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Biomechanical forces, including vascular shear stress, cyclic stretching, and
extracellular matrix stiffness, which influence mechanosensitive channels in
the plasma membrane, determine cell function in atherosclerosis. Being highly
associated with the formation of atherosclerotic plaques, endocytosis is the
key point in molecule and macromolecule trafficking, which plays an
important role in lipid transportation. The process of endocytosis relies on the
mobility and tension of the plasma membrane, which is sensitive to
biomechanical forces. Several studies have advanced the signal transduction
between endocytosis and biomechanics to elaborate the developmental role
of atherosclerosis. Meanwhile, increased plaque growth also results in changes
in the structure, composition and morphology of the coronary artery that
contribute to the alteration of arterial biomechanics. These cross-links of
biomechanics and endocytosis in atherosclerotic plaques play an important
role in cell function, such as cell phenotype switching, foam cell formation,
and lipoprotein transportation. We propose that biomechanical force activates
the endocytosis of vascular cells and plays an important role in the
development of atherosclerosis.
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1 Introduction

Atherosclerosis, as the underlying mechanism of cardiovascular and cerebrovascular

diseases, is caused by many complicated risk factors, such as lipid accumulation and

abnormal biomechanics (1, 2). These disordered microenvironments in the vasculature

result in vascular inflammation, excessive proliferation and migration, fibrosis, and

extensive necrosis, which contribute to atherogenesis and the formation of vulnerable

plaques (3). Biomechanics, as an emerging field of cell and developmental biology, is

considered as a regulator of atherosclerosis through mechanosensitive channels. A recent

study used the computed tomography angiography of human circumflex coronary artery

to construct computational simulation model and revealed a causal link between low-

density lipoprotein (LDL) transportation and wall shear stress in the coronary artery, in
Abbreviations

LDL, low density lipoprotein; VLDL, very low density lipoprotein; LDLR, low density lipoprotein receptor;
ECs, endothelial cells; LSS, Low shear stress; OSS, oscillatory shear stress; APs, adaptor proteins; oxLDL,
oxidized low-density lipoprotein; Cav1, caveolin-1; VSMCs, vascular smooth muscle cells; NO, nitric
oxide; TRP, transient receptor potential; ROS, reactive oxygen species.
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which flow patterns altered the influx and efflux of cholesterol (4).

Moreover, endocytosis regulates the transportation and

degradation of lipids and apoptotic cell debris in atherosclerotic

plaques, which controls the interaction between cells and their

microenvironment (5). Due to the important role of the

mechanical environment and membrane trafficking in vascular

dysfunction and atherosclerosis, it is important to investigate the

changes in endocytosis induced by abnormal biomechanics.

Endocytosis-mediated intracellular transport and the positive

regulation of signalling cascades are the key regulators of

cholesterol homeostasis, which play a casual role in atherogenesis

(6). Endocytosis and the subsequent intracellular itinerary are

based on the encapsulation of the fluid plasma membrane,

selective receptors and vesicle-associated proteins. This selective

route allows endothelial cells (ECs) to act as a vascular barrier to

regulate the transport of hydrophilic and hydrophobic substances

in blood and prevent harmful substances in tissues (7, 8).

Meanwhile, the influx and efflux of cholesterol are specifically

controlled by endocytosis with lipoprotein receptors including low-

density lipoprotein receptor family and scavenger receptor family

(Table 1) (6, 9). Recent studies have revealed that the scavenger

receptors-mediated transcytosis, which rely on caveolae-based

intracellular vesicles, play an important role in the delivery and

accumulation of LDL in artery (10, 11). The accumulation of LDL

in the sub-endothelial area will further stimulate excessive uptake

and exhausted metabolism of lipid in vascular smooth muscle cells

(VSMCs) and macrophages, which will result in unexpected

inflammation, polarization/phenotype transformation, autophagy

and the formation of foam cells (12, 13).

During the development of atherosclerosis, biomechanics,

including shear stress, tensile force, and stiffness, play an important

role in vascular inflammation, oxidative stress and lipid

transportation (23, 24). Low shear stress (LSS) and oscillatory shear

stress (OSS) generated by disturbed flow have been identified as

hazard factors of atherosclerosis in hypercholesterolemic mini-pigs

that correlate plaque growth with vulnerable features (25). These

LSS and OSS will result in unexpected uptake of LDL and promote

the development of atherosclerosis (26). Meanwhile, studies have

also revealed that tensile force activation of stretch-related ion

channels clinically contributes to arterial remodeling and relevant

vascular dysfunction (27, 28). Moreover, recent research has also

suggested that arterial stiffness is associated with artery
TABLE 1 Lipoprotein-binding receptors during endocytosis in vascular
cells.

