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Cardiovascular diseases (CVDs) still maintain high morbidity and mortality
globally. Helicases, a unique class of enzymes, are extensively implicated in
the processes of nucleic acid (NA) metabolism across various organisms.
They play a pivotal role in gene expression, inflammatory response, lipid
metabolism, and so forth. However, abnormal helicase expression has been
associated with immune response, cancer, and intellectual disability in
humans. Superfamily II (SFII) is one of the largest and most diverse of the
helicase superfamilies. Increasing evidence has implicated SFⅡ helicases in
the pathogenesis of multiple CVDs. In this review, we comprehensively
review the regulation mechanism of SFⅡ helicases in CVDs including
atherosclerosis, myocardial infarction, cardiomyopathies, and heart
failure, which will contribute to the investigation of ideal therapeutic
targets for CVDs.
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1. Introduction

Cardiovascular diseases (CVDs) represent a predominant contributor to both

morbidity and mortality on a global scale (1, 2). As per the World Health

Organization (WHO), in 2019, approximately 17.9 million individuals succumbed

to CVD worldwide, constituting 32% of all global fatalities during that year (3, 4).

Furthermore, this grim statistic continues to exhibit an upward trajectory annually,

with projections indicating an anticipated increase to 23.6 million CVD-related

deaths by the year 2030 (2). Particularly in low- and middle-income countries, the

absence of organized management for CVDs and their substantial healthcare costs

lead to elevated mortality rates when compared to high-income countries (5).

Despite notable progress in understanding the pathogenesis of these diseases, there

persists an urgent need for more comprehensive research aimed at identifying

novel therapeutic targets to mitigate the morbidity and mortality associated with

CVDs (6).

A growing body of evidence underscores the pivotal role of SFⅡ helicases in

governing the physiological metabolism of organisms (7–9). For instance, studies

have revealed the significance of Chromodomain Helicase DNA-binding 4 (CHD4)

in facilitating antibody secretion by B lymphocytes in animal models (10). In

contrast, the deficiency of SFⅡ helicases is associated with cancer, intellectual

disability, premature aging, and immunodeficiency (11). Importantly, it has been
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early proposed that helicases play an essential role in cardiac

development and myocardial infarction (MI) (12, 13). The

whole-exome sequencing methods found that the RecQ-like

helicase 5 gene was a disease-causing gene of MI (14).

Nevertheless, the contributions of SFⅡ helicases to CVDs have

yet to be comprehensively delineated. This review, therefore,

primarily elucidates the signaling pathways and the

involvement of SFⅡ helicases in the context of CVDs. We aim

to furnish novel perspectives that can potentially advance the

fields of CVD diagnosis, prevention, and therapeutic

interventions.
2. Helicase

Helicases were initially identified to unwind deoxyribonucleic

acid (DNA) or ribonucleic acid (RNA) duplex substrates in a

nucleoside triphosphate (NTP) dependent manner (15, 16).

Consequently, helicases play essential roles in DNA replication

and repair, transcription and translation, RNA synthesis,

ribosome synthesis, and so forth (15–17). However, it has

become more apparent that helicases are a subgroup of

translocases (i.e., move directionally along NA strands by

coupling NTP hydrolysis) (17). Nonetheless, not all helicases

have translocase activity, such as DEAD-box, and not all

helicases have helicase activity, and an example is the Retinoic

acid-inducible gene (RIG)-I-like (11).
FIGURE 1

The conserved motifs structure of SFⅡ helicases. Positions of the conserved s
the NTPase activity (red), DNA or RNA sites (blue), and NTP and NA coordina
the oxygen atom (O) in the phosphoric acid of the NTP. The motif II contai
guanine (G), cytosine (C), thymine (T), and uracil (U). NTP: nucleoside tripho
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Sequence analysis finds at least fourteen characteristic

sequence motifs present by helicase (18). However, not all motifs are

present in each helicase (19). Based on these conserved sequence

motifs, helicases can be classified into six superfamilies (SFI-SFVI)

(17). SFI and SFII have similarly conserved motifs and function as

monomers or dimers for unwinding (11, 20). Each monomer is

formed from the tandem repeat of two RecA-like folds composed of

different motifs (Figure 1) (17, 19). Motifs I and II are also called

the phosphate-binding loop or “P-loop” (Walker “A”) and Mg2+-

binding aspartic acid (Walker “B”) motifs, respectively. As a

consequence, they function as NTP binding and hydrolysis and are

exclusively shared among all helicases (11, 19, 21). Furthermore,

motifs Q, Ia, and VI are also involved in NTP binding and

hydrolysis in some helicases. The motif Q is the specific adenosine

5’-triphosphate (ATP)-sensing motif (18, 19). Motifs Ⅰa,Ⅰb, Ⅰc,

IV, IVa, Ⅴ, and Ⅴb interacted with NA. Motifs I and Va primarily

participate in coordinating NTP and NA binding sites. Once they

mutate, it commonly disrupts the coupling of NTP hydrolysis to the

binding and unwinding of double-stranded NA (dsNA) (19). In

contrast, SFI—SFVI show little similarity to SFI and SFⅡ helicases,

function as hexamers or double hexamers, and contain one RecA-

like subdomain per monomer (17). SFII is one of the largest and

most diverse of the helicase superfamilies, involving almost every

process in cells that involves NA metabolism. According to sequence

homology, SFⅡ helicases are further divided into ten

subfamilies (Table 1): DEAD-box, DEAH/RHA, RIG-I-like, RecQ-

like, RecG-like, SWItch/sucrose non-fermentable (Swi/Snf) family,

Rad3/XPD, Ski2-like, Type I Restriction Enzyme, NS3/NPH-II (11).
equence motifs Q-VI are indicated in this figure. These motifs function as
ting sites (yellow), respectively. The motif I forms a hydrogen bond with
ns residues that interact with MgATP/MgADP. Base includes adenine (A),
sphate.
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TABLE 1 Classification of SFⅡ helicases.

SFⅡ helicases Members Activities Main function Refs
DEAD-box DDX3, DDX5, DDX17, eIF4A3,

UAP56
Helicase activity Participates in all aspects of RNA metabolism. (11, 23)

DEAH/RHA Human DHX5, DHX9, DHX30,
DHX36, DHX37

Helicase activity
Translocase activity

Participates in RNA metabolism. (11, 23, 24,
28)

RIG-I-like RIG-I, MDA5, LGP2, Dicer Translocase activity Participates in innate immune system and the mature miRNA processing. (11, 18, 30)

RECQ-like Human BLM, WRN, RecQ1,
RecQ4, RecQ5

Helicase activity
Translocase activity

Maintains genomic integrity, such as DNA recombination, telomere
maintenance, and DNA damage signaling.

