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The causal effects of genetically
determined human blood
metabolites on the risk of
atrial fibrillation
Tao Cheng1,2†, Huan Wang1† and Yuanhui Hu1*
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Hospital, Beijing, China, 2Beijing University of Chinese Medicine, Beijing, China

Background: Blood metabolites have been found related to atrial fibrillation (AF),
but the causal role is still unclear. Mendel randomization (MR) can give
information about the causality between blood metabolites and AF.
Methods: Two-sample MR analysis was used to evaluate the causality between
486 blood metabolites and AF. Firstly, the genome-wide association study
(GWAS) data for AF (from Nielsen et al.) was analyzed and some metabolites
were identified. Then another GWAS data for AF (from Roselli et al.) was
repeatedly analyzed to verify the results. Inverse variance weighted method was
mainly used to determine the causality, and MR-egger, Weighted Median, and
MR-PRESSO models were used as supplements of MR. Cochran’s Q test was
used to assess heterogeneity. And MR-Egger intercept and MR-PRESSO global
test were performed to measure pleiotropy.
Results: The study used Bonferroni’s corrected P value (P < 1.03 × 10−4) as the
significance threshold. After MR analysis and replication analysis, we found two
overlapped metabolites. Among which tryptophan betaine was the most significant
causal metabolite in both AF GWAS data (from Nielsen et al.) (odds ratio (OR) =
0.83, 95% confidence interval (CI) = 0.76–0.90, P=9.37 × 10−6) and AF GWAS data
(from Roselli et al.) (OR=0.82, 95% CI =0.76–0.88, P=2.00× 10−7), while uridine
was nominally significant metabolites in both AF GWAS data (from Nielsen et al.)
(OR=0.58, 95% CI =0.40–0.84, P=0.004) and AF GWAS data (from Roselli et al.)
(OR=0.56, 95% CI =0.35–0.88, P=0.01). And the results of sensitivity analysis
showed that none of them had obvious heterogeneity or pleiotropy.
Conclusion: The study identified several blood metabolites that were causally related
to AF, which may provide new perspectives on the pathogenesis of AF.
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1. Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice, with

an incidence rate of 2.3%–3.4%, which increases with age (1). AF can increase the risk of

stroke and systemic thromboembolism in patients, and the risk of heart failure increases

by 1.5–2.0 times (2). It has brought a heavy burden to patients, society and economy (3).

Although many studies have been done in recent years to explore the pathophysiological
Abbreviations

AF, atrial fibrillation; CI, confidence interval; GWAS, genome-wide association study; IVs, instrumental
variables; IVW, inverse variance weighted; KEGG, kyoto encyclopedia of genes and genomes; LD, linkage
disequilibrium; LOO, leave-one-out; MR, atrial fibrillation; MW, weighted median; OR, odds ratio; RCT,
randomized clinical trials; SMPDB, small molecule pathway database; SNPs, single nucleotide polymorphisms.
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mechanism and treatment methods of AF, the prevention and

treatment of AF is still a major problem in clinical medicine.

Metabolites are considered as the final reaction of the biological

system to inherited or environmental variations, and their levels

directly reflect the physiological state of the body (4). Human

blood metabolites (intermediates of metabolism), vary greatly

among different individuals. Cell-free metabolites (from plasma

or blood) are usually used to explore their biological significance

and function because of the convenience of sample collection.

Metabolomics is an important part of system biology (5). It

explores biomarkers related to disease diagnosis and prognosis by

detecting small molecular substances in biological samples, which

has been widely used in clinical and experimental studies (6, 7).

There is now growing interest in the relationship between

metabolites and AF. Many studies have found that there is a

potential relationship between metabolites and AF, indicating

that some metabolites take part in the pathogenesis and

development of AF (8–12). Harskamp et al. found that medium

chain acylcarnitines, short chain dicarboxylacylcarnitines and

long chain acylcarnitines were associated with AF (8). Yan et al.

found that metabolites such as potassium and sodium ion were

associated with AF (9). Harju et al. found 61 metabolites

associated with AF, including energy, histidine, glutathione,

purine, sugar, lipid and so on (10). However, as far as we know,

a comprehensive and systematic research evaluating the causal

effects of blood metabolites on AF is still lacking.

