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Several regression-based models for predicting outcomes after acute
myocardial infarction (AMI) have been developed. However, prediction models
that encompass diverse patient-related factors over time are limited. This
study aimed to develop a machine learning-based model to predict
longitudinal outcomes after AMI. This study was based on a nationwide
prospective registry of AMI in Korea (n= 13,104). Seventy-seven predictor
candidates from prehospitalization to 1 year of follow-up were included, and
six machine learning approaches were analyzed. Primary outcome was defined
as 1-year all-cause death. Secondary outcomes included all-cause deaths,
cardiovascular deaths, and major adverse cardiovascular event (MACE) at the
1-year and 3-year follow-ups. Random forest resulted best performance in
predicting the primary outcome, exhibiting a 99.6% accuracy along with an
area under the receiver-operating characteristic curve of 0.874. Top 10
predictors for the primary outcome included peak troponin-I (variable
importance value = 0.048), in-hospital duration (0.047), total cholesterol
(0.047), maintenance of antiplatelet at 1 year (0.045), coronary lesion
classification (0.043), N-terminal pro-brain natriuretic peptide levels (0.039),
body mass index (BMI) (0.037), door-to-balloon time (0.035), vascular
approach (0.033), and use of glycoprotein IIb/IIIa inhibitor (0.032). Notably,
BMI was identified as one of the most important predictors of major
outcomes after AMI. BMI revealed distinct effects on each outcome,
highlighting a U-shaped influence on 1-year and 3-year MACE and 3-year all-
cause death. Diverse time-dependent variables from prehospitalization to the
postdischarge period influenced the major outcomes after AMI. Understanding
the complexity and dynamic associations of risk factors may facilitate clinical
interventions in patients with AMI.
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1 Introduction

Cardiovascular disease is a major health burden globally,

resulting in approximately 17 million deaths annually. It also

contributes to 10% of the global disease burden (1, 2). Ischemic

heart disease is the single most common cause of cardiovascular

death and overall mortality worldwide (3). Interventional

strategies for ischemic heart disease have advanced in the past

three decades, and the associated clinical outcomes and mortality

rates have improved. However, the prognosis of ischemic heart

disease is variable, encompassing a variety of diverse risk factors

(4–6). The appropriate prediction of prognosis in acute

myocardial infarction (AMI) is crucial for proper clinical

decision-making at an individual patient level. Appropriate

prediction is important for the alleviation of expenditures and

effective distribution of resources. Over the last two decades,

several prognosis predicting models for AMI patients have been

introduced, which reflect numerous patient-level risk factors

(7, 8). However, a systematic predictive model that comprehends

various risk factors across different time periods—namely

prehospitalization variables, in-hospital events, procedural results,

and postdischarge variables—is lacking. This is especially true in

the prediction of long-term outcomes following AMI events.

Machine learning identifies the underlying patterns from large

volumes of datasets and can facilitate effective predictions (9–11).

Machine learning-based algorithms have led to the development

of prediction models that integrate multiple patient-related

variables. However, conflicting results have been reported

regarding the efficacy of machine learning-based algorithms in

predicting clinical outcomes after cardiovascular events (12, 13).

Therefore, this study aimed to develop a machine learning-based

prediction model that estimates longitudinal clinical outcomes,

including mortality and major adverse cardiovascular event

(MACE), after AMI. The study also investigated the performance

of various machine learning-based algorithms.
2 Materials and methods

2.1 Participants and variables

This study was based on a nationwide, prospective,

observational registry of AMI in South Korea (KAMIR-NIH).

The KAMIR-NIH registry was established across 20 tertiary

centers equipped for coronary interventions, spanning from

November 2011–December 2015 (14). The KAMIR-NIH registry

consists of 13,104 patients with AMI and their 3-year follow-up

clinical outcomes. The protocols of the KAMIR-NIH conformed

to the principles of the Declaration of Helsinki and were

approved by the institutional review boards of each center

(CNUH-2011-172). Written informed consent was obtained from

each patient or legal representative. All data were collected

through electronic case report forms in a data management

system established by the Centers for Disease Control and

Prevention, Ministry of Health and Welfare, Republic of Korea
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(iCReaT Study No. C110016; KCT-0000863). A detailed

protocol and additional information about data collection for the

KAMIR-NIH registry have been previously published (14, 15).