Receptor Cell type Ligands relevant
to lipoprotein

References

LDLR Macrophage, EC, VSMC LDL (APOB and APOE) (14)

LRP1 Macrophage, EC, VSMC LDL (15)

LRP5/6 Macrophage, EC, VSMC LDL (16)

LRP8 Macrophage, EC VLDL (17)

VLDLR Macrophage, VSMC VLDL (18)

CD36 Macrophage, EC, VSMC LDL, HDL, acLDL,
oxLDL, VLDL

(19, 20)

LOX1 Macrophage, EC, VSMC oxLDL (21)

SR-B1 Macrophage, EC HDL, LDL, VLDL,
acLDL, oxLDL

(11, 22)
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atherosclerosis stroke in human with GWAS analysis that comprises

127,121 individuals of European ancestry (29). Thus, it is important

to discuss the relationship between biomechanics and endocytosis

in atherosclerosis.

In this review, we summarized the major types of endocytosis in

atherosclerosis, including clathrin-mediated endocytosis, caveolae-

mediated endocytosis, phagocytosis and micropinocytosis. We

then focused on the role of endocytosis in responding to

biomechanical forces and describe the signal transduction involved

in lipid transportation in the biomechanical microenvironment.

The integration of biomechanics and endocytosis might improve

our understanding of the transportation of high-risk lipoprotein

and contribute to a better understanding of the formation of

atherosclerotic plaques.
2 General mechanisms of endocytosis
in atherosclerosis

Endocytosis, as an important part of the cellular trafficking

system, is a conserved channel for internalizing molecules and

macromolecules through membrane deformation (30). The typical

process of endocytosis contains four fundamental steps: (1)

molecules specifically bind to receptors or the cell membrane; (2)

coating proteins, cytoskeleton and membrane fusion proteins are

rearranged to drive cell membrane-encapsulating molecules; (3)

molecules are encapsulated in trafficking vesicles, such as

endosomes and phagosomes; and (4) vesicles are transported to

subcellular organelles (Figure 1). Due to the entry mechanism,

endocytosis can be classified into pinocytosis and phagocytosis. The

pinocytosis can further be classified into clathrin-mediated

endocytosis and clathrin-independent endocytosis, such as caveolae-

mediated endocytosis, caveolae- and clathrin- independent

endocytosis and macropinocytosis, which can form differently sized

vesicles (31) (Figure 1). Meanwhile, some specific inhibitors are also

widely used to detect the influence of endocytosis to cell functions

(Table 2). These engulfment processes drive lipid transportation

and apoptotic cell clearance in the vasculature, which are inexorable

events in atherosclerosis (37, 38). Here, we briefly discussed the role

of different endocytosis mechanisms in atherosclerosis.
2.1 Clathrin-mediated endocytosis

Clathrin-mediated endocytosis that molecules are packaged by a

clathrin coat by clathrin triskelia based polymerization, can

internalize and transport proteins, lipids, hormones and metabolites

(39). The formation of clathrin-based vesicles requires the

recruitment of adaptor proteins (APs) on the plasma membrane to

initiate and construct clathrin-coated pits (40). Meanwhile, this

binding process of APs is mediated by transporting receptors,

plasma membrane-specific lipid phosphatidylinositol-4,5-

bisphosphate, EGFR pathway substrate 15, and epsin proteins,

which supports the assembly of clathrin-coated vesicles (41–44).

Moreover, clathrin-coated pits are scissored via the enzyme

dynamin recruited by BAR domain-containing proteins and form
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FIGURE 1

Mechanism of molecules and macromolecules trafficking through endocytosis. The putative endocytic portals in atherosclerosis mainly includes
phagocytosis, micropinocytosis, clathrin-mediated endocytosis, caveolae-mediated endocytosis. The phagocytosis and micropinocytosis are
driven by the reorganization of cortical cytoskeleton with the formation of elaborate membrane protrusions. Clathrin-mediated endocytosis and
caveolae-mediated endocytosis require the recruitment of clathrin and caveolin on plasma membrane to form “coated pit” and vesicle and
internalize cargo. The trafficking cargo will transport to endosome and lysosome. Caveolae-mediated endocytosis also regulate transcytosis in ECs
which is important for maintaining the barrier of vascular. MVB: multivesicular bodies. The schematic diagram was made by the authors using
Adobe Illustrator 2021.
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individual clathrin-coated vesicles (45, 46). Finally, the clathrin coat is

disassembled and recycled from vesicles to allow the vesicle to fuse

with endosomes (Figure 1) (47).