(11)

RECG-like RecG, PriA Helicase activity
Translocase activity

Participates in prokaryotic DNA metabolism. (11, 19)

Swi/Snf SWI/SNF, ISWI, CHD, INO80 Helicase activity
Translocase activity

Participates in chromatin structure remodeling. (11, 37)

Rad3/XPD Human XPD, FancJ, Rtel1, ChlR1 Helicase activity
Translocase activity

Participates in the DNA repair pathways. (11, 41)

Ski2-like SKIV2l, MTR4 Helicase activity
Translocase activity

Orchestrates 3’-to-5’ RNA decay by the exosome. (11, 18)

Type I Restriction
Enzyme

EcoR124I Translocase activity Maintains the host genome integrity and destroys foreign DNA. (11)

NS3/NPH-II Hepatitis C virus NS3, Vaccinia
virus NPH-II

Helicase activity
Translocase activity

Participates in viral replication. (11)

Fang et al. 10.3389/fcvm.2023.1309491
2.1. DEAD-box

DEAD-box, the largest family of SFⅡ helicases, is

characterized by a specific amino acid sequence of motif II, Asp-

Glu-Ala-Asp (DEAD). All DEAD-box proteins contain a

structurally highly conserved core with substrate binding, ATPase

activity, and RNA unwinding activity (22). They participate in all

aspects of RNA metabolism by disrupting local secondary and

tertiary structures of RNA and RNA-protein interactions (11).

Over 35 DEAD-box proteins have been identified in humans,

such as DDX1, DDX3, DDX5, DDX17, and eukaryotic initiation

factor 4A3 (eIF4A3, also known as DDX48) (23). These helicases

have a direct link to genome stability. For instance, DDX1

ablation resulted in radiosensitivity and an increase in DNA

breaks. DDX3x is an X-linked gene and expression knockdown

leads to an accumulation of DNA damage. DDX39B can

promote DNA repair gene expression, and deletion causes

sensitivity to a series of DNA damaging treatments, such as

cisplatin, mitomycin C, and γ irradiation. DEAD-box proteins

also maintain genome integrity by processing structures such as

R-loops (23). Exploring the mechanism of DEAD-box helicases

may provide an evolutionary lens on genomic stability.
2.2. DEAH/RHA

DEAH/RHA is named for motif II’s conserved specific amino

acid, Asp-Glu-Ala-His (DEAH), and human RNA helicase A

(RHA) (11, 24). They are collectively referred to as DExH-box

ATPases, along with RIG-I-like, NS3/NPH-II, and Ski2-like

families. DExH represents the amino acid of motif II: Asp-Glu-x-

His, where x is any amino acid (25, 26). DEAH/RHA proteins

can also separate hybridized RNAs and unwind secondary RNA

structures in an NTP-dependent manner. Furthermore, they

disrupt RNA-protein interactions with translocate activity, such

as Prp43p in yeast (11, 27). DExH-Box helicase 9 (DHX9)
Frontiers in Cardiovascular Medicine 03
triggered innate immune response through the export and

translation of retroviral mRNA and recognized microbial NA

fragments in the cytoplasm of plasmacytoid dendritic cells (28).

Besides the innate immune response, DEAH/RHA helicases are

involved in various crucial cellular processes such as nuclear

RNA import and export, translational regulation, splicing, and

ribosome biogenesis. DHX36 was initially found to facilitate

mRNA deadenylation and decay. DHX29 can bind specifically to

the 40S ribosomal subunit; it may be associated with translation

initiation (28). Extensive research demonstrates that the

dysregulation of DEAH/RHA helicases plays a pivotal role in

human diseases (24).
2.3. RIG-I-like

On the contrary, the RIG-I-like family does not possess the

ability to unwind dsRNA. Rather, it exhibits dsRNA translocase

activity (11). The RIG-I-like family contains four members:

RIG-I, melanoma differentiation associated gene 5 (MDA5),

laboratory of genetics and physiology 2 (LGP2), and Dicer (11,

29). Cellularly RIG-I-like receptors (RLRs) are composed of

RIG-I, MDA5, and LGP2. In the host’s innate immune defense,

RLRs trigger the activation of monocytes and macrophages by

sensing various damage-associated molecular patterns (DAMPs)

(30). Dicer contains an RNase III endonuclease structural

domain. Dicer cleaves the precursor microRNAs (pre-miRNAs)

(except pre-miR451) into 21–25 nucleotide-long miRNA

duplexes in the cytoplasm. Subsequently, one strand of the

miRNA duplex generates the RNA-induced silencing complex

(RISC), whereas the other strand is typically eliminated and

degraded (18, 31, 32). RISC regulates gene expression through

degrading mRNA and inhibiting protein translation (31).

Emerging research finds that Dicer’s DExH domain ensures

high-fidelity miRNA biogenesis, and the absence of this domain

is lethal for mice (18, 33).
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2.4. RecQ-like

RecQ-like helicases are DNA helicases with helicase and

translocate activities. This family is highly conserved in sequence,

structure, and function. They maintain genomic integrity, such as

DNA recombination, telomere maintenance, and DNA damage

signaling (11). Cells lacking RecQ increased defects in meiosis and

chromosome missegregation. There are five members in humans,

including Bloom syndrome protein (BLM), Werner syndrome

protein (WRN), RecQ1, RecQ4, and RecQ5. Mutations in BLM

and WRN are associated with Bloom’s syndrome and Werner’s

syndrome, respectively (11). The RecQL5 gene mutation is the

potentially predisposing gene for MI (14). Mutations of RecQ-like

helicases are associated with cancer and premature aging, in

addition to causing related genetic disorders (11).
2.5. RecG-like

RecG-like helicases are involved in prokaryotic DNA

metabolism (11). The RecG protein of Escherichia coli promotes

the rescue of damaged forks by catalyzing Holliday junction

recombination with translocation on dsDNA (34). In addition,

RecG inhibits DNA replication by unwinding D and R loops

(11). Currently, no counterparts resembling RecG-like helicases

have been identified within the eukaryotic cells (11, 19, 35).

However, several candidates have been proposed, including the

human nuclear helicase SMARCAL1. SMARCAL1 is a nuclear

DNA damage response protein and travels with the replication

fork. Lacking SMARCAL1 is prone to accumulate DNA double-

strand breaks (DSBs) in cells (35).
2.6. Swi/Snf complexes

Swi/Snf family proteins are ATP-dependent chromatin

remodeling complexes and play critical roles in stem cell

maintenance, development, and cancer (36). They vary the

accessibility of the DNA through remodeling chromatin

structure (such as nucleosome structure). They participate in

transcription-factor binding, DNA replication and repair (11).

