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Infiltration of the myocardium with various cell types, cytokines and chemokines
plays a crucial role in the pathogenesis of cardiomyopathies including
inflammatory cardiomyopathies and myocarditis. A more comprehensive
understanding of the precise immune mechanisms involved in acute and
chronic myocarditis is essential to develop novel therapeutic approaches. This
review offers a comprehensive overview of the current knowledge of the
immune landscape in cardiomyopathies based on etiology. It identifies gaps in
our knowledge about cardiac inflammation and emphasizes the need for new
translational approaches to improve our understanding thus enabling
development of novel early detection methods and more effective treatments.
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GRAPHICAL ABSTRACT
1 Introduction

Cardiomyopathy may result from various etiologies associated

with a reduction in left ventricular ejection fraction (LVEF) (1).

Myocarditis is characterized by inflammation of the myocardium

and can progress to chronic inflammatory cardiomyopathy or

dilated cardiomyopathy (DCM) in susceptible individuals (2, 3).

Immune cell infiltration (as illustrated in Figures 1–3

showcasing representative EMB findings), cytokines and

chemokines play a central role in this process (2, 3). Resident

mononuclear immune cells in the pericardium have been

reported to amplify or regulate the heart-specific adaptive

immune responses (4).

The precise prevalence of myocarditis remains uncertain.

Myocarditis has been documented to occur in approximately 10–

106 cases per 100,000 people globally (5). Patients suffering from

cardiomyopathies may present with a spectrum of symptoms

ranging from chest pain, dyspnea, palpitations or syncope to

cardiogenic shock, in particular in the context of fulminant

myocarditis (3, 6, 7).

Inflammatory cardiomyopathy may be triggered by many

factors including infections, drugs, autoimmune conditions, and

toxins and maintained through dysregulation of the immune

system, which plays a critical role in the development and

progression of the disease (8–11).

Viral infections are considered to be the most common cause

of myocarditis, while numerous other etiologies of myocarditis

and inflammatory cardiomyopathy have been reported (5, 12).
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Inflammatory infiltrates have been increasingly observed in

endomyocardial biopsies (EMB) of various forms of non-

ischemic cardiomyopathy including peripartum cardiomyopathy,

takotsubo cardiomyopathy and cardiomyopathies associated with

genetic variants of ion channels or structural proteins (8, 13, 14).

Importantly, the release of proinflammatory and profibrotic

cytokines, as well as other mediators by immune cells during

acute myocarditis is critical for the progression from acute

myocarditis to chronic inflammatory cardiomyopathy or

DCM (15–21).

Recently there has been growing interest in the scientific

community in immune cell-based and immunosuppressive

therapies to restore immune homeostasis and to positively

influence the clinical course at an early stage.

Gullestad et al. found that patients with congestive heart

failure or idiopathic DCM that received intravenous

immunoglobulin (IVIG) therapy produced elevated blood levels

of the anti-inflammatory and anti-fibrotic mediators interleukin

(IL)-10, IL-1 receptor antagonist and soluble tumor necrosis

factor (TNF) receptor, leading to improved LVEF (22). It has

also been shown in several studies that immunosuppressive

therapy with steroids, azathioprine and/or cyclosporin leads to

improved LVEF, less hospitalizations, less need for heart

transplantation, or death in patients with chronic inflammatory

cardiomyopathy (23–26). Targeting CD20+ B-lymphocytes

with the CD20 antibody rituximab improved hemodynamics

in a series of patients with inflammatory DCM or cardiac

sarcoidosis (27, 28).
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FIGURE 1

Representative EMB Findings in Acute Lymphocytic Myocarditis.
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Animal models of myocarditis and cardiomyopathies have

provided insight into the role of inflammation in such entities.

The primary models used were autoimmune and coxsackievirus

B3 (CVB3) murine models (29, 30). They revealed that the

primary immune infiltrate in the heart during acute

myocarditis in viral and autoimmune models, as well as in

patient biopsies, are macrophages, followed by smaller

percentages of T and B cells and other cell populations like

natural killer, dendritic and mast cells (19, 20, 31, 32).

Neutrophils are important in the pathogenesis of myocarditis,

but they appear in the heart early after infection or damage

and so are not often observed in EMB. Innate immune factors

that are critical in driving acute myocardial inflammation

and progression to chronic inflammatory cardiomyopathy such

as complement, Toll-like receptor (TLR)2 and TLR4,
FIGURE 2

Representative EMB findings in chronic active Non-infectious lymphocytic m
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inflammasome components like NLR-family pyrin domain-

containing protein 3 (NLRP3) and cytokines including IL-1β,

IL-18, IL-6 and transforming growth factor (TGF)β1 are

released from mast cells and macrophages (6, 19, 20). Mast

cells are often overlooked in cardiomyopathy, but they are

critical for remodeling to occur as they release most of the

enzymes needed to activate the cytokines and other factors

involved in remodeling and fibrosis (15, 33, 34). Mast cell

degranulation is also typically associated with pericarditis,

which occurs frequently during myocarditis in animal models.

Remodeling and fibrosis along the pericardium are important

drivers of progression from myocarditis to DCM (21, 35).

However, T cells also play a critical role in the pathogenesis of

inflammatory cardiomyopathy and are frequently found in EMB

(36). Importantly, the chronic phase of cardiomyopathy is an
yocarditis and HHV-6-assoziated lymphocytic myocarditis.
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FIGURE 3

Representative EMB findings in acute eosinophilic myocarditis and sarcoidosis.
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endpoint with significantly fewer immune cells, whilst more T cells

are present (37).

In a mouse model of CVB3 myocarditis, CD8+ depletion had

no significant effect on disease progression (38). Furthermore,

CVB3-induced cardiac injury and prevention of chronic

myocarditis was found to be unrelated to perforin-mediated

cytotoxicity in mice (39). T cells and T cell derived cytokines

including IL-4 and IL-17 seem to play a major role in

promoting chronic inflammatory cardiomyopathy (38, 40–44).