Mendelian randomization (MR) is an epidemiological

method that uses single nucleotide polymorphisms (SNPs) as

exposure-related instrumental variables (IVs) to assess the

causality between exposure and outcome (13). In the absence

of randomized clinical trials (RCT), MR research is a

significant alternative method to analyze the causal

relationship, because MR analysis, based on the random

classification theory in the process of meiosis in genetics,

carried out random grouping similar to RCT in the population

(14). Diseases usually occur after the formation of genotype, so

genotype is difficult to be affected by diseases progression, so

it is less susceptible to reverse causality (13), thus overcoming

the inherent bias and confounding factors of observational

studies (15, 16).

The study used the statistical data of the genome-wide

association study (GWAS) as the data source and the two-sample

MR analysis as the research method to evaluate the causality

between blood metabolites and AF, selected the candidate blood

metabolites related to AF, providing a novel perspective for the

early diagnosis and treatment strategy of AF.
2. Methods and materials

2.1. Study design

The study systematically evaluated the potential causal

association between human blood metabolites and AF using the

two-sample MR analysis method. The flow chart of the study is

shown in Figure 1.
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In essence, IVs must meet the following three assumptions:

(1) IVs should be strongly correlated with the exposure; (2) IVs

should be unrelated to any potential confounders; (3) IVs

should be correlated with the outcome simply through

exposure (17).
2.2. GWAS data for human blood
metabolites

The GWAS data for human blood metabolites was from the

most comprehensive genome-wide association estimation of

blood metabolite so far conducted by Shin et al. (18). The study

included 7,824 adults in Europe, including 1,768 from Germany

and 6,056 from the United Kingdom. Through GWAS of non-

targeted metabolomics, the correlation analysis of about 2.1

million SNPs in the population was carried out, and finally 486

blood metabolites were successfully obtained. Among them, there

were 177 unknown metabolites and 309 known metabolites,

which were further grouped into 8 groups (carbohydrates, lipids,

amino acids, nucleotides, energy products, cofactors and

vitamins, peptides and xenobiotics). Each participant in this

study signed the informed consent form. Gene information of

human blood metabolites was from Metabolomics GWAS server

(https://metabolomics.helmholtz-muenchen.de/gwas/).
2.3. GWAS data for atrial fibrillation

The summary statistical data of GWAS for AF was from the

largest GWAS study of AF by Nielsen et al. (19), with a total of

1,030,836 adults, including 60,620 patients with AF and 970,216

control subjects.

To further validate the results of the study, another AF GWAS

data (from Roselli et al.) was repeatedly analyzed with MR method

(20), which included 537,409 adults (55,114 patients with AF and

48,295 healthy controls).
2.4. Selection of instrumental variables

A series of steps were performed to screen out IVs related to

blood metabolites. Firstly, given the finite amounts of SNPs with

significant genome-wide effects, P < 1 × 10−5 was used as the

threshold to extract IVs from 486 metabolites, which was consistent

with previous studies (21–23). The European (EUR) 1000 Genomes

Project Phase 3 reference panel was used to conduct linkage

disequilibrium (LD) analysis to obtain independent IVs (the

physical distance is within 10,000 kb; Linkage disequilibrium

parameter r2 < 0.001). Also, in order to prevent deviation by using

weak IVs, the F statistic of each metabolite was calculated to

analyze the power of the IVs. To make sure that all SNPs had

enough variation for the associated metabolite, weak IVs (those

with F < 10) would be eliminated (24). Moreover, SNPs associated

with the exposure were extracted from the outcome data and SNPs

that were significantly (P < 1 × 10−5) related to the outcome were
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eliminated. Following that, harmonization was done to bring SNP-

exposure and SNP-outcome alleles into alignment, and palindrome

SNPs with moderate effective allele frequency and SNPs containing

incompatible alleles were removed.
2.5. MR analysis

The primary MR method used to determine the causal link

between exposure and outcome is the inverse variance weighted

(IVW) model (13). Based on the presumption that all genetic

variations are valid IVs, IVW is a highly effective method of

analysis. When genetic variants satisfy the three IVs assumptions

and are not affected by pleiotropy, IVW offers a strong

consistency estimate of causal impact on exposure and outcome.

