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Extracellular vesicles (EVs) are small, lipid bilayer-enclosed structures released by
various cell types that play a critical role in intercellular communication. In
atherosclerosis, EVs have been implicated in multiple pathophysiological
processes, including endothelial dysfunction, inflammation, and thrombosis. This
review provides an up-to-date overview of our current understanding of the
roles of EVs in atherosclerosis, emphasizing their potential as diagnostic
biomarkers and their roles in disease pathogenesis. We discuss the different
types of EVs involved in atherosclerosis, the diverse cargoes they carry, their
mechanisms of action, and the various methods employed for their isolation
and analysis. Moreover, we underscore the importance of using relevant animal
models and human samples to elucidate the role of EVs in disease
pathogenesis. Overall, this review consolidates our current knowledge of EVs in
atherosclerosis and highlights their potential as promising targets for disease
diagnosis and therapy.
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1. Introduction

Atherosclerosis is a significant cause of cardiovascular disease (CVD) that can lead to

heart attack, stroke, kidney failure, and major amputation (1–4). Approximately 17.9

million people die from CVD annually (5). Atherosclerosis is a chronic inflammatory

process characterized by endothelial activation, accumulation of lipoproteins, and

recruitment of inflammatory cells that leads to plaques that gradually enlarge and either

restrict blood flow or embolize, damaging the heart or peripheral tissues (6). The current

diagnostic methods for atherosclerosis are associated with rare but significant procedure-

related consequences and considerable cost (7, 8). The classical biomarkers, such as total

cholesterol, low-density lipoprotein (LDL), or serum triglyceride levels, are the gold

standard diagnostic tests for atherosclerosis (9). C-reactive protein, a non-specific

inflammatory marker, has emerged as a clinical marker for residual risk in atherosclerosis

patients with good cholesterol control (10, 11). Many of these biomarkers can diagnose

CVD but cannot definitively predict stroke or myocardial infarction (MI) risk. There is a

need for new CVD biomarkers that are cost-effective, improve detection, and identify

novel treatment targets. As we enter the era of precision medicine, we need a more

granular understanding of biomarkers that can be used as reliable screening tools with

metrics to guide personalized intervention to prevent devastating clinical events.
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The American Heart Association proposed seven metrics in

2010 to define and monitor cardiovascular health (12). Managing

the disease involves non-pharmacological methods (healthy diet,

regular physical activity, and tobacco abstinence) (1) and

pharmacological interventions such as statins to control

lipoprotein levels (13–15), with newer options such as

cholesterol-binding agents (e.g., ezetimibe) (16) and proprotein

convertase subtilisin/kexin type 9 (PCSK9, lowers LDL) inhibitors

(e.g., evolocumab) (17–19) also available. Notably, several studies

have highlighted challenges in achieving therapeutic goals for

serum lipids despite high-intensity statin therapy (20–22). In

some cases, surgery or stent-based therapies are required to

manage more severe atherosclerosis. While current strategies can

slow the progression of atherosclerosis and/or prevent clinical

events (23), further research is needed to understand the specific

cellular and molecular mechanisms underpinning plaque

progression to identify targets for stabilization and/or plaque

regression. One area of promise includes delineating cellular

communication during atherosclerotic plaque development and

progression. In this regard, extracellular vesicles (EVs) have been

identified as essential cell-cell communicators that may hold

promise in improving our understanding of atherosclerotic

disease—from biomarkers to disease pathogenesis (24–26)

(Figure 1).
2. Extracellular vesicles

2.1. Biogenesis, cargo, and functions

EVs are lipid bilayer-bound particles that all cell types release

into the extracellular space. They can be classified into three

major types based on their biogenesis, morphological, and

biochemical properties: exosomes (form as intraluminal vesicles

within multivesicular bodies that fuse with the plasma

membrane, 30–100 nm), microvesicles (directly bud off from

healthy plasma membrane/also referred to as ectosomes,

100–1,000 nm) and apoptotic bodies (form during apoptosis,

1–5 µm) (27, 28). Furthermore, EVs carry cargo that contains

biologically active materials, such as DNA, microRNA, messenger

RNA, proteins, lipids, and carbohydrates. Once released into the

extracellular space, EVs may directly interact with nearby cells

(28). EVs can enter biological fluids via transcytosis or by

breaching biological barriers, where they can travel throughout

the body via the circulation—either blood or lymphatics (28, 29).

EVs can then be taken up by recipient cells via endocytosis,

fusion with the recipient cell plasma membrane, or binding to

target cell membrane proteins (30, 31). The transferred cargo to

recipient cells can affect molecular and cellular signalling

pathways and functions.