Although interferons (IFNs) such as IFNγ increase acute

myocarditis, they might also be of protective value, as they

decrease viral replication and protect against chronic

inflammatory cardiomyopathy by inhibiting profibrotic factors

including IL-4 and IL-17 (21, 41, 44–47). CD4+ CD25+

FoxP3+ regulatory T cells (Treg) might have protective

function, as a low number of Treg cells has been associated

with worse DCM in autoimmune myocarditis (44, 48).

Additionally, in viral and autoimmune models of myocarditis,

females, as they have higher levels of Treg cells and other

regulatory factors such as T cell Ig mucin (Tim)-3 and IL-4,

exhibit notably lower rates of myocarditis compared to males

(32, 49). Administering Treg cells prophylactically in a CVB3-

induced myocarditis mouse model conferred protection against

CVB3-induced myocarditis by exerting anti-inflammatory and

antifibrotic effects (50).

There is mounting evidence that a detailed understanding of

specific cell-cell interactions in myocarditis and inflammatory

cardiomyopathy as well as involved signaling molecules will be

paramount in the development of targeted novel therapies.

This narrative review aims to provide a comprehensive

overview of the current knowledge on immune cells

infiltrating the myocardium in myocarditis and non-

ischemic cardiomyopathies that may be used as a resource

for scientists investigating targeted cell-based therapies

for cardiomyopathies.
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2 Inflammatory cardiomyopathies

2.1 Viral myocarditis

2.1.1 Cardiotropic viruses
2.1.1.1 Enteroviruses
Myocardial infiltration is observed following infection by different

coxsackieviruses via the coxsackievirus-adenovirus receptor (CAR)

(51). CVB3 virus RNA is recognized by TLR3, TLR4 and

melanoma differentiation-associated protein (MDA)-5 (52).

Damage-associated molecular patterns (DAMPs) initiate the

immune response from antigen presenting cells including mast

cells, macrophages and dendritic cells. In that context, histamine,

complement, and IL-1β activate infiltration of a diverse range of

immune cells to the heart (6), including monocytes (6), natural

killer cells (53), neutrophils (54), lymphocytes (55), and

macrophages (55, 56). Macrophages are the dominant immune

infiltrate in males with lower levels of CD4+ and CD8+ T cells as

well as γδ T cells (56), B cells (57) and mast cells (20, 32).

Females have higher levels of T and B cells as well as Treg

compared to males (58). B cells might play a role in progression

to chronic disease, especially in females and autoimmune

myocarditis (57), while Treg cells might protect from progression

to chronic myocarditis (53). Furthermore, Ly6Chigh monocytes

are detected in EMBs (59). Ly6Chigh monocytes play a crucial

role in early inflammation during acute myocarditis and are

recognized for their ability to produce abundant levels of

proinflammatory cytokines such as IL-1β (60–63). Additionally,

they possess phagocytic capabilities (60–63).

Also in enterovirus myocarditis, the effect of IFNβ therapy has

been explored (64). As stated earlier, IFNs including IFNβ and

IFNγ reduce CVB3 replication and remodeling, which prevents

progression to chronic cardiomyopathy (46, 47). Elevated IFN

responses are a key reason that C57BL/6 mice do not progress

from myocarditis to DCM in animal models of myocarditis (46,
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47). Other studies explored pocapavir, pleconaril and IVIG in

neonates with enterovirus myocarditis (65–67). Consensus

statements, however, do not recommend antiviral therapies in

enterovirus myocarditis as there is not sufficient evidence (3).

Soluble anti-CAR antibody reduces the incidence of acute and

chronic CVB3-induced myocarditis in mice by preventing viral

infection (68, 69). In another study, progression to chronic

cardiomyopathy was prevented by anti-mouse IL-1β therapy (70).

A primary pathway increasing acute inflammation and

promoting progression to DCM in white background male mice

is the TLR4-induced IL-1β response (20, 70–72). IL-1β increases

IL-6 that is needed for IL-17/Th17 responses that promote

remodeling and chronic cardiomyopathy (73). Male mice had

increased IL-17-related responses compared to females and

showed more fibrosis leading to chronic cardiomyopathy in

CVB3-induced myocarditis (74). However, IL-17 does not

increase acute myocarditis but is important for the progression

to chronic cardiomyopathy which also predominantly occurs in

males (20, 75, 76). Additionally, in acute murine CVB3

myocarditis high expression levels of osteopontin were found to

be associated with the development of extensive fibrosis that can

be reduced by treatment with a vitamin D analog (77). A recent

study demonstrated that administering eplerenone can regulate

the acute immune response and protect against myocardial

remodeling in CVB3-induced myocarditis (78). Similarly, we had

previously shown in an animal model of myocardial infarction

that inflammatory genes activated during ischemia were

downregulated through treatment with eplerenone (79). This

response to treatment was much greater in females (79).

2.1.2 Vasculotropic viruses
2.1.2.1 Parvovirus B19
Parvovirus B19 (B19V) infects endothelial cells (80) which may

lead to apoptosis of cardiomyocytes (80, 81). Only high copy

numbers of B19V DNA in the myocardium were found to be

associated with acute lymphocytic myocarditis (82). It is likely

that the toxic, non-structural viral protein NS1 triggers the

release of proinflammatory cytokines (83), although the

pathogenetic role of B19V in myocarditis is still controversial

(84). Immune cell infiltration in patients with Parvovirus B19V

myocarditis is dominated by macrophages and lymphocytes (85).

CD4+ T cells play a role in acute Parvovirus B19V-related

myocarditis (86). In individuals, striking CD8+ T cell responses

were observed, which were sustained or even increased over

many months after the resolution of acute disease (87).