Swi/Snf family can be further subdivided into four subfamilies:

SWI/SNF, imitation SWI (ISWI), CHD, and INOsitol-requiring

mutant 80 (INO80) (36, 37). SWI/SNF is composed of the

ATPase subunit Brahma-related gene 1 (Brg1) or Brahma

homolog (Brm) and 9–12 Brg1- or Brm-associated factors (Baf)

(38). Brg1 and Brm are also SMARCA2 and SMARCA4,

respectively, are essential elements of SWI/SNF (39). SWI/SNF

protein regulates gene transcription through disrupting

nucleosomes; in contrast, ISWI facilitates nucleosome assembly

(11). INO80 is the only subfamily with helicase activity

involved in DNA repair and transcription. Moreover, CHD

regulates chromatin remodeling and transcription activation

(11). Multiple studies have highlighted that aberrant chromatin

modification is associated with the initiation and progression of

tumor behavior (36).
Frontiers in Cardiovascular Medicine 04
2.7. Rad3/XPD

The Rad3 family members include Rad3 (XPD), FancJ, Rtel1,

and ChlR1 (11). Utilizing energies from ATP hydrolysis to

translocate on single-stranded DNA (ssDNA) and unwind

dsDNA, they participate in DNA repair pathways such as

nucleotide excision repair (NER), recombinational repair, and

homologous recombination (HR) (11). Compared to other DNA

damage repair signaling, NER is highly conserved among

eukaryotes. Cell NER is impaired, resulting in photosensitivity and

high skin cancer risk (40). Additionally, mutations in XPD can

cause Xeroderma pigmentosum (XP) and aging diseases (11, 41).
2.8. Ski2-like

Ski2-like are RNA helicases and are able to translocate on ssRNA

and unwind dsRNA (11, 18). Superkiller Viralicidic Activity 2-Like

(SKIV2L) and MTR4 are two Ski-like members in humans with

similar functions. They orchestrate 3’-to-5’ RNA decay by the

exosome. Eukaryotes have nuclear and cytosolic exosomes.

SKIV2L acts with both the nuclear and cytosolic exosomes, but

MTR4 only with the nuclear exosome. There is an inextricable

link between SKIV2L mutations and autoimmunity disease (18).
2.9. Type I restriction enzyme

Type I restriction enzymes (TIREs) are present in bacteria and

translocate dsDNA powered by ATP hydrolysis. They are large

pentameric proteins (R2M2S) consisting of specificity (S),

methylase (M), and restriction (R) subunits. TIREs have dual

functions that serve to maintain the integrity of the host genome

while simultaneously functioning to destroy foreign DNA (11).
2.10. NS3/NPH-II

NS3/NPH-II family, encoded by various positive-strand viruses,

named from NS3 of hepatitis C virus (HCV) and NPH-II of vaccinia

virus. These proteins are essential for viral replication (11). NS3/

NPH-II family has dual activities with dsRNA unwind and ssRNA

translocating functions. Margaret E et al. found that distinct

binding preferences of NPH-II for ssRNA and dsRNA depend on

different stages of the ATP hydrolysis cycle. In brief, ADP

facilitates the binding between NPH-II and dsRNA. However,

there is still poorly understood the mechanism of the unwinding

initiation phase for NS3/NPH-II because this mechanic limits the

overall unwinding reaction rate (11, 42).
3. Role of SFⅡ helicases in AS

3.1. Lipid metabolism

Foam cells, the hallmark of early atherosclerosis (AS), are

closely linked to the dysregulation of lipid metabolism within
frontiersin.org

https://doi.org/10.3389/fcvm.2023.1309491
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Fang et al. 10.3389/fcvm.2023.1309491
macrophages (43). Under normal physiological conditions, there is

a dynamic balance between lipid uptake, efflux, and degradation in

macrophages. Macrophage scavenger receptor 1 (MSR1) is the

major scavenger receptor for binding and uptake of oxidized

low-density lipoprotein (ox-LDL). It is highly expressed on the

surface of macrophages, and knockdown significantly inhibits

foam cell formation (44). In macrophages, ox-LDL stimulated

DDX5 expression in a time-dependent manner. Knockdown

DDX5 significantly reduced macrophage lipid uptake. Further

study found that DDX5 promoted MSR1 protein expression by

suppressing the n6-methyladenosyl modification of MSR1 mRNA

with the transcription factor mettl3 (45). DDX5 shared a

remarkable homology with DDX17 (46). However, DDX17

promoted macrophage cholesterol efflux, not lipid uptake. ATP-

binding cassette transporter A1 (ABCA1) is a key transporter

protein for macrophage cholesterol efflux. DDX17 protein could

interact with and guide the expression of ABCA1. Mechanistic

studies revealed that the long noncoding RNA (lncRNA) MeXis

established interaction with and directed the promoter binding of

the transcriptional coactivator DDX17. It is critical for liver X

receptor (LXR)-dependent ABCA1 expression. It is worth noting

that DDX17 is also required for maximal ABCA1 expression

(47). It is clear that the proteins cannot fully compensate for

each other, although there appears to be some functional

redundancy between DDX5 and DDX17.

Furthermore,miRNAs alsoplay a vital role in the lipidmetabolism

of macrophages. For instance, overexpression of miR-155 promoted

necrotic core formation by inhibiting macrophages’ efferocytosis

function (48). In an AS model, knockout of Dicer inhibited the

mitochondria fatty acid oxidation (FAO) during macrophage

activation, accelerating macrophage lipid load. Dicer promoted

macrophage lipid metabolism by inhibiting the corepressors of

nuclear receptors (ligand-dependent nuclear receptor corepressor

(Lcor) and nuclear receptor corepressor 2 (Ncor2)) in vitro through

promoting miRNA (such as mi-R10a, Let-7b, and miR-195a)

maturation (48).
3.2. Inflammatory response

3.2.1. RIG-I-like family
The inflammatory response is involved in all stages of AS and is a

pivotal contributor to AS (49). Endothelial cells (ECs), immune cells

of the innate and acquired immune system, all regulate the vascular

inflammatory response. EC dysfunction and maladaptation are the

initiating events of AS (50). Injured ECs trigger pro-inflammatory

cytokine secretion and adhesion molecule expression in early AS.