The primary outcome was defined as all-cause death at 1 year

of follow-up. The secondary outcomes included five dependent

variables: (1) cardiovascular death at the 1-year follow-up, (2)

MACE at the 1-year follow-up, (3) all-cause death at the 3-year

follow-up, (4) cardiovascular death at the 3-year follow-up, and

(5) MACE at the 3-year follow-up. The 3-year outcomes were

confined to any events that occurred by the 3-year follow-up

without occurring at the 1-year follow-up. Death was classified as

cardiovascular in origin if no other non-cardiac causes were

identified. MACE was defined as a composite outcome requiring

clinical intervention, including myocardial infarction, repeat

percutaneous coronary intervention (PCI) of target or non-target

vessel revascularization, coronary artery bypass graft, stent

thrombosis, cerebrovascular accident (ischemic stroke or

hemorrhagic stroke), and re-hospitalization due to heart failure

aggravation. Seventy-seven independent variables were included

to predict outcomes derived from various time periods:

prehospitalization, in-hospitalization, during coronary

intervention, and postdischarge (Supplementary Table S1). Data

for predicting outcomes in the candidates comprised

demographic, health, and treatment information, including

procedural factors such as coronary angiography and PCI.
2.2 Statistical analysis

Six machine learning approaches (artificial neural network,

decision tree, logistic regression, naïve Bayes, random forest, and

support vector machine) were used to predict all-cause death,

cardiovascular death, and MACE at the 1-year and 3-year follow-

ups (16–19). The limited-memory Broyden–Fletcher–Goldfarb–

Shanno algorithm was used for the optimization of the artificial

neural network, and the number of neurons was 10 for each of

its two hidden layers. The random forest employed 1,000 trees

without imposing a maximum depth.

A decision tree comprises three elements: a test on an

independent variable (intermediate note), an outcome of the test

(branch), and the value of the dependent variable (terminal

node). A naïve Bayesian classifier performs classification based

on Bayes’ theorem. In contrast, a random forest is a collection of

many decision trees, employing majority votes on the dependent

variable (bootstrap aggregation) (16). Meanwhile, a support

vector machine estimates a group of support vectors, forming a

line or space known as a hyperplane. This hyperplane effectively

separates data by maximizing the gap between various

subgroups. Lastly, an artificial neural network consists of

neurons, which are information units interconnected

through weights (16).

Data on 9,661 observations with complete information were

randomly divided into training and validation sets using a 75:25

ratio (7,246 vs. 2,415). Accuracy, which quantifies the ratio of

correct predictions among the 2,415 observations, was employed

as a standard for validating the models. The area under the
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receiver-operating-characteristic curve (AUC) was the other

performance indicator in this study. Sensitivity, specificity, and

the F1 score were taken into consideration to enhance the

understanding of accuracy. Random forest variable importance,

defined as the contribution of a certain variable to the

performance of the random forest, was used to examine the

major predictors of the six dependent variables.

Further analysis of SHapley Additive exPlanations (SHAP) values

was adopted to illustrate the relative attribution of independent

variables to each outcome. The SHAP value of a predictor for a

participant measures the difference between what the random

forest predicts for the probability of the death/event with and

without the predictor. These are described as SHAP summary

plots. The SHAP dependence plot for a predictor registers a

relationship between the value of the predictor and its SHAP value.

For rigorous analysis, the random split and examination were

iterated 50 times. The ensuing average was then employed for

external validation (18, 19). Python (CreateSpace: Scotts Valley,

2009) was employed for the analysis between December 15, 2021,

and May 15, 2022.
3 Results

A total of 13,104 patients were enrolled in the KAMIR-NIH

registry, and from this cohort, 9,661 patients with data on

dependent and independent variables were further selected

(Figure 1). Among them, 8,806 patients with 3-year follow-up

data were analyzed for the 3-year outcome prediction. For the

9,661 patients included in the 1-year outcome analysis, the mean
FIGURE 1

Flowchart of the study process. KAMIR-NIH, Korean Acute Myocardial Infa
decision tree; LR, logistic regression; NB, naïve Bayes; RF, random forest; S
adverse cardiovascular event; SHAP, shapley additive explanations.
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age of onset was 62.6 ± 12.2 years and 2,297 (23.8%) were female

(Table 1). ST-elevation myocardial infarction was diagnosed in

4,975 patients (51.5%). Cardiogenic shock was diagnosed in 576

(6.0%) patients, and extracorporeal membrane oxygenation was

applied in 24 patients (0.2%). With respect to procedures, 9,016

patients (93.3%) underwent PCI, whereas 612 patients (6.3%)

received balloon angioplasty only (patients without coronary

angiography data were excluded from the analysis). Similar

clinical characteristics were observed in the study population

included in the 3-year outcome analysis (Supplementary

Table S2). During the 1-year follow-up, 35 patients (0.4%) died,

with 20 (0.2%) deaths attributed to cardiovascular causes.