Although no guidelines currently recommend the use of IVIG

for patients with severe Parvovirus B19V viremia and associated

complications such as transient aplastic crisis or chronic pure red

cell aplasia, some studies suggest that IVIG may be beneficial in

such cases (88). Other authors showed no significant

improvement in cardiac systolic function in patients undergoing

IVIG, thus rendering the potential benefits of IVIG uncertain

(89). No therapy is recommended when B19V copy number is

low and cardiac inflammation is absent in EMB (3). When EMB

is positive for inflammation although B19V copy number is low,

immunosuppressive therapy may be considered (90).
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New therapeutic strategies are under investigation, including

the synthetic nucleotide analogues cidofovir and brincidofovir as

well as flavonoid molecules and hydroxyurea (88).
2.1.3 Lymphotropic viruses
2.1.3.1 Human cytomegalovirus (HCMV)
HCMV is usually acquired during childhood and is known to infect

several cell types, such as endothelial cells, epithelial cells, and

immune cells (91, 92). Usually, HCMV infection remains

asymptomatic until the occurrence of immunosuppression,

thereby posing a significant concern as a complication in

individuals such as organ transplant recipients or Human

Immunodeficiency Virus (HIV) patients (92).

Male BALB/c mice infected with murine CMV (MCMV)

develop acute and chronic inflammatory myocarditis similar to

CVB3 and autoimmune models, where macrophages

predominate with fewer T-, B-, and other cells during the acute

phase of the disease (37, 93, 94).

A reduction of viral burden might be achieved with the anti-

herpesvirus drugs ganciclovir or acyclovir, although the efficacy

in HCMV-induced myocarditis has not been studied directly (95,

96). Viral infection was reduced in MCMV-induced myocarditis

if ganciclovir and cidofovir were administered during the innate

immune response but not if it was given during acute

myocarditis (97). A controlled trial suggested that a CMV

hyperimmunoglobulin treatment may be effective in HCMV

myocarditis (98). Antiviral therapy is not generally recommended

for patients with virus-induced myocarditis and should be

reserved for individual cases (3). Consultation with an infectious

disease specialist is recommended before initiating antiviral

therapy (3).
2.1.3.2 Epstein-Barr virus (EBV)
EBV invades cardiac tissue by initially infecting resting human B

lymphocytes (96) and eventually infiltrating both the

myocardium and pericardium (99). EMB from patients with EBV

myocarditis typically reveals lymphocytic infiltration, consisting

of predominantly CD8+ T cells but also CD4+ T cells (99). In

this case, high numbers of EBV-encoded RNA copies were

demonstrated in CD8+ T lymphocytes (99).
2.1.3.3 Human herpesvirus 6 (HHV6)
HHV6-induced myocarditis has been associated with a myocardial

infiltration of CD4+ and CD8+ T cells (100). Figure 2 illustrates

EMB findings representative for HHV6-associated lymphocytic

myocarditis. In a case report, Rohayem and colleagues reported a

patient suffering from lethal acute B19V and HHV6 coinfection

who at autopsy was found to have diffuse infiltration of the

myocardium with mononuclear cells and neutrophils as well as

edema, degeneration and loss of myocardial cells (101). However,

low HHV6 copy numbers are a common finding and are likely

to have no clinical impact (102).
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2.1.4 Cardiotoxic viruses
2.1.4.1 Hepatitis C virus (HCV)
Chronic HCV infection may lead to cardiomyocyte hypertrophy

and therefore hypertrophic cardiomyopathy due to expression of

the HCV-core protein and overactivation of transcription factor

AP-1 (103). The HCV-core protein plays a significant role in the

viral nucleocapsids and has an impact on the transcription of

cellular protooncogenes in hepatocytes (103, 104). HCV is also

recognized to contribute to the development of insulin resistance

and the generation of reactive oxygen species (105). The

mechanisms that cause damage in relation to HCV-associated

cardiomyopathy are not well understood. Hypotheses aiming to

explain myocardial damage include direct mitochondrial

disruption and oxidative stress to cardiomyocytes and a chronic

systemic inflammatory state, which might lead to myocardial

inflammation (103, 106). Furthermore, HCV core protein may

lead to the activation of profibrotic pathways eventually leading

to cardiac fibrosis (103, 106). In HCV-associated myocarditis,

monocytes and CD68+ macrophages are the dominating cells

infiltrating the heart (107).

HLA-DPB1*0901 and HLA-DRB1*1201 are associated with

progression to chronic cardiomyopathy and persistence of HCV

as well as the development of DCM (106). Mononuclear cells (in

particular monocytes and CD68+ macrophages) are the primary

target cells for treating extrahepatic manifestations in HCV

infections (107).

Even though the viral genome typically persists in the

myocardium after HCV infection, immunosuppression may be

beneficial for HCV myocarditis, as it was shown to improve

cardiac function (108).

2.1.4.2 Human immunodeficiency virus (HIV)
In some cases of HIV-associated cardiomyopathy, diffuse

myocardial damage with variable degrees of hypertrophy and

degenerative changes leading to hydropic changes within the

cardiomyocytes has been noted (109, 110). The HIV gp120

protein mediates myocardial injury and dysfunction through a

nitric oxide dependent mechanism (111). Interstitial and

endocardial fiber damage is increased, leading to fibrosis (109,

110, 112). T cells dominate the inflammatory infiltrate, with a

majority of CD8+ T cells (109).

2.1.4.3 Influenza viruses
Cytokine-mediated cardiotoxicity and autoimmune response against

components of the heart are likely involved in myocarditis following

influenza virus infection (113). Monocytes, dendritic cells, and

macrophages dominate the myocardial immune infiltration. The

latter two secrete cytokines such as IFNs and TNF-α, contributing

to increased acute inflammation (114, 115).

2.1.5 Angiotensin-converting enzyme 2 (ACE2)-
tropic viruses
2.1.5.1 Middle East respiratory syndrome coronavirus
(MERS-CoV)
MERS-CoV-associated cardiomyopathy may be associated with

myocyte hypertrophy, moderate coronary atherosclerosis and

patchy myocardial fibrosis (116). There is limited data regarding
Frontiers in Cardiovascular Medicine 06
myocardial immune infiltration. Lymphocytic infiltration (117,

118) predominantly with dendritic cells (119), macrophages

(120), and T cells (121) has been described in MERS-CoV-

induced myocarditis.