The P value adjusted for multiple hypothesis testing using

Bonferroni’s correction was P < 1.03 × 10−4 (0.05/486), suggesting

a significant causal relationship (25). Meanwhile, P < 0.05 was

considered to be nominally significant, the selected metabolites

might be used as indicative risk predictors of AF.
2.6. Sensitivity analysis

This study used multiple sensitivity analysis methods to

determine whether there was potential pleiotropy. Firstly, MR-

Egger (26), Weighted Median (27) and MR-PRESSO (28) were

used as the supplements of MR methods. These methods

evaluated causal relationships using different postulated models.

The consistency of directions of different MR analysis models

increased the credibility of causal inference. Secondly, Cochran’s

Q value was used to assess the heterogeneity. If the P value was

less than 0.05, it was considered that there was heterogeneity

(29). Also, MR-Egger intercept method (30) and MR-PRESSO

global test were used to measure the horizontal pleiotropy. If P <

0.05, it was thought that the horizontal pleiotropy had an impact

on IVW, suggesting that the study results were unreliable. Then,

Leave-one-out analysis was conducted to assess if the significant

results were caused by specific IVs (30). There were also funnel

plots, and scatter plots as supplements of sensitivity assessment.

In addition, we used the mRnd method (https://shiny.

cnsgenomics.com/mRnd/) to estimate the power of MR analysis,

which required input parameters: proportion of cases in the

intended study (K ), total sample size (N ), true odds ratio of the

outcome variable per standard deviation of the exposure variable

(OR), proportion of variance in exposure variable explained by

SNPs (R2) (31).

All analyses were conducted using R (version 4.2.3) and the

“TwosampleMR”, “Mendelianmization” and “MR-PRESSO” R

packages.
2.7. Replication analysis

In order to further verify the robustness of candidate blood

metabolites, the same MR analysis was also conducted on
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another GWAS data for AF (from Roselli et al.), and the

overlapping metabolites of the two analysis results were

considered to have a significant causal relationship with AF.

In summary, the robust causal relationship between blood

metabolites and AF in this study needed to meet the following

conditions: firstly, Bonferroni’s corrected P value (P < 1.03 ×

10−4) was used as the significance threshold; Secondly, the results

of sensitivity analysis showed no heterogeneity or pleiotropy;

Thirdly, the results were verified by replication analysis.
2.8. Metabolic pathway analysis

MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/) was used

to analyze the selected blood metabolites to explore the

relationship between metabolic pathways and AF. The dataset for

pathway analysis came from the Small Molecular Pathway

Database (SMPDB) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG).
3. Results

3.1. Strength of the instrumental variables

The number of SNPs of IVs generated by 486 blood

metabolites ranged from 3 to 172. All F statistics of IVs were

greater than 10 (the minimum F statistic was 17.64),

indicating that IVs of 486 metabolites were effective enough

for MR Analysis (Additional file 1: Supplementary Table S1).

The harmonized data was shown in Additional file 1:

Supplementary Table S1.
3.2. Effects of genetically determined
metabolites on atrial fibrillation

Firstly, A total of 24 metabolites related to AF were analyzed by

IVW method (P < 0.05), which included 6 types (1 carbohydrate, 5

lipids, 4 amino acids, 1 nucleotide, 3 xenobiotics and 10 unknown

metabolites).

Then, we used multiple sensitivity analysis methods to evaluate

heterogeneity and pleiotropy (see Additional file 1: Supplementary

Table S2 and Additional file 2: Supplementary Figure S1). Under

strict screening conditions, 5 metabolites were finally selected,

including 1 carbohydrate, 1 amino acid, 1 nucleotide and 2

unknown metabolites. Tryptophan betaine had a causal

relationship with the reduced risk of AF (OR = 0.83, 95% CI =

0.76–0.90, P = 9.37 × 10−6), and the result met the adjusted

threshold after Bonferroni’s correction, which was the most

statistically significant. While the remaining 4 metabolites had

nominally significant causality with AF (P < 0.05), in which,

uridine might have a causal relationship with the reduced risk of

AF (OR = 0.58, 95% CI = 0.40–0.84, P = 0.004), Lactate might

have a causal relationship with the increased risk of AF (OR =

1.62, 95% CI = 1.09–2.40, P = 0.02). X-12189 and X-12717 were 2
frontiersin.org
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FIGURE 1