Moreover, MACE occurred in 314 patients (3.3%). During the

3-year follow-up, 144 patients (1.6%) died, with 79 (0.9%)

classified as cardiovascular deaths, and MACE occurred in 254

patients (2.9%, Supplementary Table S2).

For the primary outcome, the random forest algorithm

showed best performance, achieving an AUC of 0.874 and an

accuracy of 99.6% (Figure 2, Table 2, Supplementary Figure S1).

The consistent excellence of the random forest algorithm carried

over to the secondary outcomes, surpassing the performance of

logistic regression.

Identified predictors of 1-year all-cause death included peak

troponin-I (variable importance value = 0.048), in-hospital

duration (0.047), total cholesterol (0.047), maintenance of

antiplatelet at 1 year (0.045), coronary lesion classification

(0.043), N-terminal pro-brain natriuretic peptide levels (0.039),

body mass index (BMI) (0.037), door-to-balloon time (0.035),

vascular approach (0.033), and use of glycoprotein IIb/IIIa

inhibitor (0.032, Figure 3A). For the 3-year follow-up, predictors
rction-National Institutes of Health; ANN, artificial neural network; DT,
VM, support vector machine; CAG, coronary angiography; MACE, major
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TABLE 1 Baseline characteristics of the study participants in the 1-year
outcome analysis.

Variables Total
(n = 9,661)

Prehospital variables
Age, years 62.6 ± 12.2

Female sex 2,297 (23.8)

Body mass index (kg/m2) 24.1 ± 3.2

Smoking status

Current smoker 4,085 (42.3)

Hypertension 4,727 (48.9)

Diabetes mellitus 2,580 (26.7)

HbA1c (%) 6.3 ± 1.2

Use of insulin 204 (2.1)

Dyslipidemia 1,125 (11.6)

Baseline low-density lipoprotein level (mg/dl) 113.8 ± 36.9

Baseline high-density lipoprotein level (mg/dl) 42.6 ± 11.1

Baseline triglyceride level (mg/dl) 134.4 ± 110.6

Baseline total cholesterol level (mg/dl) 180.7 ± 44.0

Previous history of myocardial infarction or angina 1,333 (13.8)

Previous history of PCI or CABG 974 (10.1)

Previous history of heart failure 92 (1.0)

Previous history of cerebrovascular accident 570 (5.9)

Family history of coronary artery disease 669 (6.9)

In-hospital variables
Typical chest pain 8,634 (89.4)

Dyspnea 1,991 (20.6)

Killip class

I 7,949 (82.3)

II 757 (7.8)

III 555 (5.7)

IV 400 (4.1)

STEMI 4,975 (51.5)

Anterior myocardial infarction 3,710 (38.4)

Atrioventricular block (2nd degree or more) 82 (0.8)

Atrial fibrillation 270 (2.8)

Ventricular tachycardia or ventricular fibrillation 367 (3.8)

New-onset heart failure 295 (3.1)

Initial cardiac arrest 447 (4.6)

Cardiogenic shock 576 (6.0)

Use of extracorporeal membrane oxygenation 24 (0.2)

Systolic blood pressure (mmHg) 131.2 ± 28.4

Diastolic blood pressure (mmHg) 79.5 ± 17.4

Heart rate 77.4 ± 18.1

Peak creatine-kinase myoglobin level (ng/ml) 112.8 ± 143.1

Peak troponin-I level (ng/ml) 43.8 ± 99.2

NT-proBNP level (pg/ml) 1,152.4 ± 5,003.7

Hemoglobin level (g/dl) 14.0 ± 1.9

Creatinine level (mg/dl) 1.0 ± 0.9

C-reactive protein level (mg/L) 0.8 ± 4.3

Left ventricular ejection fraction (%) 52.6 ± 10.3

Regional wall motion index 1.3 ± 0.3

In-hospital duration (d) 5.0 ± 3.2

Procedural variables
Onset-to-door time (h) 23.5 ± 124.4

Door-to-balloon time (h) 19.5 ± 408.9

Onset-to-balloon time (h) 43.1 ± 428.6

Vascular approach (transfemoral/radial

Transfemoral 5,880 (60.9)