2.1.5.2 Severe acute respiratory syndrome coronavirus
(SARS-CoV)
Edema and atrophy of myocardial fibers is commonly seen in

myocarditis associated with SARS-CoV infection (122). Immune

infiltration primarily consists of lymphocytes. Also, monocytes

and plasma cells infiltrating the endothelium have been described

(122). As the ACE2 receptor is the entry point for SARS-CoV

into cells, the protein might represent a therapeutic target (123).

2.1.5.3 SARS-CoV-2
The role of SARS-CoV-2 on myocarditis was recently reviewed

(124). Briefly, autopsy and histopathological findings suggest

extensive lymphocytic infiltration in the myo- and pericardium

after lethal SARS-CoV-2 infection (125, 126). An inflammatory

state with predominantly CD68+ macrophages (124, 127) as well

as enhanced monocyte recruitment (128) has been reported for

cardiomyopathy associated with SARS-CoV-2 infection.

Furthermore, a cytokine storm, dominated by IL-1β has been

shown to play a major role in the pathophysiology of severe

corona virus disease 2019 (COVID)-19 (129–131). IL-6 has been

associated with cardiac dysfunction, as evidenced by reduced left

ventricular function obtained with speckle tracking

echocardiography in patients hospitalized due to COVID-19

(124, 132).

ACE2 receptor (124, 133) and transmembrane protease serine

subtype 2 (TMPRSS2) (96, 124) interaction enables SARS-CoV-2

to enter its target cells (133). The interaction with the ACE2

receptor has been suggested as a potential direct cytotoxic effect

of SARS-CoV-2 (133). While the possibility of direct damage to

the heart by SARS-CoV-2 has been discussed (124), the

prevailing absence of the virus within cardiomyocytes of

COVID-19-associated myocarditis patients (134, 135) further

reinforces the concept of cytokine-induced damage to the heart.

Several antiviral therapies are currently being investigated,

such as protease inhibitors (e.g., lopinavir-ritonavir, darunavir),

RNA polymerase inhibitors (remdesivir) and anti-cytokine

agents (e.g., IL-6 receptor antagonists) (96). In patients with

SARS-CoV-2, the IL-1β antagonist canakinumab improved

clinical recovery and reduced cardiac injury at 28 days post

infection (136, 137).
2.2 Bacterial myocarditis

2.2.3 Borrelia-associated myocarditis
Borrelia species-induced myocarditis are associated with focal

necrosis, hypertrophy and vacuolization of myocytes leading to

fibrosis (138). Immune infiltrates are usually lymphocytic in

nature (138), mostly composed of macrophages and lymphocytes

(139), predominantly T cells (138). Mononuclear leucocytes were

also seen in heart tissue (138).
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2.2.1.1 Staphylococcus
Staphylococcus typically builds micro abscesses within the

myocardium (140). Methicillin-resistant Staphylococcus aureus

(MRSA)-induced myocarditis is characterized by focal myocyte

necrosis (141).

2.2.1.2 Streptococcus
The pathomechanisms of myocarditis following streptococcal

upper airway infections are not well understood. Streptococcal

toxins and cross-reactivity of IgG with streptococcus antigens

and cardiac myosin have been postulated as possible causative

mechanisms (142, 143). Mononuclear cells, especially

lymphocytes (of which CD4+ T cells were predominating) are

found in EMB (144). Neutrophil infiltration and micro abscesses

containing bacteria have also been described (145).

2.2.1.3 Pneumococcus
Pneumococcus microlesions appear widely spread throughout the

myocardium, but especially in the ventricles (146). Such

microlesions manifest as areas within the myocardium with a

reduced number of cardiomyocytes accompanied by an enlarged

intercellular space filled with pneumococci (147). These lesions

are further characterized by expansion of the intercellular space

caused by extracellular vacuolation, the apparent loss of

cardiomyocytes and the stark absence of infiltrating immune

cells, as observed in both a BALB/c mouse model and human

disease (147–149). Fibrosis is a common consequence of this

response (148, 149).

Macrophages and neutrophils are subverted through biofilm

production by pneumococcus (150).

Bacterial adhesin choline-binding protein A and its interaction

with laminin receptor of vascular endothelial cells represents the

cellular entry point for pneumococci (151). Also, cobinding of

phosphorylcholine residues on the bacterial cell membrane to

platelet-activating factor receptor is an additional activating

mechanism (151). Neutralizing these interactions could be a

possible pharmacological approach (151).

2.2.1.4 Meningococcus
Meningococcus myocarditis is rare (152), but might occur during

meningococcus sepsis (153, 154). There is no information

regarding immune cell infiltration patterns in the heart available,

but neutrophils and lymphocytes accumulate around meningeal

vessels of patients suffering from meningococcal meningitis (155).

2.2.1.5 Gonococcus
Myocarditis caused by gonococci usually occurs secondary to or

during endocarditis (156, 157) leading to perivalvular abscesses

(156, 158). Neutrophils are the dominant immune cells

infiltrating the valves and spatially related myocardium during

such an infection (158). Fibrosis is a common result of

gonococcal myocarditis (158).

2.2.1.6 Salmonella
Following salmonella gastroenteritis, the heart and aorta may be a

secondary target of inflammation (159). It remains uncertain

whether this represents a sterile inflammation lacking bacterial
Frontiers in Cardiovascular Medicine 07
myocardial infiltration, that occurs subsequent to the infection,

or if it is a secondary manifestation directly linked to the

salmonella infection (159). Non-typhoid salmonella might lead to

multifocal biventricular inflammation in subepicardial and

midmyocardial tissue (160). There is no data in the literature

regarding the composition of the immune cell infiltrate.

2.2.1.7 Mycobacterium tuberculosis
Infiltration by Mycobacterium tuberculosis of the heart follows no

specific pattern (161). Similar to tuberculosis of the lungs,

myocardial involvement comes in 3 different types:

tuberculomas, miliary tubercles or an uncommon diffuse

infiltrative type (161). Commonly, the left ventricle is affected

(162). Usually, a giant cell (163–165) and lymphocytic (164, 165)

infiltrate accompanies the infection. Granulation (166) as well as

scar tissue and fibrosis might result (163).