The flow chart of MR study revealing the causal relationship between human blood metabolites and the risk of AF. MR, Mendelian randomization; AF, atrial
fibrillation; SNPs, single nucleotide polymorphisms; GWAS, genome-wide association study.
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unknown metabolites, which might be associated with the risk of

AF (see Figure 2).
3.3. Replication analysis

In order to further verify the results, another GWAS data for

AF from Roselli et al. was repeatedly analyzed with the same

method. Firstly, a total of 42 blood metabolites were selected by

IVW method, including 13 lipids, 7 amino acids, 1 carbohydrate,

1 energy product, 2 cofactors and vitamins, 1 nucleotide, 2

xenobiotic and 15 unknown metabolites (see Figure 3).

After multiple sensitivity analyses, 8 blood metabolites were

finally screened. Among them, 3 metabolites were associated

with the increased risk of AF, including threonine (OR = 1.66,

95% CI = 1.18–2.34, P = 0.004), palmitoleate (16:1n7) (OR = 1.63,

95% CI = 1.19–2.24, P = 0.002) and X-11470 (OR = 1.51, 95%

CI = 1.16–1.95, P = 0.002). 5 metabolites were associated with

the reduced risk of AF, including tryptophan betaine

(OR = 0.82, 95% CI = 0.76–0.88, P = 2.00 × 10−7), uridine

(OR = 0.56, 95% CI = 0.35–0.88, P = 0.01), lysine (OR = 0.51,

95% CI = 0.32–0.82, P = 0.005), erythritol (OR = 0.75, 95% CI =
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0.63–0.9, P = 0.002) and X-11247 (OR = 0.83, 95% CI = 0.74–0.93,

P = 0.002).

Compared with the results of previous MR analysis on AF

GWAS data (Nielsen et al.), it was found that there were 2

overlapped blood metabolites: tryptophan betaine and

uridine. The causal relationship between tryptophan betaine

and AF was the most significant (P < 1.03 × 10−4), while

uridine had a nominally significant effect on AF (P < 0.05).

The results of sensitivity analysis showed that none of them

had obvious heterogeneity or pleiotropy (Table 1,

Figure 4). And the statistical power of the above 2

metabolites on AF was 100%, thus confirming a robust

cause-and-effect relationship.
3.4. Metabolic pathway analysis

Metabolite pathway analysis of blood metabolites derived from

IVW was performed and identified three metabolic pathways

related to AF (P < 0.05), including “Aminoacyl-tRNA

biosynthesis” (P = 0.013), “Valine, leucine and isoleucine

biosynthesis” (P = 0.031) and “Caffeine metabolism” (P = 0.038).
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FIGURE 2

Forest plot for the causal effect of blood metabolites on the risk of AF. AF, atrial fibrillation; OR, odds ratio; CI, confidence interval.
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4. Discussion

Among 486 blood metabolites, we first identified 5 metabolites

that had potential causal relationships with AF, including 3 known

metabolites (tryptophan betaine, uridine, lactate) and 2 unknown

metabolites (X-12189, X-12717). Then we performed the

replication analysis on another GWAS dataset of AF to verify the

results, and finally found 2 overlapping metabolites, among

which tryptophan betaine was statistically significant and uridine

was nominally significant.

AF is a common, complex and age-related arrhythmia that

occurs in almost all organic and non-organic heart diseases. The

high incidence and recurrence rate of AF have caused a great

burden on people, so early diagnosis and prevention of AF are

very important. Although many studies have explored the

pathogenesis and pathological mechanisms of AF, the specific

mechanism is not yet fully understood due to its complexity.