Subsequently, immune cells (such as monocytes) are recruited into

the subendothelial space. They secrete more inflammatory factors

and express more adhesion molecules. These processes activate an

inflammatory signaling cascade of AS, ultimately resulting in

vascular inflammatory response (50–52). They belonged to RLRs,

helicases RIG-I, MDA5, and LGP2, which have been traditionally

recognized as constituents of the antiviral immune response. They

also contribute to chronic inflammatory diseases like rheumatoid

arthritis and lupus nephritis (53). However, in the host, extended
Frontiers in Cardiovascular Medicine 05
and inappropriate immune responses mediate the development of

cardiac injury (30). Interferon-γ (IFN-γ) significantly upregulated

RIG-I expression in macrophages (54). Moreover, IFN-γ

significantly stimulated macrophage interferon regulatory factor 1

(IRF1) expression, which was associated with M1 macrophage

polarization (55). Another research investigation documented

the IRF1/RIG-I axis mediated 25-hydroxycholesterol-induced

interleukin-8 (IL-8) secretion. It implied that IFN-γ/IRF1/RIG-I

axis might be essential in differentiating and activating

macrophages in AS. The activation of RIG-I could stimulate several

downstream transcription factors, including nuclear factor Kappa-

beta (NF-κB), activator protein-1 (AP-1), and nuclear factor

interleukin-6 (NF-IL-6) through mitochondrial antiviral signaling

protein/transforming growth factor-beta-activated kinase 1 (MAVS/

TAK-1) signaling pathways (56). Utilizing bioinformatics analysis,

Ruoyu Dong et al. highlighted that MDA5 might be one of the

hub genes potentially associated with the immunity of AS (57).

Moreover, in human coronary artery endothelial cells (HCAEC),

overexpression of RIG-I and MDA5 were linked with intercellular

adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule

1 (VCAM1) activation, pro-inflammatory cytokines [IL-6, IL-8,

IFN-γ–induced protein 10 (IP-10)] secretion, and cellular reactive

oxygen species (ROS) production (53, 58). Intriguingly, MDA5

could further induce EC apoptosis, whereas RIG-I stimulation had

no such effects (53). Taken together, these studies demonstrated

that RIG-I and MDA5 activation led to AS by enhancing

macrophage and EC inflammation pathways and dysfunction.

EC pyroptosis and apoptosis play distinct roles in inflammatory

response (52). Dicer is also involved in inflammatory response by

regulating miRNA biogenesis in AS. Anti-inflammatory IL-32α

inhibited EC inflammation by suppressing the Rprd2-Dgcr8/

DDX5-Dicer1 axis. This axis downregulated expression of the

tissue inhibitor of metalloproteinase 3 (Timp3) and reversion-

inducing cysteine-rich protein with Kazal motifs (Reck) by

promoting miR-205 biogenesis. Timp3 and Reck are endogenous

vascular protective genes that function as AS protective genes in

ECs (50). Moreover, Dicer promoted EC maladaptation and

chemokine expression by regulating miR-103. Monocytes were

recruited and entered into the impaired intima with endothelial

chemokines, facilitating foam cell formation (32). However, it was

in contrast to the role of Dicer in macrophages. These

discrepancies might, in part, be due to Dicer targeting different

miRNAs in the different cells. For example, miR-10a, miR-146a,

and miR-181b induced anti-inflammatory phenotype, whereas

miR-19a had a pro-inflammatory effect in ECs (32). However, the

mechanism of how Dicer selectively targets specific pre-miRNAs

remains unclear; it requires further research.

3.2.2. DEAD-box and DEAH/RHA family
DHX9 has been reported to trigger inflammation and

complications such as AS in the sera of systemic lupus

erythematosus patients (59). Recently, a study reported for the

first time that DHX9 was highly expressed in the peripheral

blood mononuclear cells (PBMCs) of patients with coronary

artery disease. Knockdown of DHX9 significantly ameliorated the

development of AS in ApoE -/- mice fed with a Western diet.
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Further investigation revealed that activation of the nucleus DHX9-

p65-RNA Polymerase II complex triggered inflammatory

factor transcriptional expression (59). Thus, it is imperative to

consider targeting DHX9 as a therapeutic strategy for the

treatment of AS. Moreover, overexpression of eIF4A3 enhanced

Gasdermin D (GSDMD) stability in ECs, then promoted

GSDMD expression. The eIF4A3 is the exon junction complex

(EJC) core protein with the RNA splicing function. The mRNA

by EJC spliced showed higher stability and translation (60). The

activation of GSDMD triggered EC pyroptosis under caspase 1/4/

5 activation (52).

3.2.3. Swi/Snf family
More literature supports that the Swi/Snf family plays a vital

role in the inflammation of AS. Fei Fang et al. found that Brg1

and Brm significantly promoted the expression of adhesion

molecules through NF-κB/p65 in ECs (61). Similarly, Yuanyuan

Zhang et al.’s study showed that knockout of Brg1 downregulated

the expression of EC inflammatory factors and chemokines by

limiting c-Fos expression and, subsequently, nucleic translocation

(51). Brg1 interacted with the sequence-specific transcription

factor Egr-1 and upregulated the expression of EC Spondin 2

(SPON2). SPON2 functioned as pattern recognition receptors

(PRRs) to regulate immunity response (62). Moreover,

overexpression of Brg1 was associated with vascular homeostasis.

Brg1 interacted with the transcription factor EST1 to induce

PR65A expression. PR56A inhibited endothelial nitric oxide

synthase (eNOS) activity and NO bioavailability. Limited NO

bioavailability induced EC injury and accelerated the

development of AS (63). Remarkably, the previous study by Fei

Fang et al. suggested that the expression of Baf47 in human

aortic artery endothelial cells (HAECs) remained essentially

unchanged after treatment with ox-LDL. Recently, another

investigation illustrated an augmentation in the interaction
TABLE 2 The association between SFⅡ helicases and atherosclerosis.

SFⅡ helicases Targeted genes Functi

Lipid metabolism
DDX5 MSR1 Promotes macrophage uptake ox-LDL

DDX17 ABCA1 Promotes macrophage cholesterol effl

Dicer mi-R10a, Let-7b, miR-195a Promotes macrophage mitochondria

Inflammatory response
RIG-I NF-κB, AP-1, NF-IL-6 Promotes macrophage IL-8 secretion.

RIG-I/MDA5 unknown Promotes EC expressing ICAM1, VC

MDA5 unknown Promotes EC apoptosis.

Dicer/DDX5 Timp3/ Reck Promotes EC inflammation.

Dicer miR-103 Promotes EC maladaptation and chem

DHX9 NF-κB Promotes macrophage inflammatory

eIF4A3 GSDMD Promotes EC pyroptosis.