M. tuberculosis inactivated antigens are used as the adjuvant

(mimic infection) in complete Freund’s adjuvant that is required

to induce disease in autoimmune models of myocarditis (29).

The dominant immune response in natural infections and in

experimental autoimmune myocarditis are macrophages and

Th17-type responses (167–169). These findings suggest that M.

tuberculosis can drive myocarditis and DCM in the context of an

autoimmune response.

2.2.1.8 Mycoplasma pneumoniae
Myocarditis due to Mycoplasma pneumoniae infection has been

described as myopericarditis (170). Fibrosis of the heart valves

has been reported (171). Data are limited concerning EMB

findings on cellular components of the immune infiltrate in the

context of mycoplasma infection.

2.2.1.9 Brucella
Brucella myocarditis is very rare (172) and tends to occur in the left

ventricular myocardium, in particular subpericardial (173, 174).

Following infection with Brucella, endocardial tissue might

undergo calcification and become fibrotic (175). Data are limited

regarding the type of immune infiltration.

2.2.2 Others
Several other infections such as protozoa, fungi or parasites can

cause myocarditis (3). As there is limited data currently available

on specific inflammatory infiltrates in most of these entities, only

the most common parasite causing myocarditis, Trypanosoma

cruzi, is discussed.

2.2.2.1 Trypanosoma cruzi—chagas disease
Chagas disease is caused by Trypanosoma cruzi, which is a parasite

that replicates within host cells, including cardiac myocytes (176).

Cardiac involvement in Chagas disease typically leads to

inflammation, fibrosis, diffuse ventricular wall motion

abnormalities and arrhythmias especially when prolonged

inflammation occurs (177, 178). The myocardium shows signs of

necrosis, areas of myocellular hypertrophy and predominantly

mononuclear cell infiltration (176). Macrophages, eosinophils,

neutrophils and mast cells are found in myocardial tissue as well,

but to a lesser extent (176). Proinflammatory cytokines such as
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TNFα and IFNγ promote inflammation which can further lead to

autoimmunity (179). Furthermore, the persistence of the parasite is

associated with high grade myocarditis (180), as tissue damage

partly results directly from the pathogen itself (176).
2.3 Immune-mediated myocarditis

2.3.1 Rheumatoid arthritis
Rheumatoid arthritis associated cardiomyopathy is

characterized by fibrosis and citrullination within the myocardial

intercellular space (181). The latter is a type of post-translational

modification that converts arginine residues within proteins to

citrulline residues (182). In rheumatoid arthritis, the immune

system produces antibodies targeting those citrullinated proteins

(182–185). Rheumatoid arthritis associated myocarditis is

characterized by focal necrosis or granulomatous inflammation

(186). There is no specific immune cell type dominating the

immune infiltrate.

2.3.2 Vasculitis
1.5% of patients with myocarditis are found to have necrotizing

coronary vasculitis by EMB (187). In the case of eosinophilic

granulomatosis with polyangiitis eosinophilis play the dominant

role (188). As of today, data on the components of cellular

infiltrates in other entities is very limited.

2.3.3 Other connective tissue diseases
Myocarditis associated with connective tissue diseases such as

systemic lupus erythematosus develops predominantly in the

ventricular wall leading to edema and necrosis (189, 190). CD4+

T cells usually dominate the immune infiltrate (189).

Severe combined immunodeficient mice developed myocarditis

dominated by CD4+ T cells, while depletion of CD4+ T cells

suppresses the inflammation (189). In mice with myocarditis

induced through the transfer of CD4+ T cells, Th1 and Th17

cells were found to infiltrate the myocardium (189).

2.3.4 Cardiac sarcoidosis
Cardiac sarcoidosis primarily leads to subepicardial

inflammation within the left ventricular septum. However,

midmyocardial, subendocardial or transmural inflammation may

also occur (191). Infiltration is predominantly granulomatous (192).

Th1 cell derived cytokines such as IL-2, IFNγ and IL-12 drive the

granulomatous inflammation, while the infiltrate lacks Th2 cells (192–

194). In a case report, Schoppet et al. described a high Th1 response as

causative for multiple granulomas in EMB while a Th2 response has

been associated with disease regression (195). Figure 3 illustrates

EMB findings representative for cardiac sarcoidosis.

Cytokines derived from Th1 cells promote macrophage

accumulation, with CD68+ CD163- M1 macrophages dominating

(196–198). Macrophages play a major role in the formation of

granulomas (192). In the early stages of the disease, macrophages

tend to form multinucleated giant cells within granulomas of the

foreign body type (192). In later stages, they form granulomas of

the Langhans type (192). In the EMB, the presence of
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Schaumann bodies and asteroid bodies may be observed (192).

Schaumann bodies are calcified protein structures that occur

intracellularly, often within giant cells (192, 199). In contrast,

asteroid bodies are comprised of non-collagenous filaments and

myelinoid membranes and are also frequently found in

multinucleated giant cells (192, 199). Both Schaumann and

asteroid bodies are pathologic signs that may be found in

sarcoidosis (192, 200).

M2 macrophage derived factors, such as TGF-β and chemokine

CC motif ligand lead to fibrotic cardiac remodeling (196, 201, 202).

Anti-inflammatory treatment with glucocorticoids is

recommended and other anti-inflammatory agents such as TNFα

antibody can be considered referring to current consensus

statements (203).

2.3.5 mRNA vaccine related myocarditis (against
SARS-CoV-2)

This topic has been recently reviewed (31, 124). Briefly, SARS-

CoV-2 vaccine-related myocarditis is associated with myocardial

edema and mostly subepicardial anterolateral and inferolateral

involvement of the myocardium (204). A number of theories

have been proposed for how vaccines, and mRNA vaccines in

particular, could lead to myocarditis including innate immune

activation of mast cells (124), myocyte necrosis (205, 206),

cytokine-induced damage (207), and interstitial fibrosis (208). In

EMB, SARS-CoV-2 vaccine-related myocarditis usually presents

as lymphocytic myocarditis (209), although in some biopsies no

inflammatory cells are found (204, 209). The inflammatory

infiltrate primarily consists of macrophages and T cells (205, 206).

