from raw ultrasound

clips. The model demonstrated high accuracy in detecting PE

and classifying the PE width in both internal and external

validation. The use of a novel concept, known as MWVS, for

image quality filtering and computer vision techniques for

calculating the maximal PE width is a novel application in the

field of echocardiography.
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