Brg1/Brm NF-κB Promotes EC adhesion molecule expr

Brg1 c-Fos Promotes EC inflammatory factor an

SPON2 Promotes EC inflammation.

eNOS Promotes EC injury.

Baf47 Neo1 Promotes EC adhesion molecule expr

Vascular calcification
RIG-I G3BP1 Promotes VSMC osteogenic minerali
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between Baf47 and cAMP response element binding protein 1

(CREB1) upon pro-inflammatory stimulation, which complied

with Fei Fang et al.’s result. Baf47-CREB1 complex cooperatively

enhanced the transcriptional activation of Neogenin 1 (Neo1).

Neo1 shared a remarkable homology with PRRs and promoted

adhesion factor expression through the NF-κB signaling pathway

(64). These pieces of evidence highlight that SWI/SNF-associated

subunit activation contributes to EC inflammatory and vascular

homeostasis. Further research on the detailed mechanisms of

SWI/SNF in AS-associated inflammation is warranted.
3.3. Vascular calcification

Vascular calcification is also a significant cause of AS. Although

RLRs have traditionally been regarded as part of the immune

response, the mutations of RIG-I and MDA5 mediated the

development of vascular calcification in Singleton-Merten

syndrome (an autosomal-dominant multi-system disorder) (65,

66). Emerging studies have shown that RIG-I could promote

osteogenic signals in aortic vascular smooth muscle cells

(VSMCs). Knockout RIG-I reduced GTPase-activating protein-

binding protein (G3BP1) Arg methylation, resulting in

downstream osteogenic mineralization response (67) (Table 2).
4. Role of SFⅡ helicases in MI and
ischemia/reperfusion injury (IRI)

4.1. MI

Acute myocardial infarction (AMI) primarily results from

reduced or closed blood flow in a life-threatening portion of

coronary vessels (68). Especially in coronary arteries with
ons Refs
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ux. (47)

fatty acid oxidation. (48)

(56)
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combined AS unstable plaque rupture with subsequent thrombosis

is a common clinical cause of AMI. The helicase eIF4A3

overexpression increased the risk of advanced plaque rupture

(60). In vitro, eIF4A3-siRNA reduced mRNA stability and

protein expression of forkhead box O1 (FOXO1) and beclin1,

resulting in abnormal autophagy (69).

AMI induces cardiomyocyte ischemia and hypoxia, then

ultimately leads to irreversible damage, necrosis, and apoptosis of

cardiomyocytes. Downregulation of Brg1 expression induced

hypoxia-induced cell oxidative stress and injuries in H9C2 cells.

Inverse regulations were found in cells with Brg1 expression

upregulation (68). Brg1 inhibited cardiomyocyte injury and

apoptosis through activating downstream phosphatidyl inositol 3-

kinase/AKT/the mammalian target of rapamycin (PI3K/AKT/

mTOR) and Nuclear erythroid 2-related factor 2/ Heme oxygenase

1 (Nrf2/HO-1) signaling pathways (68, 70). Brg1 also functions as

a significant factor in promoting neovascularization and

cardiomyogenesis in MI. It occurs through the reactivation of the

fetal gene program in epicardium-derived cells (EPDCs). A vitro

study showed that Brg1 interacted with Thymosin b4 (Tb4),

promoting optimal transcription of Wilms’ tumour 1 (Wt1), which

is the master regulator of embryonic EPDCs (71). Overall,

Brg1 protected cardiac injury from AMI. More importantly, it

restored cardiac function by promoting neovascularization and

cardiomyogenesis. However, the reactivation of fetal genes may

induce cardiac pathologic hypertrophy (72). Moreover, Brg1 has

been reported to be associated with hypertrophic cardiomyopathy

(HCM) and heart failure (HF) pathological remodeling mechanisms

(73, 74). Brg1 reactivated in the adult myocardium, in this setting,

may promote pathology and adverse remodeling rather than the

regenerative response.
FIGURE 2

SFⅡ helicases in myocardial infarction (MI) and ischemia/reperfusion injury (I
promoted neovascularization and cardiomyogenesis in MI. However, it facilit
IRI. PI3K: phosphatidyl inositol 3-kinase; mTOR: the mammalian target o
oxygenase 1; Wt1: Wilms’ tumour 1; PODXL: podocalyxin; NOX: the NADP
ROS: reactive oxygen species.
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4.2. IRI

Early thrombolytic therapy and percutaneous coronary

intervention (PCI) have been effective in reducing mortality in MI.

However, heart reperfusion may result in further cardiac damage,

usually named IRI (75). It is associated with the elevated

recruitment and adhesion of circulating leukocytes, specifically

neutrophils, to the vessel wall after reperfusion. The infiltration

leukocyte, in turn, contributes to myocardial injury by triggering

ROS production and the inflammatory cascade response (76).

Xinjian Zhang et al. and Zilong Li et al. identified Brg1 as a

molecule implicated in the pathogenesis of IRI in ECs (76, 77). The

former found that Brg1 promoted endothelial-neutrophil adhesion

and vascular inflammation by stimulating the transcriptional of

podocalyxin (PODXL, a neutrophil ligand). Endothelial-specific

Brg1 knockout mice attenuated cardiac fibrosis and better-

recovered heart function after long-term (6 weeks) IRI stimulation

than the control (76). Based on it, another scholar proposed that

the metastasis-associated lung adenocarcinoma transcript 1

(MALAT1)/miR-144/Brg1 signaling pathway might also mediate

the inflammation response of myocardial IRI (78). Zilong Li et al.’s

study showed that Brg1 promoted the NADPH oxidases (NOX)

transcription, thereby mediating EC ROS formation (77).

However, as mentioned previously, Brg1 had a protective role in

preventing cardiomyocyte injury from AMI. Cardiomyocyte Brg1

downregulation meditated cellular susceptibility to oxidative stress

in diabetic patients who are experiencing IRI. Further investigation

into the underlying mechanisms revealed that inhibiting the

Brg1/Nrf2/HO-1 and Brg1/Nrf2/Signal transducer and activator

of transcription-3 (STAT3) signaling pathways reduced the

myocardial antioxidant capacity (75, 79) (Figure 2).
RI). It showed that Brg1 inhibited cardiomyocyte injury and apoptosis and
ated endothelial cell (EC) inflammatory response and the development of
f rapamycin; Nrf2: Nuclear erythroid 2-related factor 2; HO-1: Heme
H oxidases; STAT3: Signal transducer and activator of transcription-3;
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The discoveries above support the essential roles of Brg1 in

regulating myocardial oxidative stress and injuries, highlighting

that it is a promising therapeutic strategy for treating AMI/IRI

(80). In addition, given that Brg1 could promote EC inflammation,

how to activate myocardial Brg1 selectively is a challenge in MI/IRI.
5. Role of SFⅡ helicases in the
cardiomyopathies

Cardiomyopathies are a group of heterogeneous myocardial

diseases. Various reasons cause mechanical and/or electrical

dysfunction of the heart. Based on predominant organ involvement,

cardiomyopathies are classified into two main groups: primary and

secondary cardiomyopathies. Primary cardiomyopathies are mainly

restricted to the heart muscle and are relatively few. They can be

further subclassified as genetic, mixed (genetic and nongenetic), and

acquired primary cardiomyopathies. In contrast, secondary

cardiomyopathies manifest as pathological myocardial involvement.