Various mechanisms underlying myocarditis following SARS-

CoV-2 vaccination including cytokine related damage and spike

glycoprotein antibodies cross-reacting with myocardial contractile

proteins, as well as the influence of sex and gender through

endocrine differences are discussed (207, 210). In young men,

autoantibodies against the IL-1RA impairing the IL-1RA

bioactivity in vitro were associated with low circulating levels of

IL-1RA and were found in patients with biomarker evidence of

cardiac damage and inflammation (211).

2.3.6 Autoimmune myocarditis
Autoimmune myocarditis may follow ischemic (212), surgical

(213) or traumatic (214, 215) myocardial damage as a

consequence of an immune response to released segregated

antigens (i.e., cardiac myosin). Furthermore, autoimmune

myocarditis has also been hypothesized to follow viral infections

that release damaged heart tissue (37). The experimental

autoimmune myocarditis (EAM) model closely follows the time-

course, cellular infiltrate, sex differences and mechanisms of

disease that have been identified with clinical myocarditis

associated with viral infections (20, 216). Importantly,

autoimmune models of myocarditis that use a mild viral

infection (i.e., MCMV, CVB3) instead of complete Freund’s

adjuvant as the pathogen strongly mimic EAM and clinical viral

myocarditis (20, 37, 124). Recognition of autoimmune

myocarditis can be crucial for initiation of immunosuppressive

therapy (217) with potential recovery of cardiac function.
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2.4 Toxicity-Induced myocarditis

2.4.1 Alcoholic cardiomyopathy
The direct toxic effect of ethyl and acetaldehyde leads to

ultrastructural alterations of the mitochondria and

sarcoplasmatic reticulum of cardiac myocytes (218, 219).

Protein metabolism is dysregulated at a molecular level

leading to arrhythmias (218) and focal necrosis (218, 220).

This causes a lymphocytic infiltrate, without a subtype of cells

dominating (218, 221).

Chronic alcohol consumption directly influences immune cell

concentration with a specific suppression of neutrophils (222–

224). Alcohol use disorder (AUD) might also reduce

lymphocytes (224–228) and their reactivity to mitogens (224,

229). Activation of T and B cells might be aggravated due to

heightened antigen presentation (224, 230). After alcohol

exposure T cells produce less IFN-γ (224, 231).
2.4.2 Drug-induced cardiomyopathies
Oxidative stress that disrupts mitochondria and reduces ATP

production is the main cause of drug-induced injury to the

myocardium (219). In addition, reactive oxygen species interfere

with mitochondrial DNA replication, which can further lead to

myocardial damage (219, 232). In a postmortem examination,

hearts of patients who developed cardiotoxicity as a result of

cyclophosphamide medication featured hemorrhagic myocardial

necrosis, interstitial edema, hemorrhage and fibrin deposition

(233, 234). However, the precise mechanism of

cyclophosphamide-induced injury to the myocardium is not yet

clear (233, 234), but inflammatory cell infiltrates have been

described (232). Treatment with doxorubicin also damages

mitochondria and leads to a reduction of natural killer cell

activity and stimulation of cytotoxic T cells (235). A decrease in

macrophage differentiation has also been observed (235). EMB

shows histiocytes dominating the infiltrate in anthracycline-

induced cardiomyopathy (236, 237). Several other drugs are

known to cause myocarditis rarely, such as antibiotics, diuretics

and antidepressants (3).
2.4.3 Immune checkpoint inhibitor (ICI)-induced
cardiomyopathy

The prevalence of ICI-induced myocarditis revolves around 1%

in a multicenter registry and is generally considered

underestimated (238). ICI-induced myocarditis is associated with

a mononuclear, mainly lymphocytic infiltrate within the

myocardium, myocyte degeneration (239, 240) and interstitial

fibrosis (241). T cells are the dominating cellular phenotype (239,

240, 242), with similar levels of CD4+ and CD8+ T cells (239,

240). CD68+ macrophages are also involved, and antibody

deposits might occur (239, 240).

In an A/J mouse model, Won et al. were able to show that

treating naive mice with anti-programmed cell death protein

(PD)-1 monoclonal antibody (PD-1 regulates/inhibits T cell

responses) was able to induce myocarditis (243). Tumor cells or

infectious agents were absent in this model (243). Troponin
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elevation, arrhythmias and lymphocytic infiltration of the

myocardium was observed in this model (243). The investigators

identified that T cells being reactive to cardiac myosin were

elevated in the myocardium (243).

Lv et al. demonstrated that autoimmunity plays a role in ICI-

induced myocarditis by demonstrating that CD4+ T cells specific

for alpha myosin heavy chain were not effectively eliminated in

the thymus of mice and humans after receiving immune

checkpoint inhibitors (244). They identified high numbers of

these autoreactive T cells in mice and in patients with

myocarditis (244).

ICI therapy disrupts cytotoxic T-lymphocyte-associated

protein (CTLA)-4 and PD-1 signaling on T cells, leading to a

reduction in peripheral immune tolerance and an increased

likelihood of T cell activation (242, 245, 246). Another possible

mechanism for ICI-associated myocarditis is the proliferation of

T cells that recognize an antigen shared by both the tumor and

heart muscle (242, 245, 246).

In a further study, researchers observed that individuals with

ICI myocarditis had an increased number of cytotoxic CD8+ T

cells that expressed the CD45RA marker, which is found on

naive CD8+ T cells (247). This contrasted with healthy

individuals, who had lower levels of these cells (247). Sequencing

of the T cell receptor indicated that the CD8+ CD45RA+ T cells

were clonally augmented in patients with ICI myocarditis (247).