Tryptophan betaine, also known as lenticin or hypaphrine, is

essentially an indole alkaloid, which is the N-methylated form of

tryptophan. As an important active ingredient, it has played a

very good role in anti-inflammatory, especially in endothelial cell

injury. Sun et al. found that tryptophan betaine could inhibit

endothelial cell inflammation induced by lipopolysaccharide

(32–34). Ding et al. found that tryptophan betaine inactivated

p38/JNK signal pathway by up-regulating DUSP1, thus

preventing lipopolysaccharide-mediated inflammatory response

(35). In addition, some studies found that tryptophan betaine
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analogues could prevent the changes of blood potassium and

sodium ion concentrations during coronary artery occlusion/

reperfusion injury in myocardial ischemia rats, and could

effectively reduce myocardial reperfusion injury and infarction

area (36). AF is the result of multiple mechanisms, including

oxidative stress, autonomic nervous response, inflammation

response and so on, and inflammation response is one of the key

factors leading to the pathogenesis of AF (37, 38). Our results

suggested that tryptophan betaine was negatively associated with

the risk of AF. However, there were few previous studies on the

correlation between tryptophan betaine and AF. According to

previous research results about tryptophan betaine, it is

speculated that tryptophan betaine may reduce the risk of AF

through anti-inflammatory mechanism, but the exact biological

mechanism needs to be clarified by further experimental studies.

Uridine, composed of uracil and D-ribose, is a component of

RNA and belongs to pyrimidine nucleosides. As a necessary

nucleoside, uridine exists in many biological fluids. Uridine is

involved in some metabolic disorders, such as dhydropyrimidinase

deficiency, mitochondrial neurogastrointestinal encephalopathy,

beta-ureidopropionase deficiency and Lech-Nyhan syndrome, etc.

Some studies found that uridine had protective effects on

cardiovascular diseases. Early studies by Krylova et al. found that

uridine and uridine-5′-monophosphate could reduce lactic acid,

improve energy metabolism, and playe a protective role in

myocardial ischemia and arrhythmias (including ventricular

premature, ventricular tachycardia and ventricular fibrillation)
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FIGURE 3

Heatmap showing the causal effect of blood metabolites on the two different GWAS datasets of AF (from IVW analysis). AF, atrial fibrillation; GWAS,
genome-wide association study; IVW, inverse-variance weighted.
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(39, 40). Recent studies found that uridine could prevent myocardial

injury in ischemia and reperfusion rat models by activating

mitochondrial pathway, prevented the decrease of cell energy
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supply and antioxidant system activity, thus improving energy

supply (41). Our study found that uridine may be negatively

associated with AF, which is consistent with previous findings
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TABLE 1 Sensitivity analysis results of overlapped metabolites on atrial fibrillation.

Metabolites MR-Egger Weighted median MR-PRESSO MR-Egger
intercept

MR-PRESSO
global test

Cochran’s
Q test

OR (95% CI) P OR (95% CI) P OR (95% CI) P P P P

Tryptophan betaine
AF (Nielsen et al.) 0.81 (0.64–1.02) 0.12 0.87 (0.79–0.96) 0.01 0.83 (0.76–0.90) 0.002 0.86 0.18 0.10

AF (Roselli et al.) 0.78 (0.63–0.95) 0.045 0.81 (0.72–0.90) 8.19 × 10−5 0.82 (0.77–0.87) 2.02 × 10−4 0.62 0.82 0.73

Uridine
AF (Nielsen et al.) 0.49 (0.17–1.44) 0.21 0.70 (0.42–1.18) 0.18 0.58 (0.42–0.79) 0.003 0.75 0.82 0.80

AF (Roselli et al.) 0.84 (0.21–3.35) 0.81 0.57 (0.31–1.07) 0.08 0.56 (0.35–0.88) 0.02 0.53 0.35 0.32

OR, odds ratio; CI, confidence interval; P, P-value; AF, atrial fibrillation; GWAS, genome-wide association study.

FIGURE 4

Forest plots for leave-one-out analysis of overlapped metabolite on atrial fibrillation. (A1) Tryptophan betaine on AF (from Nielsen et al); (A2) tryptophan
betaine on AF (from Roselli et al); (B1) uridine on AF (from Nielsen et al); (B2) uridine on AF (from Roselli et al.). AF, atrial fibrillation.

Cheng et al. 10.3389/fcvm.2023.1211458
indicating the cardioprotective effect of uridine. Myocardial

ischemia is an important cause of AF (42), and mitochondrial

dysfunction is an important pathogenesis of AF (43), so uridine

may improve mitochondrial function by regulating energy

metabolism, thus improving myocardial ischemia to reduce the
Frontiers in Cardiovascular Medicine 07
risk of AF. Nevertheless, it is still lack of sufficient experimental

evidence.