Current EV isolation permits classification based on size,

density and surface markers but does not discriminate based on

biogenesis (28). That said, proteomic analysis has revealed

distinct protein composition for EV subtypes (32), with some

markers helping to distinguish EVs by biogenesis pathways. For

example, exosome markers include endosomal sorting complexes
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required for transport (ESCRT) proteins, Alix and tetraspanins,

while ectosome markers include Annexin A2/A5, ARF6 and

Enolase 1 (32). Although advanced technology will undoubtedly

yield more discrimination between EV populations, some

promise exists in using inhibition of EV biogenesis by

pharmacological therapies. For example, inhibitors of cancer

exosome secretion may impact cancer progression and metastasis

(33). Ultimately, the ideal strategy will be to find specific

inhibitors that can impact EVs associated with pathology but not

those that play critical physiological roles (34). To do this, we

will need a more nuanced understanding of the kinetics of EV

release from the host cell, travel within the circulation, recipient

cell uptake, and EV clearance.

EV cargo is biologically active. In cancer, EV cargo can

promote neoplastic transformation and cell proliferation,

contributing to cancer initiation and progression (35–38). During

atherogenesis, EVs released from endothelial cells (ECs) and

immune cells promote leukocyte infiltration and plaque

maturation (39–41). This suggests that EVs circulating in the

plasma could serve as non-invasive disease biomarkers. Both in

vitro and in vivo studies have shown that circulating EVs carry

microRNA, which can be biomarkers for neurodegenerative

diseases (42–45) and CVD (46). EVs possess several unique

advantages compared to traditional biomarkers (47). EVs are

stably circulated in almost all bodily fluids, they can represent

the current disease state by carrying specific cargo from parental

cells, and they can be collected sequentially. As a result, EVs

have significant potential as clinically valuable biomarkers

capable of providing multiple, minimally intrusive assessments of

the disease state.

EVs can also be used as a stable drug delivery system that

protects cargo from degradation (48–54). EVs have numerous

advantages over cell-based therapies in regenerative medicine,

such as long shelf life, ease of transportation, long-term storage,

and lack of replication (55–57). As drug delivery vehicles, they

outperform synthetic drug carriers by crossing tissue and cellular

barriers (48). In preclinical studies, EVs have been used as a

drug delivery system. For instance, exosome-mediated siRNA

delivery has been used in Alzheimer’s disease (45), while

mesenchymal stem cell-derived exosomes have been used to treat

ischemic lung injury (58) and eye disorders (59). However,

further understanding of EV circulation dynamics, targeting,

internalization, and intracellular trafficking pathways is needed to

fully capitalize on the therapeutic potential.
2.2. Characterization

EV isolation is divided into three main approaches based on

size, density, and surface markers (31). Size-exclusion

chromatography (SEC) is one commonly used technique for EV

isolation based on size, while differential ultracentrifugation

exploits the distinct density gradients of EVs (60). Finally,

magnetic beads/affinity chromatography or flow cytometry

uses surface markers to extract EVs with high specificity but

low yield (31). There is no single gold standard. Although
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1202187
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

Exploring the role of extracellular vesicles in atherosclerosis: insights from biomarkers, therapeutics, pathobiology, and translational models. Extracellular
vesicles (EVs) as versatile entities for various applications. EVs, small membrane-bound particles, have emerged as promising biomarkers for diagnostic
and prognostic purposes in various diseases. They have also shown great potential as therapeutic agents for their ability to carry and deliver bioactive
molecules. Moreover, EVs have been implicated in the pathogenesis of many diseases, including cancer, neurodegenerative diseases, and
atherosclerosis. Animal studies have contributed significantly to our understanding of the biology and functions of EVs, paving the way for their
clinical translation.
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ultracentrifugation has been widely used in the past, there has been

a shift towards SEC attributed in part to the higher EV yield and

functionality obtained through SEC (61, 62).

The Minimal Information for Studies of Extracellular Vesicles

(MISEV) 2018 provides a key tool for standardizing EV research

(31) and has helped to establish rigour in a rapidly emerging

field of research by outlining criteria for EV quantification and

characterization. Suggestions include EV quantification by

nanoparticle tracking analysis (NTA) (63), characterization by

surface marker protein expression using western blot (31), and

purity control to detect the presence of non-vesicular

contamination, such as apolipoprotein A1 and albumin in EVs

enriched from plasma (64). Imaging EVs via electron microscopy

is recommended (63), while flow cytometry detecting surface

markers can be used to characterize the cellular origin of EVs

(65, 66). In this way, rigorous determination of cell-specific EVs

holds promise as highly specific biomarkers for a disease state.