An analysis of the gene expression patterns in Temra CD8+ T

cells revealed that they have a cytotoxic and activated phenotype,

as expected (247). Their interaction with innate immune cells

was enhanced and anti-inflammatory regulating factors were

missing, leading to more inflammation (247).
3 Non-ischemic non-inflammatory
cardiomyopathies with background
inflammation

3.1 Hypertrophic cardiomyopathy (HCM)

In HCM an accumulation of CD8+ T cells (248, 249),

basophils, fibroblasts, and platelets has been described in the

cardiac inflammatory infiltrate (248). Analysis of the immune

infiltration in HCM patients vs. controls revealed a decrease in

dendritic cells, macrophages, monocytes, and natural killer

cells (249). A decrease in CD163 + LYVE1+ macrophages,

which belong to the M2 macrophage subtype, may play a

crucial role in the pathogenesis of the disease (248). Other

authors have demonstrated a high abundance of neutrophils,

as well as both naive and memory B cells, within the

myocardium (250).
3.2 Peripartum cardiomyopathy

EMB of myocardial tissue in patients with peripartum

cardiomyopathy revealed evidence of a mild cardiac infiltration

of inflammatory cells; however, no discernible pattern of cells
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was described (14). Breastfeeding women were found to have

increased levels of prolactin, which were correlated with

heightened levels of CD8+ T cells in the circulation (251). The

inhibition of prolactin release using the dopamine antagonist,

bromocriptine, prevents the development of peripartum

cardiomyopathy in mice, suggesting a potential role of prolactin

in the pathogenesis of the disease (252, 253). McTiernan et al.

reported a significant reduction in circulating natural killer cells,

along with elevated levels of CD3+CD4−CD8−CD38+ T cells in

women with peripartum cardiomyopathy (254).

Recently, bromocriptine, a prolactin release inhibitor has

been explored as a therapeutic option in peripartum

cardiomyopathy. It has been shown that bromocriptine

treatment improves LVEF in peripartum cardiomyopathy

patients (255–259). The decrease of prolactin might reduce the

prolactin-associated inflammation and might therefore explain

the observed increase in LVEF.
3.3 Arrhythmogenic cardiomyopathy

The presence of patchy inflammatory infiltrates suggests a

potential involvement of the immune system in the

pathogenesis of arrhythmogenic cardiomyopathy (260, 261),

with M1 and M2 macrophages in equal numbers dominating

the lesion (262). Cardiac myocytes in Dsg2mut/mut hearts

demonstrated positive immunoreactivity for IL-1β, TNFα, and

MCP-1α (263). Additionally, infiltrating mononuclear

inflammatory cells showed positive immunoreactivity for IL-1β

and TNFα (263). Cardiac inflammation leads to fibrotic

remodeling of the myocardium in a murine model of

arrhythmogenic cardiomyopathy with a desmoglein 2 mutation

(262). Clinically, affected individuals display replacement of the

ventricular myocardium with fibrofatty tissue (260, 261, 264–

266). The implementation of therapy aimed at inhibiting

remodeling and fibrosis could potentially improve

cardiovascular function and might limit disease progression but

requires further investigation (267).
3.4 Takotsubo cardiomyopathy

Fibrosis is a characteristic feature observed in EMB samples

obtained from the myocardium of patients with Takotsubo

Syndrome (TTS) (268). Clinical studies have documented the

infiltration of monocytes and macrophages in myocardial tissue

(268–270). According to single-cell RNA sequencing studies

analyzing immune cells in myocardial tissue, TTS-like

cardiomyopathy is associated with intricate activation of both

innate and adaptive immune cells in the heart (268). Among

these cells, macrophages were found to be predominate (268).

When global macrophage depletion was induced through

clodronate liposome administration or macrophage infiltration

was blocked using a CCR2 antagonist or in CCR2-KO mice,

cardiac function was improved in mice challenged with

isoproterenol (268).
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3.5 Metabolic cardiomyopathy

3.5.1 Diabetes mellitus
In diabetes, various pathophysiological factors contribute to the

development of cardiomyopathy, such as systemic metabolic

disturbances, inappropriate activation of the renin-angiotensin-

aldosterone system, subcellular component abnormalities,

oxidative stress, inflammation, and impaired immune modulation

(271–273). During obesity or insulin resistance, there is a notable

occurrence of macrophage polarization, particularly towards M1

macrophages, as well as activation of dendritic cells and T

lymphocytes (271, 273). Recent studies have provided evidence

suggesting that B cells have a significant impact on type 1

diabetes and its associated complications (274). High rates of

B-cell depletion have been shown to delay the progression of

disease-related pathology in non-obese type 1 diabetic mice and

new-onset patients with the disease (274).

Administration of glucagon-like peptide-1 for a duration of 5

weeks resulted in improvement in LVEF and functional status in

patients with chronic heart failure and comorbid diabetes, which

suggests that insulin resistance is implicated in the pathogenesis

of cardiomyopathy in diabetes mellitus (275). Those findings

require further investigation and are therefore not implemented

in current clinical practice.

3.5.2 Gouty myocarditis
Among metabolic entities, myocarditis causing cardiac dilation

and dysfunction with heart failure is a possible manifestation of

gout, particularly in patients with severe and untreated forms

(276). Amorphous urate crystals can deposit inside the

cardiomyocytes and induce a strong inflammatory response

associated with macrophages and cell death (276). Activation of

TLR4, NLRP3 and IL-1β in gout are known factors that drive the

pathogenesis of myocarditis (277).
3.6 Fabry disease

Fabry disease is characterized by glycosphingolipid (Gb)

accumulation in cells, leading to a proinflammatory response that

may impact disease progression and causes myocardial edema

(278). In some cases, small coronary vessels, conduction tissue

and subepicardial ganglia were infiltrated (278, 279). CD3+ T

lymphocytes were identified as the primary component of the

observed inflammatory infiltrates (278).