AP1 binds membranes enriched for phosphatidylinositol 4-

phosphate, such as the trans Golgi network, while AP2 associates

with phosphatidylinositol 4,5-bisphosphate of the plasma

membrane. At their respective membranes, AP1 and AP2 bind

the cytoplasmic tails of transmembrane protein cargo and

clathrin triskelions, thereby coupling cargo recruitment to coat

polymerization (48). Under physiological conditions, EGFR is
TABLE 2 Types and effects of endocytic inhibitors.

Inhibitor name Endocytosis type References
Dynasore Dynamin-dependent endocytosis (32)

methyl-β-cyclodextrin Caveoae-mediated endocytosis (33)

filipin Caveoae-mediated endocytosis (34)

chlorpromazine Clathrin-mediated endocytosis

Pitstop 2 Clathrin-mediated endocytosis (35)

Wortmannin macropinocytosis (36)

LY294002 macropinocytosis

Amiloride macropinocytosis
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internalized mostly by clathrin-mediated endocytosis. Growth

factor binding to EGFR accelerates its internalization through

clathrin-coated pits which is followed by the efficient lysosomal

targeting of internalized receptors and results in receptor

down-regulation. A recent study revealed that clathrin-mediated

endocytosis was involved in the uptake of oxidized low-density

lipoprotein (oxLDL) in macrophages through protease-activated

receptor trafficking (49). Moreover, knockout of espins, which

are important in clathrin-mediated endocytosis in myeloid cells,

reduced the uptake of oxLDL through LRP1 and reduced the

process of atherosclerosis (50). These results suggested that

clathrin-mediated endocytosis, as an important cargo transporter,

was involved in the progression of atherosclerosis.
2.2 Caveolae-mediated endocytosis

Caveolae, as the most abundant features in lipid rafts that

invaginate to initialize bulb-shaped caveolar pit and form

60–80 nm specialized vesicles, are considered to participate in

many biological functions, such as lipid regulation, material
frontiersin.org
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transportation, and signal transduction (51). The start and

maintenance of caveolae-mediated endocytosis rely on caveolins,

which are coated on the membrane surface of vesicles for

structural formation (52). Generically, caveolin-1 (Cav1) and

caveolin-2 are expressed in non-muscle cells, and caveolin-3 is

expressed in some smooth muscle cells, which are anchored to

the cell membrane and compose caveolae (53). Moreover, the

caveolar structure contains approximately 144 molecules of

caveolin that can bud off to construct endocytic caveolar vesicles

and fuse with the caveosome and endosome, which can transport

various cargo, such as lipid droplets and fatty acids (52, 54, 55).

Recent studies have found that caveolae-based endocytosis is

contributed to internalize LDL and VLDL in EC and

macrophages. Silence the structural protein Cav1 of caveolae in

Ldlr−/− mice will dramatically decrease the accumulation of

lipids in the vasculature and reduce atherosclerotic plaque (56,

57). Cav1 is also responded shear stress and increases flow

velocity in artery and reduces vascular inflammation and

macrophage infiltration in disturbed flow area (56). Meanwhile,

the loss of Cav1 in ECs reduces the endocytosis and transcytosis

of LDL and disturbs autophagy. However, the relationship

between autophagy and caveolae-mediated endocytosis is

mutually regulated, and the loss of one of them will affect the

functional process of the other (58, 59). Recent study has also

revealed that LDL particles are colocalized with endothelial SR-

B1 and cross endothelial cell barrier through caveolae-mediated

endocytosis (11). These results suggested that caveolae-mediated

endocytosis in vascular is closely related to the transport of LDL

in ECs and accelerating atherosclerosis.
2.3 Phagocytosis

Phagocytosis, defined as the uptake of particles larger than

0.5 μm through plasma membrane encapsulation, is important in

eliminating apoptotic cells, bacteria and other foreign materials

in macrophages and other phagocytes (60). Typically, phagocytosis

occurs in immune cells such as macrophages, monocytes,

microglia and neutrophils and is activated by specific receptors in

the cell membrane to recognize particles. Particles are then

encapsulated by a cup-shaped membrane and transported in

phagosomes, resulting in progressive degradation of cargo.