They are primarily associated with generalized systemic

(multiorgan) disorders (e.g., infections, metabolic diseases, and

endocrine diseases) (81).
5.1. Primary cardiomyopathies

5.1.1. Genetic
HCM is the most prevalent form of genetic primary

cardiomyopathies. It is caused by mutations encoding contractile

proteins of the cardiac sarcomere. The β-myosin heavy chain

(β-MHC, also known as MYH7) is one of the predominant

disease-causing genes (81). In adults, cardiomyocytes majorly

express α-myosin heavy chain (α-MHC, also known as MYH6),

not β-MHC. However, on abnormal stress, cardiac shifted from

α-MHC to β-MHC expression and induced pathological

hypertrophy on abnormal stress (72). Immunohistochemical

staining from 796 human cardiac specimens found that Brg1

expression significantly increased in patients with HCM

compared to other causes of ventricular hypertrophy and dilated

cardiomyopathy (DCM). In vitro, inhibition of Brg1 significantly

decreased cardiomyocyte β-MHC expression and increased α-

MHC expression (73), consistent with findings reported by Hang

et al. (72). However, the evidence of Brg1 as the causative gene

for HCM is remained limited. Numerous questions remain, such

as Brg1 is vital for physiologic remodeling during fetal cardiac

development but closes in adults. It reactivated in the adult is

associated with diseases.

5.1.2. Mixed (genetic and nongenetic)
Mixed primary cardiomyopathies are comprised of DCM and

primary restrictive nonhypertrophied cardiomyopathy. DCM is

the leading cause of heart transplantation. It is characterized by

ventricular dilatation with impaired progressive systolic diastole.

Pathologically, it is associated with viral infection, inflammatory

response, and aberrant genetic expression (81). Cardiac Dicer

and RHAU deficiency might participate in the progression of
Frontiers in Cardiovascular Medicine 08
DCM (82). Dicer expression level significantly decreased in

human patients with DCM. Dicer mutant mice exhibited severe

left ventricular dilatation and a dramatic decrease in systole. It

was attributed to miRNA maturation abnormality (83).

Furthermore, RHAU mediated dual regulation of mRNA

translation and stability. RHAU facilitated mRNA translation by

binding to the 5’-UTR of mRNA and promoted mRNA

degradation with the 3’-UTR of mRNA. The anatomical and

histological analysis of the hearts found that RHAU conditional

knockout postnatal mice exhibited progressive DCM. In vitro,

silenced RHAU destabilized the mRNA of hexamethylene bis-

acetamide inducible 1/yes1associated transcriptional regulator/

NK2 homeobox 5 (Hexim1/Yap1/Nkx2-5). These mRNAs play

crucial roles in heart regeneration and function (82).

Numerous prior studies have investigated the mRNA and

miRNA as integral players in the cardiovascular system’s

physiological and pathophysiological processes (84, 85). It is

necessary to investigate further the relationship between SFⅡ
helicases (such as Dicer and RHAU) and miRNA and mRNA in

mixed primary cardiomyopathies, including DCM.

5.1.3. Acquired
Acquired cardiomyopathies include myocarditis, stress

(“Tako-Tsubo”) cardiomyopathy, and peripartum (postpartum)

cardiomyopathy. Myocarditis is an acute or chronic

inflammatory cardiomyopathy caused by various reasons (mainly

microbial infections such as viruses) (81). Several immune cells,

such as monocytes and macrophages, are in the heart tissue.

They have double functions: promoting heart inflammation and

fibrosis, supporting heart repair after cardiac injury, and reducing

inflammation and infection. The activation of monocytes and

macrophages is initiated by various DAMPs that target specific

PRRs, including RLRs (30). RLRs initiated antiviral response by

inducing phosphorylation of NF-κB and IRF3 (30). In a mouse

model of Coxsackievirus B3 (CVB3)-induced myocarditis,

cardiac-specific overexpression of MDA5 attenuated cardiac viral

replication, cardiomyocyte injury, and apoptosis. It emphasized

that MDA5 inhibited viral proliferation through IRF3-dependent

antiviral type I IFN pathways (86). It is consistent with Yumei

Han et al., who found that MDA5 induced antiviral factor IFN-β

expression partially through MAVS/TBK1/IRF3 signaling

pathways (87). However, another study suggested that the

activation of MDA5 and RIG-I induced human cardiac

fibroblasts (CF) to produce high amounts of IL-6 and IL-8 (30).

Persistent activation of RLRs may mediate the progression of

severe myocarditis. Further investigations will be required to

understand how to regulate RLRs exert their physiological

functions. In addition, Dicer, another RIG-I-like family member,

could also inhibit cardiomyocyte apoptosis by promoting the

expression of miRNA-222 in the viral myocarditis model (88).
5.2. Secondary cardiomyopathies

Secondary cardiomyopathies are comparatively complex in

number and causes, including infection, metabolize dysfunction,
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endocrine disorders, and toxicity (81). HO-1 functions as anti-

apoptotic and anti-inflammatory properties. In diabetes patients,

heart HO-1 expression downregulation is a vital pathogenic

mechanism of diabetic cardiomyopathy. Numerous research

confirmed that hyperglycemia stimulation inhibited Brg1/Nrf2/

HO-1 signaling pathways and impaired heart antioxidant

capacity (75, 79, 89). In vitro, upregulation of Brg1 expression

attenuated hyperglycemia-induced cardiomyocyte oxidative stress

and apoptosis (89). These findings highlight that Brg1 induces

cardiomyocyte oxidative stress through mediating Nrf2/HO-1

signaling pathways.

In addition, DEAD-box family members DDX3x and DDX17

have been proven to play a protective role in doxorubicin (DOX)-

induced cardiotoxicity. In vitro, overexpression DDX3x and DDX17

ameliorated Dox-induced cardiomyocyte injury and apoptosis.