Lactate was found to have a possible causal relationship with

AF in the initial MR analysis. Although it was not finally verified

in the replication analysis, its relationship with AF is still worth
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FIGURE 5

Possible potentially causes of atrial fibrillation. The figure was created with BioRender.com.
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exploring. Lactate is an organic acid that is a chiral molecule

composed of two optical isomers, L-lactic acid and D-lactic acid.

Lactate is continuously produced from pyruvate through lactate

dehydrogenase (LDH) during normal metabolism and exercise

fermentation. Plasma lactate is the final product of anaerobic

metabolism of glucose and a sign of the imbalance between

oxygen supply and demand in the body. Previous studies (44, 45)

showed that plasma lactate was closely associated with AF, which

played a potential role in the maintenance and recurrence of AF.

When the plasma lactate increases excessively, the heart is in a

state of hypoxia and the energy supply of myocardial cells is

insufficient. This can stimulate the production of reactive oxygen

species, lead to oxidative stress and mitochondrial controlled

apoptosis, cause myocardial structural remodeling (46), and

promote the occurrence and development of AF. In our study,

lactate was positively correlated with AF, which was consistent

with the above studies.

The mechanisms of AF may be a combination of multiple

factors. This study found a causal relationship between some

blood metabolites and AF, which helps us understand the

pathogenesis of AF. However, we cannot ignore other risk factors

related to AF. For example, in the Brugada syndrome, the

underlying mechanism of AF may include genetic or acquired

factors that may affect autonomic nervous function, atrial

structure, conduction velocity, etc. (47). In the hypertrophic

cardiomyopathy, AF is linked to advanced diastolic dysfunction,

left atrial dilation, and remodeling (48). Moreover, AF may be

precipitated by hypertension, hyperthyroidism (49), lifestyle
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factors such as endurance sport (50), alcohol consumption, and

even smoking (51) (see Figure 5).

Our study aims to investigate whether there is a causal

relationship between blood metabolites and AF. Through

relatively rigorous MR analysis, we obtained some blood

metabolites that have a potential causal relationship with AF, and

determined the possible metabolic pathways through metabolic

pathway analysis. This is exploratory research and analysis, which

lays a solid foundation for further targeted metabolomics

research in the future.

The study had some strengths. First, this study covered a wide

range of human blood metabolites (486 in total) as exposure factors

for MR analysis, aiming to study the metabolic characteristics

leading to AF. Second, MR method effectively overcame the

defects of traditional observational studies, and avoided reverse

causation and residual confounding to a large extent. Third, after

MR analysis of two different GWAS datasets of AF, overlapping

blood metabolites were screened out, which could better explain

the causal effect of these metabolites on AF, providing more

reliable evidence. Fourth, the study used Bonferroni’s corrected P

value due to multiple testing, thus the results were more

scientific and rigorous.

However, the study had several limitations. First, because the

number of SNPs meeting genome-wide effect was limited, the P

value was relaxed, but the F statistic of all SNPS was greater than

10 to exclude weak IVs, which is a commonly used strategy.

Second, given the classification of the original datasets, it was

impossible to further subdivide the clinical types of AF, so only
frontiersin.org

https://www.BioRender.com
https://doi.org/10.3389/fcvm.2023.1211458
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Cheng et al. 10.3389/fcvm.2023.1211458
an overall analysis could be performed. Third, all of the GWAS

databases in this article are from Europe, so it is not clear

whether the same results would be produced and extended to

other ethnic groups. Further research is needed in the future to

evaluate its generality in other ethnic groups. Fourth, although

MR method has been proven to be an effective tool for assessing

the causality between the exposure and the outcome, the findings

need to be further studied depending on some experimental

observations to reveal their significance in the development of AF.
5. Conclusion

In summary, this study used the two-sample MR analysis to

analyze the effects of 486 blood metabolites on the risk of AF.

The results indicated that there was a significant negative

correlation between tryptophan betaine and the risk of AF. While

uridine might have a potential causal relationship with AF. This

study strengthens our understanding of the relationship between

blood metabolites and AF, hoping to provide more useful

information for future research on the pathogenesis of AF.
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