Meanwhile, non-professional phagocytes (such as epithelial cells

and ECs) also participate in the clearance of apoptotic cells and

particles through phagocytosis and are associated with the

recruiting role of macrophages (61, 62). The progression of

atherosclerosis is associated with the excessive accumulation of

apoptotic cells, including macrophages and VSMCs, and sufficient

phagocytosis, resulting in the formation of a necrotic core and

rupture plaque (63). Macrophages deactivate efferocytosis-related

signalling such as ERK5, Rac2 that involve in cytoskeleton

remodeling will lead to losing phagocytic capacity and accelerate

atherosclerotic plaque formation (64, 65). Meanwhile, lack of

phagocytosis will further promote the transition of VSMCs to

macrophage-like cells through activating KLF4 and exacerbating

the instability of atherosclerotic plaque (66). Yoko et al. found that
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blocking the “don’t eat me” molecule CD47, which is activated by

TNF-α via NFKB1 and important for avoiding phagocytosis from

phagocyte, can help macrophages to recognize foam or apoptotic

cell and stimulate efferocytosis to promote phagocytic clearance

and reduce atherosclerotic plaque (38). Furthermore, recent study

has revealed that the enhancing phagocytosis of macrophages by

CD47 relies on LRP1 to internalize during atherosclerosis. Loss

LRP1 in macrophages will decrease the blocking effect of CD47

on efferocytosis and promote the formation of necrotic core in

atherosclerotic plaque (67).
2.4 Macropinocytosis

Macropinocytosis is a non-selectively endocytic process for

engulfing fluids and particles by forming vacuole-like extensions

of the plasma membrane, which is an important route for the

degradation of lipids, proteins in the extracellular matrix and

dead cells (68). Macropincytosis, as an actin-dependent endocytic

process, starts with ruffing across and encapsulating the plasma

membrane, including protrusion, folding, and closure on the cell

surface (69). In atherosclerosis, recent studies have revealed that

macropinocytosis is responsible for engulfing LDL in

macrophages and VSMCs and contributes to the formation of

foam cells (36, 70). Meanwhile the engulfing enzyme-modified

LDL but not acetylated or oxidized LDL through calcium

dependent macropinocytosis is a potent role in forming VSMC

derived foam cell (36). These lipid-overlapping foam cells in the

vascular wall play an important role in the development of the

necrotic core and late-stage atherosclerosis.
3 Shear stress on endocytosis

Shear stress is a blood flow-generating frictional force that is

closely associated with vascular dysfunction and atherosclerosis.

Several studies have demonstrated that atherosclerotic plaque

usually emerge in near branches and bends of arteries that are

exposed to disturbed flow, generating LSS or OSS (71, 72).

These blood flow-induced vascular dysfunctions are linked to

the changes of several signalling pathways, such as Klf2/4,

Hippo–Yap–Taz, and Wnt/β-catenin, which participate in

maintaining vascular integrity and tissue homeostasis (72–74).

A recent study has revealed that shear stress not only mediates

signal transduction but also increases LDL coverage on the

endothelial glycocalyx, which controls the transportation of

LDL across the vascular wall (75). Thus, it is essential to

discuss the influence of shear stress on cell endocytosis during

atherosclerosis (Figure 2).

ECs, as the barrier of vessel and blood flow, are equipped with

various mechanosensitive channels that transfer biomechanical

signals to modulate cellular function and behaviour, such as

inflammation, endothelial-to-mesenchymal transition, and

endocytosis (2). These shear stress-sensitive signals are mostly

membrane receptors, cell‒cell junctional proteins and cell-matrix

adhesion proteins (76). Moreover, Exposure of ECs on 10 dynes/
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FIGURE 2

Flow regulation of lipoprotein uptake via endocytosis in ECs. Blood flow at branches and bends of arteries will be disturbed and generate LSS or OSS.
The unexpected OSS in artery will result vascular inflammation, oxidative stress and so on. OSS also can stimulate Ca2+ channel and Nox family to
promote Lipoprotein endocytosis in atheroprone area. Meanwhile the disturbed flow will down-regulate the expression of eNOS and further
influence the transseptal manner of ECs such as Klf2/4, Smad, Hif1, YAP/TAZ, Wntβ/-catenin. ROS: reactive oxygen species. eNOS: endothelial
nitric oxide synthase. The schematic diagram was made by the authors using Adobe Illustrator 2021.
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cm2 shear stress will result an increased endocytosis and can be

reduced by inhibiting reactive oxygen species (ROS) (77).