Mechanistic studies have shown that they prevented cardiotoxicity

by activating Wnt/β-catenin and estrogen receptor α (ERα)/PI3K/

Akt signaling, respectively (90, 91). However, DDX3x might play

deleterious roles in sepsis-induced cardiomyopathy. In vitro

simulation sepsis, cardiomyocyte DDX3x expression significantly

increased. DDX3x promoted NOD-like receptor protein 3 (NLRP3)

inflammasome assembly and induced cell injury and pyroptotic cell

death. However, only in vitro data were provided in this study (92).

More detailed mechanisms of SFⅡ helicases remain largely

unknown. Further studies are required to confirm whether these

proteins may be a potential therapeutic target for secondary

cardiomyopathies (Figure 3).
FIGURE 3

Main signaling pathways of SFⅡ helicases involved in primary and secondar
cardiomyopathy; DOX: doxorubicin; β-MHC: β-myosin heavy chain; α-M
protein; TBK1: TANK-Binding Kinase 1; IRF: interferon regulatory factor;
interferon.
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6. Role of SFⅡ helicases in VSMC-
associated vascular diseases

VSMCs are the major cellular components of aortic media.

Aberrant proliferation and migration, phenotypic transition

(from contractile to synthetic phenotypic), and apoptosis are all

involved in the progression of vascular diseases (93, 94).
6.1. Vascular development and remodeling

Dicer-dependent miRNAs were essential for normal VSMC

proliferation and differentiation. Deleting VSMC Dicer resulted

in dilated and thin-walled blood vessels due to cellular

proliferation reduction. VSMC-specific knockout Dicer mice

exhibited impaired vascular contractility (31, 95). Furthermore,

helicase DDX5 was the most abundantly expressed DEAD-box

protein in human arteries, mainly located in VSMCs (96).

Overexpression of DDX5 inhibited VSMC aberrant proliferation

and migration. Consequently, it markedly attenuated pathological

vascular remodeling and prevented vascular stenosis, especially in

injured arteries. In vitro, DDX5 directly interacted with GATA-

binding protein 6 (GATA-6) and maintained its expression. This

complex, in turn, repressed aberrant proliferation and migration

of VSMCs by elevating the transcription of p27Kip1 (96). In

addition, the DDX5-serum response factor (SRF) axis was
y cardiomyopathies. HCM: Hypertrophic cardiomyopathy; DCM: dilated
HC: α-myosin heavy chain; MAVS: mitochondrial antiviral signaling

ERα: estrogen receptor α; NLRP3: NOD-like receptor protein 3; IFN:
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impaired and also participated in VSMC dedifferentiation and

vascular remodeling (97). On the other hand, Abha Sahni et al.

identified UAP56 as a potential target for treating vascular

proliferative disease. Knockdown of UAP56 in VSMCs inhibited

transcriptional activation of E2F, a cell cycle regulator, consequently

suppressing Ang II-induced cell DNA synthesis and proliferation

(98, 99). These findings highlighted DDX5’s and UAP56’s potential

therapeutic benefit in injury-related arterial disease.
6.2. Hypertension

VSMC’s phenotypic transition from contractile to synthetic

phenotype was strongly related to the pathogenesis of

hypertension. In the peripheral blood from essential hypertension

(EH) patients, CHD1-Like (CHD1L) expression significantly

increased compared to the control group. In vitro,

downregulating CHD1L expression inhibited Ang II-induced cell

phenotypic transition, proliferation, migration, and inflammation

response (100). Similarly, the overexpression of CHD9, another

member of the CHD family, served to enhance VSMC

phenotypic transition, proliferation, migration, and oxidative

stress (101). Further studies are required to better define CHD

proteins’ function and fundamental mechanisms in hypertension.
6.3. Aortic aneurysm

Abdominal aortic aneurysm (AAA) is an irreversible

cardiovascular disease. The prevalence is about 1.3% in women over

65 years of age, whereas in men, this figure reaches 5%, according to

previous statistics. What is terrifying is that the mortality of AAA

ruptured is between 50% and 80% (102). Multiterm studies

demonstrated that VSMC apoptosis, extracellular matrix (ECM)

degradation, and inflammatory response contributed to the

progression of AAA (102, 103). However, the molecular mechanisms

of AAA development and progression still need to be completed.

Recent attention has focused on SFⅡ helicases that might

participate in developing AAA (51, 104, 105). Baf60a expression

significantly increased in patients with AAA. VSMC-specific

knockout Baf60a inhibited inflammatory response and ECM

degradation in AAA mice. In vitro, Baf60a deficiency inhibited pro-

inflammation leukocyte factors secretion and cathepsin S (CTSS)

expression. The CTSS played a crucial role in the degradation of

ECM and contributed to vascular inflammation. Baf60a knockout

blocked Brg1 recruitment to the promoter region of NF-κB target

genes (104). Furthermore, Brg1 expression increased in the aortic

media of thoracic aortic aneurysm (TAA) patients. Overexpression

of Brg1 promoted VSMC apoptosis, indicating it might also be

involved in the development of TAA (106, 107). Tianming Le et al.

found recently that the zeste homolog 2 (EZH2)-mediated RIG-I

signaling pathway promoted VSMC apoptosis and AAA

development. Last but not least, DDX3x protein was also

upregulated in AAA. Overexpression of DDX3x activated VSMC

AKT pathways. It mediated cell ROS activation, pro-inflammatory

cytokines release, and phenotypic transition (103).
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Collectively, SFⅡ helicases are associated with a variety of

inflammatory diseases. The density of inflammatory cells in the

aortic epicardium was positively correlated with the diameter of

the aneurysm. It is significant to further investigate the

regulation mechanisms of SFⅡ helicases in the AAA.
6.4. Aortic dissection

Aortic dissection (AD) is a vascular disease with a high mortality.