EVs can be further characterized by analyzing their cargo. Mass

spectrometry has been used to study EV proteomics in biofluids

and tissues (67, 68). Similarly, transcriptomics has been

employed to investigate the nucleic acid cargo of EVs, specifically

microRNA cargo, primarily through microarrays and RT-qPCR,

which are limited to a particular RNA panel (69).

Despite the considerable advancement in technology for EV

isolation and characterization, limitations and challenges remain.

However, as developing technology continues to refine EV
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research, it is becoming clear that EVs play crucial roles in

biological processes, govern disease, and have emerged as a new

avenue in atherosclerosis research.
3. EVs in atherosclerosis

3.1. EVs in plasma

EVs might serve as diagnostic and therapeutic tools for many

CVD conditions. EV levels in the blood, urine and saliva have

been linked to clinical risk in patients with stable CVD (70)

(Table 1). Elevated EVs are associated with risk factors such as

smoking, diabetes, and hypercholesteremia (84). The abundance

of EVs carried in plasma reflects the potential for utilizing these

EVs as biomarkers for CVD, and notably that EVs derived from

specific cell types, such as ECs, leukocytes and platelets, correlate

with CVD (85). A previous study exploited the surface markers

expressed on EVs to purify and isolate cell-specific EVs, followed

by enrichment and analysis of EV cargo. In EVs isolated from

plasma, CD14 upregulation was linked to a higher risk of

ischemic stroke occurrence (80), while increased cystatin C and

polygenic immunoglobin receptors were linked to acute coronary

syndrome (77).

Circulating EVs from different cellular origins and their

distinct cargo (e.g., microRNA, protein) have been linked to
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Table 1 Potential biomarkers for cardiovascular diseases.

Disease Sample Biomarker Levels Study Design Potential
application

Reference

Heart Failure (HF) Plasma miR-1254, miR-1306 ↑ 2203 patients with HF Prognosis (71)

Galectin-3 ↑ 1329 patients with HF Prognosis (72)

Saliva Galectin-3 ↑ 64 patients with HF; 51 healthy controls Diagnosis (73)

Plasma-EVs miR-425, miR-744 ↓ 31 patients with HF; 31 healthy controls Diagnosis (74)

Serum-EVs mir-92B-5P ↑ 28 patients with HF; 30 healthy controls Diagnosis (75)

Acute Coronary Syndrome
(ACS)

Plasma miR-208b, miR-133a ↑ 444 patients with ACS Diagnosis (76)

Serum-EVs pIgR, cystatin C ↑ 471 ACS-suspected patients Diagnosis (77)

Coronary Artery Disease
(CAD)

Urine collagen α1
(I and III)

↑ 67 patients presenting with symptoms suspicious
for CAD

Diagnosis (78)

Plasma-EVs miR-126, miR-199a ↑ 181 patients with stable CAD Prognosis (79)

Vascular Disease Plasma-EVs Cystatin C, Serpin F2,
CD14

↑ 1060 patients with vascular disease and severe
vascular risk factors

Prognosis (80)

Myocardial Infarction (MI) Plasma miR-499-5p,
miR-208b

↑ 424 patients with suspected ACS Prognosis (81)

Serum-EVs miR-192, miR-194,
miR-34a

↑ 21 patients with MI; 65 matched controls Prognosis (82)

Atherosclerosis Plasma PIGR, IGHA2, APOA,
HPT,
HEP2

↑ 222 patients with atherosclerosis; 222 matched
controls

Prognosis (83)
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pathological conditions such as dyslipidemia, diabetes (86–88),

CVD (60, 79), and inflammatory disorders (89–91). This suggests

that EVs play a role in the immune response, vascular

remodelling, endothelial dysfunction, and apoptosis, all of which

underlie atherosclerosis (92, 93). Studies have shown that

leukocyte-derived, neutrophil-derived, and activated platelet-

derived EVs were significantly higher in patients with

atherosclerosis (94, 95). EVs carried in plasma may be helpful as

biomarkers for atherosclerosis, but accuracy must be improved to

detect changes in EV count from specific cell types. As EVs are

heterogeneous in size, composition, and cellular origin, it makes

identifying specific populations and correlating them to disease

challenging (46). In addition to EV heterogeneity, clinical

variables (e.g., age, sex), comorbidities (e.g., obesity), and clinical

history (e.g., cancer, medications) affect circulating EVs in

plasma (31).

Furthermore, laboratory standardization will be critical before

employing EVs as a biomarker: lack of standard protocols for EV

isolation, quantification, and characterization leads to variability

in results and negates their utility as a biomarker or clinical

assessment tool. EV biomarkers lack a standard reference range,

making it difficult to compare among populations and studies.