Meanwhile, the accumulation of NO and ROS in LSS or OSS

areas will result in the increased stabilization and expression of

Cav1, which may enhance Cav1-mediated transcytosis (78). The

surface density of caveolae in the cell membrane, which has been

implicated in haemodynamic forces, is necessary for

mechanotransduction and arterial remodelling (79). Ramírez et al.

found that Cav1 is highly expressed in the “athero-prone” area

and controls the transcytosis of LDL in atherosclerosis. Moreover,

mice lacking Cav1 expression show less accumulation of lipids in

athero-prone areas and atherosclerotic plaques (56). Our

laboratory’s recent study has revealed that LSS- and OSS-induced

ROS can promote the internalization of extracellular vesicles in

vascular ECs. We also observed that extracellular vesicles

accumulated in the artery arch that underwent LSS and OSS (80).

Abnormal shear stress can also activate multiple Ca2+ channels,

including Piezo1, P2ry2, connexin and transient receptor potential

(TRP) channels, which are considered mechanosensors and are

significantly associated with inflammation in ECs during

atherosclerosis (72, 81, 82). Meanwhile, Ca2+ influx can initiate
Frontiers in Cardiovascular Medicine 05
activity-dependent bulk endocytosis and participate in the

engulfment of LDL (83, 84).

Ongoing studies of OSS and LSS in ECs also report the role of

mechano-transduction in endocytic receptors. Due to numerous

researchers have performed transcriptome data under different

shear stress, these analyses reveal that shear stress can mediate

multiple transcriptional processes of endocytic receptors, such as

Cd36 and Scarb1 (85). The overexpression of these lipoprotein

receptors in arteries promotes the uptake of macromolecules

into cells, which participates in the formation of atherosclerosis

(6). Meanwhile, shear stress also plays an important role in the

reorganization of Cdc42-dependent actin polymerization, which

is important for LDL endocytosis (86, 87). Macrophage cortical

F-actin depolymerization is required for actin polymerization to

form a hydrolytic compartment-the lysosomal synapse, which

digests aggregated LDL via Cdc42 Rho GTPase and GEF

pathway. In summary, shear stress regulates multiple processes

of endocytosis that control the accumulation of LDL and

other macromolecules in the vasculature, thereby critically

contributing to the development of atherosclerosis near branches

and bends of arteries.
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4 Stretch and tension force on
endocytosis

ECs and VSMCs are sensitive to changes in physiological

mechanical stretch and tension force that contain circumferential

and axial stresses of approximately 100 kPa (1 × 106 dyne/cm2)

from periodical distention and relaxation in arteries (88).

Arteries under hypertension also inherit axial stress, which is

associated with blood pressure and periodic distention and

relaxation of arteries (89) (Figure 3). Meanwhile, VSMCs can be

the engine of artery showing stronger contractile ability to

generate and sustain stress on artery that is important in

maintaining vessel tone and blood pressure (102). Elastic

lamellae comprising elastin and collagens, which attaches and
FIGURE 3

Schematic diagram of EC (left) and SMC (right) responding to the high strain/s
the media and adventitia. Blood pressure is perpendicular to the artery,
Meanwhile, the physiological extension or arterial vasoconstriction deri
stretching of artery. (B) Biomechanics are sensed by varieties of membra
GPCR (90), TNF-αR (91), TGF-βR (92), IGFR (93) and NOTCH3 (94). Meanw
focal adhesion complex to response and sustain stress (95). Focal adhesion
multiple signaling transduction including ERK/MAPK (96–98), Hippo/YAP
signaling also participate in the mechano-transduction and involves in the
the authors using Adobe Illustrator 2021.
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sandwiches VSMCs in the middle through focal adhesion

complex, affects VSMCs contraction and relaxation (103, 104).

Furthermore, ECs and VSMCs subjected to cyclic stretch display

an elongated spindle morphology and show reorganization of the

cytoskeleton. Studies have defined that 5%–10% strain is the

physiological stretch, while excessive strain (15%–20%) is the

pathological stretch in artery (105, 106). The unexpected stretch

and tension force on vascular cells including ECs and VSMCs

will activate multiple signalling and result excessive proliferation,

migration and apoptosis (Figure 3) (107, 108). The VSMCs

response to cycle stretch can express integrin αVβ3, which can

inhibit ox-LDL-induced apoptosis although PINCH-1 in the

progression of atherosclerosis (109, 110). Moreover, the

cardiovascular cells response to cyclic stretch increase the
tretch and hypertension. (A) ECs are from the intima and VSMCs are form
which results in circumferential stretching and deformation of artery.
ved from VSMCs also play an important role in the circumferential
ne mechanoreceptors in artery such as PIEZO1 (28, 90), TRPC6 (90),
hile, ECs and VSCMC can connect with the extracellular matrix through
complex contain integrin and FAK bind to ECM and is associated with
(99), RhoA (100) and so on (88). Furthermore, Ca2+ and other ionic
transcriptional regulation (101). The schematic diagram was made by