The chronic secretion of highly immunogenic Gb3 by affected

Fabry cells may play a key role in the initiation of immune-

mediated myocardial inflammation and subsequently cause

interstitial damage (279).
3.7 Cardiomyopathies associated with
neuromuscular diseases

The dystrophinopathies are a heterogenous group of X-linked

neuromuscular disorders associated with cardiomyopathy and
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altered cardiac immune regulation (280). In Duchenne muscular

dystrophy-associated DCM, pentraxin 3 has been shown to act as

an inflammatory mediator, facilitating the functions of

macrophages and dendritic cells and contributing to apoptosis

and necrosis (281).
4 Discussion

In this review, we provide a comprehensive summary of the

current literature on the immune landscape of myocardial

diseases specific to their causes. However, for many types of

myocarditis and inflammatory cardiomyopathy little data is

available based on histology from EMBs and there are no

corresponding translational animal models to better understand

the pathogenesis of disease.

We highlight in this review that many infections, in particular

viral, and many different chemicals/drugs are able to induce

myocarditis and inflammatory cardiomyopathy. Most of our

understanding of the mechanisms that drive the pathogenesis of

myocarditis and inflammatory cardiomyopathy or DCM was

derived from animal models.

An EMB provides a snapshot of immune cells located within

the myocardial tissue at the time of sample collection.

Furthermore, EMB does help with the definite identification of

etiologies such as giant cell myocarditis in which EMB findings

help to initiate anti-inflammatory treatment (282, 283). In giant

cell myocarditis, EMB is further utilized for prognosis estimation

(282, 283). Although being helpful in the identification of

patients who might benefit from anti-inflammatory treatment, an

EMB does not provide information about pathophysiological

processes within other areas of the heart and may not be

obtained during the peak of myocardial inflammation in the

contrary to animal models, where timing of sample collection

can be very accurately determined. Cardiac magnetic resonance

imaging (CMR) is the non-invasive gold-standard to diagnose

myocarditis. It primarily identifies edema and fibrosis rather than

directly detecting activity of inflammation. Animal models have

revealed that edema and fibrosis occur after the peak of acute

myocarditis as the disease progresses toward cardiomyopathy and

so EMBs that are obtained at the time when CMR findings

become visible are potentially capturing a later timepoint in the

pathogenesis of disease. We need to keep this in mind as we

consider pathogenic mechanisms. Additionally, investigators

testing for immune cells in EMBs may not stain for all key

immune cell types that animal models have identified to be

important in the pathogenesis of disease such as mast cells,

macrophages and neutrophils which may lead to T cells being

reported more often in EMBs.

In viral myocarditis, mast cell, macrophage and T cell

responses and cytokines released thereof dominate as drivers of

disease. The idea of innate cytokine storm-related damage to the

myocardium has been discussed as one pathogenetic mechanism

in severe COVID-19 but has long been known to be a factor in

other forms of myocarditis. The innate cell release of TNFα, IL-

1β and IL-6 as well as complement activation are well
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documented in viral and autoimmune models of myocarditis,

especially in males, where they increase acute and chronic

myocarditis (124, 129–131, 284, 285). IL-6 increased by TLR4-

released IL-1β drives T cells to a Th17 response that contributes

along with IL-1β to remodeling and fibrosis that leads to chronic

cardiomyopathy/DCM. In general, these mechanisms are also

imaginable in bacterial or toxic myocarditis, where neutrophils

augment the adaptive T cell response. Furthermore, myocarditis

associated with autoimmune diseases such as connective tissue

diseases, have a greater T and B cell/autoantibody response that

is increased by estrogen in females who primarily develop these

conditions. ICI-induced myocarditis is also dominated by an

autoimmune T cell response that is created by drugs, that

disinhibit PD-1 signaling. More research is needed to understand

the immune infiltrate in cardiovascular diseases that are not

traditionally considered as “inflammatory cardiomyopathies”,

such as HCM or arrhythmogenic cardiomyopathy.

With the growing relevance of precision medicine and cellular

therapies, it is imperative to gain a comprehensive understanding

of the precise immune mechanisms involved in myocardial

inflammation, in particular of the cytokines involved and the

patterns they form, as this knowledge can inform the development

of novel therapeutic approaches. Major gaps include the need to

obtain better clinical data on the early and chronic immune

response to various viruses, toxins and other causes of disease.

Additionally, myocarditis and chronic cardiomyopathy occur

predominantly in males and a better understanding of the role of

sex and gender differences in disease is needed. As sex influences

the levels of T and B cells as well as macrophages (20, 32, 56–58),

sex is needed to be taken into consideration when developing

targeted therapies. With the advent of new technologies that can

identify gene profiles in distinct cell populations from EMB and

animal models, a better understanding of similarities and

differences in cardiomyopathy phenotypes should emerge that will

inform novel therapy development. Thus, this review not only

provides an overview of the immune landscape in myocardial

diseases but also identifies research gaps in our understanding of

cardiac inflammation. By highlighting these gaps, we aim to

stimulate further translational investigation into the pathogenesis

of myocardial inflammation and ultimately facilitate the

development of more effective treatments.

A critical question in the field of cardiac therapeutics concerns

the identification of patients who may benefit from anti-

inflammatory therapy. To address this, new diagnostic methods

are required to enable early detection or screening for

inflammatory components in patients with heart failure, thereby

allowing for timely initiation of anti-inflammatory treatment.

Magnetocardiography (MCG) might emerge as a promising

diagnostic tool for this purpose, offering the capability to

measure the cardiac magnetic field (286–288). The interplay of

electrons and ions and the directions of their respective

movements shape the cardiac magnetic field and may deviate in

disease (286–288). Even discrete alterations within the

electromagnetic field are quantifiable, since small quantum

interference device sensors (SQUIDs) were introduced into

magnetocardiography (287, 288). It is noteworthy that obtaining
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MCG measurements require only one minute per patient (287,

288). Being a non-invasive and passive diagnostic tool,

magnetocardiography entails no side effects (287, 288) which

further renders it a potent tool with diverse possibilities for

future research and clinical applications. Currently, the utility of

MCG is being explored in screening for inflammatory

cardiomyopathy and assessing early treatment response to anti-

inflammatory treatment in respective patients (286–290).
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