No EV-based biomarker has been adopted for CVD, and more

research is needed to develop standard protocols to study plasma

EVs. Work is ongoing, as the International Society for

Extracellular Vesicles has a specific blood task force focused on

standardizing plasma and serum-derived EVs (96).

To address the challenges in EV detection, standardization, and

clinical translation, technological improvements, standardized

protocols, and prospective large clinical trials are needed (97, 98).

Precision medicine EV research has recently become more

prominent. It is a potential path that enables physicians and

researchers to use patient data to develop personalized

treatments. For instance, a multi-biomarker approach may
Frontiers in Cardiovascular Medicine 04
incorporate EV evaluation for screening/diagnosis, prognosis, and

monitoring of people at risk of atherosclerotic CVD (97). Several

subsets of EV biomarkers can be exploited for patient risk

evaluations, reclassification, and disease stage diagnosis (97).

Applying transcriptomic and proteomic analysis plus artificial

intelligence algorithms to clinical data can help identify high-risk

individuals and administer preventive strategies quickly (98).
3.2. EVs in plaque

As EVs protect their molecular cargo from degradation and

carry surface markers identifying their parent cell, plasma EVs a

unique opportunity to study disease states (diagnostic potential).

On the other hand, EVs in tissue can contribute to the

pathophysiology or progression of plaques (therapeutic targets)

(99). At this time, however, screening and tracing EVs released

from cells or tissues in vivo remains challenging. EVs are found

in early and advanced plaques, suggesting they are involved in

both the initiation and advanced phases of plaque development

in humans (100–102). Patients with atherosclerosis demonstrated

enrichment of proatherogenic EV cargo, such as vascular cell

adhesion molecule-1, von Willebrand Factor, endothelial nitric

oxide synthase, and angiopoietin-1, compared to healthy control

participants (103, 104). Athough EV production, function, and

quantity in atherosclerotic lesions still needs more delineatation,

some granularity is emerging, with human atherosclerotic

plaques containing EVs derived from leukocytes, macrophages,

erythrocytes, lymphocytes, and smooth muscle cells (SMCs) (101,

102, 105).

Most of our current understanding of the role of EVs in

atherosclerosis has been obtained from studies using EVs derived

from cell cultures, which may not accurately represent EVs found

in vivo. Nonetheless, EVs have been found to exert significant
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influence over a range of pro-atherogenic processes, such as

inflammation, thrombosis, and angiogenesis (84). In particular,

EC-derived EVs have been implicated in endothelial dysfunction

(106, 107) and vascular inflammation (108), which may

contribute to the development of early atherosclerotic plaques.

Moreover, EC-derived EVs can communicate with macrophages

(109, 110) and SMCs (111–113) to regulate vascular disease,

while monocyte-derived EVs have been found to modulate

vascular inflammation and cell death (114–116). Additionally,

foam cell-derived EVs have been shown to regulate SMC

migration, thereby potentially accelerating the progression of

atherosclerotic lesions (117). EVs produced from a range of cell

types, including T-cells, platelets, dendritic cells, and monocytic

cells, have also been shown to cause macrophage apoptosis

(118–122), that may contribute to the development and

progression of atherosclerosis. Moreover, EVs have been found to

play various multifaceted and environment-dependent roles in

other cellular processes, such as endothelial permeability (123),

pro- and anti-inflammatory signaling (124–126), leukocyte

transmigration and lipid accumulation (127–129), SMC

proliferation (130), intravascular calcification (131), extracellular

matrix remodeling (132), and plaque rupture. Collectively, the

evidence suggests a substantial role for EVs in atherosclerosis

pathogenesis, emphasizing the need for additional research into

the mechanisms underlying EV-mediated intercellular

communication in this disease. New technologies such as flow

cytometry and single EV analysis will increase detection precision

and provide more detail on cell-specific EV phenotypes, their

cargo, and their role in disease regulation. Until then, an

emerging resource for EV studies is the development of

multicellular models for tracking.
4. EV tracking animal models

Despite recent discoveries, it is still challenging to

understand the spatiotemporal distribution and physiological

activities of EVs in vivo. Little is known about the biological

activities of EVs in vivo, including tissue distribution, blood

levels, and clearance dynamics. EVs have been investigated in

several disease-simulating animal models, including mouse, rats,

and zebrafish.

The transparent nature of zebrafish makes them an ideal

model (133, 134). The transgenic zebrafish model was recently

established, enabling in vivo identification, tracking, and isolation

of endogenous EVs produced by different cell types (135). A cell

membrane-tethered fluorophore reporter system in the zebrafish

allows cell-specific EV tracking and the potential to track EVs in

cell-cell communication within the cardiovascular system (135).