frontiersin.org
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FIGURE 4

The biomechanical forces in atherosclerotic plaque. The alteration of biomechanical forces in atherosclerotic is important in plaque development and
progression. The cyclic stretch and tension force will be induced by the changes of atherosclerotic plaque, which regulate multiple cell function.
Meanwhile the changes in plaque composition and architecture also result the alteration of cell stiffness, making cell phenotype switching,
inflammation and foam cell formation. The red rectangle is highlighted the biological process under hard or soft matrix and green rectangle is
highlighted the biological process under tension force or cyclic stretch. The schematic diagram was made by the authors using Adobe Illustrator 2021.
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accumulation and update of extracellular matrix (111). These

studies suggest that normal physiological stretch and tension are

important signals for cardiovascular function and contribute to

the homeostasis and development of vessels.

Pressure-derived stretch and tension force, which derived from

the vascular deformation caused by blood pressure on the vessel

wall, can influence the transportation of albumin and LDL.

Studies have used 4 mm, 5 mm and 6 mm sleeves to restrict

vessel from in New Zealand White rabbit and pressurized at 70,

120, or 160 mm Hg blood pressure, which control the

deformation of vessel. The results showed that the accumulation

of LDL in vessel was increased between 120 and 160 mm Hg

with 5 mm sleeves, which explains the relationship between

pressure-derived stretch and atherosclerosis (112). Stretch force

also promotes the oxidation of LDL and accelerates the

accumulation of ox-LDL in VSMCs (113). Meanwhile, cells

stimulated with cyclical tensile stretch highly express the ox-LDL

receptor Lox1, which is essential for internalizing ox-LDL (114).

Moreover, membrane tension is also an important regulator of

clathrin-mediated endocytosis through controlling the formation

of clathrin-coated pits. Joseph et al. found that high tension

interrupts the process of flat membrane-to-clathrin-coated

structure transition by inhibiting the recruitment of epsin to the

plasma membrane (44). Moreover, a recent study found that

Torc2, a rapamycin-mediated protein kinase, can regulate plasma

membrane tension to affect the reorganization of the actin
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cytoskeleton and vesicle fission to endocytosis sites (115). These

results suggest that stretch and tension forces are essential for

endocytic processes that regulate the transportation of multiple

lipids and proteins in the vasculature (Figure 4).
5 Stiffness on endocytosis

Stiffness, also known as elasticity, is the mechanical force to

resist deformation and is important for cell proliferation,

migration and signal transduction. Arterial stiffness is closely

associated with degenerative and remodelling changes in the

extracellular matrix, resulting in vascular calcification,

hypertension, and atherosclerosis (116). A recent Multi-Ethnic

study with 6,814 men and women aged 45–84 years found that

high load-dependent carotid artery stiffness is associated with a

higher incidence of subclinical atherosclerosis and thus

contributes to multiple cardiovascular events, such as stroke and

hypertension (117). The stiffness of the artery is determined by

their physiological conditions during atherosclerosis, such as the

lipid core/necrotic core (1 kPa), fibrous plaque (35.5–54 kPa) and

calcification (80–300 kPa), compared with normal artery

(10–50 kPa) (118, 119). Meanwhile, the changing matrix stiffness

also mediates the mechanical signal transduction and phenotypic

transformation of vascular cells, which is closely related to cell

fate and vascular function (118, 120). Recent studies have
frontiersin.org
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TABLE 3 The influence of biomechanics on endocytosis.