Impaired VSMCs’ structure and function are intensely associated with

AD development. In the VSMCs with AD patients, Brg1 expression

was positively correlated to cell Matrix metalloproteinases 2

(MMP2) and MMP9 expression, cell apoptosis, and phenotypic

transition (from contractile to synthetic phenotype) (93). Similar to

the discoveries presented by Wei-Lin Liao et al., Brg1 directly

upregulated the expression of Ras-related associated with diabetes

(RRAD). RRAD functioned as an inhibitor of orderly proliferation

and migration in VSMCs (94). In contrast, DHX9 exhibited a

protective role, as observed in a study. SMC-specific knockout

DHX9 further exacerbated the transition of VSMCs from a

contractile phenotype to a synthetic phenotype. The mechanistic

study showed that DHX9 might induce alternative splicing of the

Krüppel-like factor (KLF) 5 mRNA by bridging YB-1. This process

reduced KLF5 stability and nuclear localization and attenuated the

VSMCs phenotype transition (108) (Figure 4).
7. Role of SFⅡ helicases in cardiac
remodeling and HF

HF is a clinical syndrome consequence of the progression of

CVDs. It features ventricular dilatation and myocardial

contractility decrease. HF due to pathologic cardiac hypertrophy is

the leading cause of mortality worldwide (109). Increasing

research showed that SFⅡ helicases are closely associated with

HF. In this respect, it had been reported that eIF4A3 played a

prominent role in myocyte and heart function. The eIF4A3 is

crucial for mRNA stability and translation. There was significant

relocalization of eIF4A3 from the nucleus to the cytoplasm in

hypoxia-induced metabolic stress. Small changes in the expression

and distribution of this nucleocytoplasmic shuttling protein will

have profound implications for mRNA processing and potential

adaptation to stress. Knockdown eIF4A3 expression significantly

disrupted cardiomyocyte contractility and structure in response to

metabolic stress (60). However, this result was contradictory to Qi-

rong Xu et al.’s findings, which presented the nucleus circCmss1/

eIF4A3/ transferrin receptor 1 (TfR1) axis-induced cardiomyocyte

ferroptosis and promoted ventricular remodeling upon the Nuclear

SET Domain 2 (NSD2) stimulation (110). This differential effect

might be caused by eIF4A3 subcellular distribution differences.

Furthermore, Brg1, Baf180, and Baf60c were significantly

expressed in hypertrophic hearts. Chromatin immunoprecipitation

(CHIP) analysis showed that these three proteins’ recruitment to

the atrial natriuretic peptide (ANP) and brain natriuretic peptide

(BNP) promoters were elevated (74). ANP and BNP are highly
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FIGURE 4

SFⅡ helicases in VSMC-associated vascular diseases, including vascular development and remodeling, hypertension, aortic aneurysm, and aortic
dissection. SRF: serum response factor; CTSS: cathepsin S; NF-κB: nuclear factor Kappa-beta; RRAD: Ras-related associated with diabetes; KLF5:
the Krüppel-like factor; VSMCs: vascular smooth muscle cells.
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expressed in fetal ventricles and crucial for developing cardiac and

then turning off at birth, but they reactivate upon hypertrophy

stimulation (74). Based on a transverse aortic constriction (TAC)

model, ANP and BNP expression increased confirmed the

development of cardiac hypertrophy. Brg1 expression was

significantly increased at 8 weeks after TAC. It implied that Brg1

might play a predominant role in increasing the expression of

these two hypertrophy markers. In vitro, the depletion of Brg1

abrogated isoproterenol-induced increase in cell size and

expression of ANP and BNP mRNA. Brg1 knockdown partially

abrogated the microphthalmia-associated transcription factor

(MITF) association with GATA binding protein 4 (GATA4)

promoter. GATA4 is a critical transcriptional regulator of BNP

and ANP (38). However, the knockdown of Brg1 in unstimulated

cardiomyocytes did not affect cell size in this study. Indicating

Brg1 might regulate distinct genes in unstimulated and

hypertrophic cardiomyocytes. In addition, Brg1 by DPF3a (Baf45c)
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recruitment will abolish HEY inhibition. Under physiological

conditions, HEY, a transcriptional repressor, binds the promoters

of genomic targets like natriuretic peptides (NPPA, NPPB) and

GATA4. However, upon hypertrophic stimuli, Brg1 and DPF3a

physically interact and release HEY from the genomic targets,

inducing cardiac hypertrophy. Surprisingly, deleting DPF3 could

buffer endothelin-1 (ET-1) induced hypertrophy in this study

(111, 112). ET-1 is an endothelium-derived pluripotent factor that

is fundamental in developing pathological hypertrophic remodeling

(112). In line with this, Emma L. Robinson et al. found that the

mitogen and stress-activated protein kinase/Brg1/immediate early

gene (MSK/Brg1/IEG) axis mediated ET-1 initiated cardiac

hypertrophy (113). In addition, Brg1 and Brm could be the

upstream factors of ET-1, promoting its expression in a time-

dependent manner (112). These studies implied that SWI/SNF

subfamily helicases might be critical in cardiac hypertrophy and

HF, especially ET-1-associated. Moreover, Abha Sahni et al. found
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FIGURE 5

Main signaling pathways of SFⅡ helicases involved in heart failure. The eIF4A3 has an inverse role in the nucleus vs. the cytoplasm. SWI/SNF family
(Baf180, Baf60c, DPF3, Brg1) and UAP56 all exert an acceleration function in pathological cardiac hypertrophy. TfR1: transferrin receptor 1; NPPA/
NPPB: natriuretic peptides; GATA4: GATA binding protein 4; ET-1: endothelin-1; IEG: immediate early gene.
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that UAP56 functioned as a regulator of cardiomyocyte protein

synthesis. It could induce myocardial hypertrophy in response to

neurohumoral stimulation (114) (Figure 5).

Currently, the drug investigation has largely been successful in

delaying HF progression. However, the outcome of the disease was

greatly limited by the fact that HF patients are often combined with

other systemic diseases, such as chronic kidney disease, diabetes,

and depression. Moreover, the drugs themselves often lead to

adverse effects (109). Studies of the epigenetic mechanisms of HF

will promise to provide inspiration for new therapeutic drugs.
8. Conclusions

Therefore, the identification of diverse classifications of

helicases associated with the development and progression of

disease is of great importance in providing new therapeutic

targets for clinical treatment.

SFⅡ helicases yield a pivotal regulatory influence across a broad

spectrum of CVDs, including AS, MI, and HF. However, the role of

the same helicase is distinct in different cells and exhibits a

heterogeneous role even in the same tissue (48, 50, 60, 110).

Furthermore, a multitude of issues and hurdles persist in the

clinical utilization of helicases as therapeutic targets for addressing

CVDs: (1) whether the specific roles of helicases in humans are

consistent with in vitro and animal experiments are yet unknown;

(2) whether there is positive and/or negative feedback regulation

or synergy between each helicase, like DDX5 and Dicer1 in AS;

(3) how to target and regulate helicase expression in specific
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tissues and organs. Comprehensive investigations into the roles of

helicases remain imperative, as they hold the potential to offer

novel perspectives on the diagnosis, treatment, and even the

prognostication of not only CVDs but also various other ailments.
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