In vivo, a live EV tracking model of zebrafish demonstrated

inter-organ communication by endogenous exosomes (136).

Despite these successes, zebrafish EV tracking models have

technological limitations (136) and consequently, more complex

models are needed.

EVs have also been studied using more advanced organisms for

models of diseases such as cancer (137, 138) and neurological
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disorders (139–141). For example, a murine model was used to

determine the therapeutic effects of immunity and matrix

regulatory cell-derived EVs on idiopathic pulmonary fibrosis

(142). Several studies have used the rat model to study the role

of EVs in spinal cord injuries (143, 144) and repetitive stress

(145). Rat models have also been used to investigate the

therapeutic potential of EVs to treat diseases such as small

cerebral vessel disease (146), colo-cutaneous post-surgical fistula

(147), and congenital diaphragmatic hernia (148).

EVs and their relevance to various disease processes have been

investigated over the past decade, but EV tracking in vivo remains

challenging. Understanding EV biodistribution throughout an

organism will be essential before use in clinical practice. Using

an EV tracking mouse model, a few studies have demonstrated

EV-mediated cell-cell communication and the effects of EVs

produced from tumour cells on distant organs (149–151).

Investigators used Cre-LoxP mouse models to study cell or

tissue-specific EVs by crossing CD9/CD63-GFPf/f exosome

reporter mice with Cre-mice (αMHC-MerCreMer for

cardiomyocytes, Pax8-Cre for renal tubular epithelial cells,

Cdh5-CreERT2 for ECs, villin-Cre for intestine, and alb-Cre for

liver) (152–154). In addition, a transgenic rat model (GFP-tagged

human CD63) was employed to determine intercellular and

mother-to-child EV transfer in vivo (155). However, a complete

understanding of the role of cell-specific EVs in atherosclerotic

diseases remains elusive. To investigate the potential of EVs as

biomarkers or disease modulators, novel animal models that

allow for the tracking, characterization, and evaluation of

cell-specific EVs are required.
5. Perspectives for future studies

EVs, known to carry biologically active cargoes, appear to play

an important role in the pathogenesis of atherosclerosis. However,

studying plaque-derived EVs is challenging due to limited

accessibility and the complex composition of plaques. Thus,

researchers have turned to studying EVs in circulation,

particularly in those carried in plasma, to gain insights into

atherosclerosis biology. Although plasma is easily accessible,

identifying reliable biomarkers is challenging, and pairing

biomarkers with clinical events may not reflect the disease state

entirely. Therefore, it is necessary to determine whether disease

regions release EVs into circulation, which could serve as a

potential biomarker. The paired assessment of EVs from

circulation and plaques of the same patient is one possible

approach, representing a promising and meaningful strategy for

an atherosclerosis study.

Further research must elucidate the precise mechanisms by

which plaque-derived EVs contribute to atherosclerosis

pathogenesis to identify potential therapeutic targets. The

primary challenge in studying EVs within the plaque is

determining their source (cell-specific EVs) and their functions

on neighbouring cells. Transgenic zebrafish models have

demonstrated the feasibility of tracking EVs within the

cardiovascular system (135). More sophisticated animal models
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are essential to enable EV-tracking into plaques, better

comprehend EV biogenesis and metabolism, and investigate cell-

specific EV roles and functions during disease progression.

Plasma-derived EVs (e.g., leukocyte origin) have demonstrated

potential as biomarkers for assessing plaque vulnerability in

patients (156, 157). The potential for EVs carried in plasma to

shed light on the biology of atherosclerotic plaque vulnerability

to rupture (leading to clinical events such as MI and stroke) is

promising and requires further investigation. Using EVs as

therapeutic targets for atherosclerosis is a growing area of

interest, given their stability as drug-delivery vehicles (158, 159).

Overall, EVs represent a promising area for future research in

the field of atherosclerosis.
6. Conclusions

EVs have been recognized as important components in the

pathogenesis of atherosclerosis. EVs derived from immune and

ECs are implicated in developing and destabilizing atherosclerotic

plaques. Plasma EVs carry the potential for conveying

information related to the vulnerability of atherosclerotic plaques

and can serve as potential biomarkers for atherosclerosis and its

associated complications, such as MI and stroke. Moreover, the

prospect of utilizing EVs as therapeutic targets for atherosclerosis

has recently gained substantial interest. While work remains to

improve the tools and standardization of EV research, EVs

nonetheless represent an encouraging area for future research in

the field of atherosclerosis and hold the potential to provide

novel insights into the diagnosis, treatment, and prevention of

this chronic inflammatory disease.
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