Biomechanics Endocytosis Biological function References
Shear stress Caveolae-mediated endocytosis Regulate the expression of Cav1 and the distribution of caveolae (78, 79)

Clathrin-independent endocytosis Reorganize Cdc42 dependent actin polymerization and promote LDL endocytosis (86)

Endocytic receptors Regulate the expression of endocytic receptors (Cd36, SR-B1) (85)

Stretch/tension
force

clathrin mediated endocytosis Membrane tension regulate the formation of clathrin coated pits (44)

Endocytic receptors Cyclic tensile stretch regulates the expression of endocytic receptor-LOX1 (114)

Stiffness Clathrin dependent endocytosis nanostructure stiff substrate can alter cell stiffness to regulate endocytosis (123)

Endocytosis Cytoplasmic stiffness regulate cell deformability to modulate endocytosis (124)

Endocytosis Soft matrix promotes the uptake of ox-LDL in macrophages (125)

Endocytosis Matrix stiffness regulate the endocytosis of ox LDL through stimulating TRPV4 calcium permeable
channels

(127)

Caveolae-mediated endocytosis Substrate stiffness regulates the distribution of caveolae and modulates vesicular trafficking (130)
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revealed that changing matrix stiffness in the vasculature promotes

the adhesion of monocytes on ECs by enhancing the expression of

miR-126 (targeting VCAM-1) and miR-222 (targeting ICAM-1)

(121). Meanwhile, 1 kPa (soft) and 100 kPa (hard) substrate

stiffnesses also increase cholesterol efflux in VSMCs and increase

the expression of the macrophage marker CD68, suggesting that

substrate stiffness can regulate the phenotypic switching of

VSMCs (Figure 3) (122).

Endocytosis, as an important route of lipid metabolism, can

also be regulated by cell and matrix stiffness. The surface

topography of substrates regulates cell stiffness by activating

mechanical signalling pathways. Li et al. found that a

nanostructure stiff substrate can alter cell stiffness and behaviour

to enhance clathrin-dependent endocytosis through its nano-

topographical effect on integrin receptors. It has also been

revealed that cells on a glass-based nanostructure stiff substrate

respond similarly to 1 kPa soft hydrogels, which can reduce cell

stiffness and membrane tension force (123). Furthermore, the

cytoplasmic stiffness that influences deformability and membrane

invagination can modulate the endocytic ability of cells. The high

cortex stiffness of the subcellular structure will affect cell

deformability, resulting in less phagocytic ability on macrophages

(124). Because the stiffness of the necrotic core and lipid core in

atherosclerotic plaques are nearly 1 kPa, we suspect that cells in

atherosclerotic plaques will engulf more lipoprotein and

apoptotic cells, resulting in the formation of foam cells.

A recent study revealed that macrophages prefer to take up

native LDL and ox-LDL on 1 kPa soft substrates but with no

difference in proliferative activity on soft and stiff substrates in

an inflammatory microenvironment (125). However, Li et al.

found that macrophages on soft 4 kPa PA hydrogels promote cell

apoptosis and have less ox-LDL phagocytosis than those on

30 kPa substrates (126). Moreover, TRPV4 calcium-permeable

channels that respond to matrix stiffness promote the

transmembrane transport of Ca2+ and regulate the endocytosis of

ox-LDL although CD36 (127). They also found that TRPV4,

known as a mechano-sensor, plays an important role in

regulating macrophage foam cell formation (127). Furthermore,

Cav1 as the important part of caveolae will stimulate by soft

substrates to modulate YAP activity through controlling actin

polymerization and mediate caveolae internalization (128). These

mechanotransducting property of Cav1 is also associated with
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cell stiffness and caveolae-based endocytosis. Le et al. discovered

that disturber flow will increase the elastic modulus of ECs by

increasing the expression of Cav1, which is positive correlation

with the uptake of oxLDL (129). Recent studies have also

revealed that the membrane tension force is important for Cav1-

based vesicular trafficking, which is regulated by the stiffness of

the extracellular matrix and depends on the mechano-

transduction of the integrin/RhoA axis to stimulate a Cav1-

dependent manner (130). These studies suggest that matrix and

cell stiffness may regulate the transportation of lipids and

proteins, which may contribute to the progression of

atherosclerosis (Table 3).
6 Endocytosis for nanomedicine in
atherosclerosis

Nanomedicine have widely applied in detecting and treating

atherosclerosis with designing multiple responded or targeting

molecule. Whereas, there are few researches focusing on the

transporting route of nanoparticles into cells during treatment.

Researchers have considered that nanoparticles firstly will closely

contact with targeted cells and induce cell membrane to generate

forces. Then, cell membrane will further encapsule nanoparticles

through endocytic route and internalize nanoparticles (131).

Thus, according to the endocytic route, we can design engineered

nanoparticles to target diseased cells or even loading nano-drugs

into living cells to assist drug delivery (132). Hu et al. design a

tetrapod needle-like PdH nanozyme that can be internalized and

storage into macrophages. By using the inflammatory response

property, macrophages as the vesicles can deliver the nanozyme

to atherosclerotic area and inhibit ROS (133). Furthermore, the

biomechanics also can influence the endocytic process. Qin et al.

have found that disturbed flow in artery will accelerate the

internalized process of nano-sized extracellular vesicles through

activating ROS in ECs (80). Due to the important role in

avoiding the phagocytosis from immunity, researchers have used

macrophages-membrane to encapsule nanoparticles and can

efficiently and safely inhibit the progression of atherosclerosis

(134). Thus it is important to develop nanomedicine based on

the mechanism of intracellular endocytosis.
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7 Discussion

The mechano-environments of atherosclerotic plaques are

complex and involve multiple factors for vascular homeostasis that

control cell transcription and biological function. Endocytosis is a

fundamental process in which vascular cells internalize nutrients,

lipids and other molecules. However, the unexpected endocytosis

of lipids and inflammatory molecules accelerates atherosclerosis

via lipid accumulation and the formation of foam cells (56, 135).

It is urgent to fully elucidate the interactions between

biomechanical force and vascular endocytosis. Recent studies of

the single-cell transcriptome and functional screening of

membrane receptors have already revealed the role of

biomechanics in vascular cell endocytosis in atherosclerosis. They

presented a comprehensive single-cell atlas of all cells in the

carotid artery under d-flow, identified previously unrecognized cell

subpopulations and gene expression signatures. Long-term

exposure of ECs to low laminar shear stress leads to enhanced

Endoglin expression and endocytosis of Endoglin in Cav1-positive

early endosomes, highlighting Cav-1 vesicles as a SMAD signaling

compartment in cells exposed to low atheroprone laminar shear

stress (85, 136). However, a challenge remains regarding how the

signal transduction of biomechanical force to endocytosis in

atherosclerosis is regulated via different pathways, responsive

molecules and endocytosis-related proteins. Nevertheless, some

researchers have explored whether biomechanical force regulates

multiple pathways that are associated with mechanosensitive

transcription factors that typically participate in the transcription

of lipoprotein-transported proteins (137, 138). Moreover, cells are

prefer to engulfing stiff nanoparticles which can easily achieve full

wrapping (131). The size and stiffness of LDL also will decrease in

acidic condition or oxidation which suggests cells may hard to

engulf LDL particles (139, 140). Therefore, it is important to

identify novel mechanosensitive pathways and dynamic processes

of endocytosis in arteries.

The material transported by endocytosis is also essential for

nanomedicine, which provides a targeted route for nanoparticles

to enter and deliver cargo in cells. Due to the intracellular delivery

of nanoparticles relying on vascular physiology, microenvironment

and cell phenotype, it is important to select and design suitable

nanomaterials to deliver drugs. Several studies of nanomedicine

have found that the accumulation of nanoparticles in cells is

influenced by the biomechanical environment in the vasculature.

The engulfment of nanoparticles is associated with the shear stress

of the vessels, and physiological changes in ECs under disturbed

flow increase the accumulation of nanoparticles (141). Meanwhile,

disturbed flow inducing oxidative stress can also promote the

uptake of nanoscale materials (80). This flow-dependent

accumulation is important for drug delivery during atherosclerosis,

which is usually present at the vascular branch and downstream of

curved regions. Researchers have also found that physiological

cyclic stretch promotes the internalization of silica nanoparticles,

which is related to cell stress and exocytotic events (142).

Moreover, the changes in plasma membrane morphology by cyclic

stretch will affect the distribution of actin and reduce the
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internalization of nanoparticles in VSMCs (143). Thus,

understanding the role of nanoscale materials in endocytosis is

important for investigating intracellular delivery and providing

more targeted points for nanomedicine.

Overall, biomechanical force is an essential feature to regulate

endocytosis that accommodates molecule and macromolecule

trafficking and lipid metabolism in atherosclerosis. Endocytosis is

not only important for nutrient uptake but also a primary

route by which lipid particles enter cells. Here, we summarized

the main endocytic process in atherosclerosis and described

the interaction role of biomechanics and endocytosis in

atherosclerosis. A consistent conclusion from these studies is that

the changing biomechanics of the vasculature will result in

disordered endocytosis, which is typically associated with

lipoprotein transportation. Therefore, further analysis of

pathophysiological endocytosis under biomechanical force will

improve our understanding of the development of atherosclerosis

and lead to the discovery of new therapeutic drugs and targets

in atherosclerosis.
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