Transradial 3,670 (38.0)

Both 111 (1.1)

Culprit lesion

Left anterior descending 4,527 (46.9)

Left circumflex 1,687 (17.5)

(Continued)

TABLE 1 Continued

Variables Total
(n = 9,661)

Right coronary artery 3,270 (33.8)

Left main 177 (1.8)

Coronary lesion classification

A 127 (1.3)

B1 1,132 (11.7)

B2 3,660 (37.9)

C 4,742 (49.1)

Initial TIMI flow of culprit lesion

0 4,488 (46.5)

1 1,072 (11.1)

2 1,508 (15.6)

3 2,593 (26.8)

Post-PCI TIMI

0 23 (0.2)

1 24 (0.2)

2 227 (2.3)

3 9,387 (97.2)

Stent or balloon

None 33 (0.3)

Stent 9,016 (93.3)

Balloon 612 (6.3)

Number of stents 1.3 ± 0.8

Total stent length (mm) 27.5 ± 15.4

Stent generation 3.1 ± 0.4

Bare metal stent 645 (6.7)

First generation 228 (2.4)

Second generation 814 (8.4)

Staged PCI 7,974 (82.5)

Thrombus aspiration 941 (9.7)

Use of glycoprotein IIb/IIIa inhibitor 2,422 (25.1)

Use of intra-aortic balloon pump 1,509 (15.6)

Use of IVUS or OCT 196 (2.0)

Post-discharge variables 2,156 (22.3)

P2Y12 inhibitor at discharge

None 81 (0.8)

Clopidogrel 6,545 (67.7)

Prasugrel 1,092 (11.3)

Ticagrelor 1,943 (20.1)

Beta-blocker at discharge 8,403 (87.0)

Renin-angiotensin system inhibitor at discharge 8,004 (82.8)

Statin use at discharge 9,215 (95.4)

Use of high-intensity statin at discharge 2,759 (28.6)

MACE at 6 months 343 (3.6)

Maintenance of antiplatelet at 12 months

Dual antiplatelet 6,890 (71.3)

Mono antiplatelet 2,615 (27.1)

No antiplatelet 156 (1.6)

Maintenance of beta-blocker at 12 months 7,672 (79.4)

Maintenance of renin-angiotensin system inhibitor at
12 months

7,215 (74.7)

Maintenance of statin at 12 months 9,042 (93.6)

Outcomes
All-cause death 35 (0.4)

Cardiovascular death 20 (0.2)

MACE 314 (3.3)

NT-proBNP, N- terminal brain natriuretic peptide; PCI, percutaneous coronary

intervention; CABG, coronary artery bypass graft; STEMI, ST-elevation myocardial

infarction; MACE, major adverse cardiovascular event; TIMI, thrombolysis in

myocardial infarction; IVUS, intravascular ultrasound; OCT, optical coherence

tomography.
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FIGURE 2

Model performance of machine learning algorithms and logistic regression. (A) Model performance for 1-year follow-up data. (B) Model performance
for 3-year follow-up data. AUC, area under the receiver-operating characteristic curve; LR, logistic regression; DT, decision tree; NB, naïve Bayes; RF,
random forest; SVM, support vector machine; ANN, artificial neural network; MACE, major adverse cardiovascular event.

Jeong et al. 10.3389/fcvm.2024.1340022
of all-cause death included statin use at discharge (0.051), sex

(0.043), BMI (0.040), use of glycoprotein IIb/IIIa inhibitor

(0.038), in-hospital duration (0.038), NT-proBNP (0.036),

coronary lesion classification (0.036), total cholesterol (0.036),

door-to-balloon time (0.035), and peak troponin-I (0.034,

Figure 3B). The importance ranking of BMI stayed within the

top seven predictors for all outcomes, except for the prediction
TABLE 2 Model performance of machine learning algorithms and logistic
regression.

Outcome 1-year 3-year

Accuracy AUC Accuracy AUC

Cardiovascular Death

Model
Logistic Regression 0.9976 0.6562 0.9908 0.7381

Decision Tree 0.9956 0.5575 0.9797 0.5134

Naïve Bayes 0.9205 0.7048 0.8478 0.7481

Random Forest 0.9977 0.8811 0.9909 0.7820

Support Vector Machine 0.9975 0.6803 0.9909 0.5041

Artificial Neural Network 0.9976 0.5279 0.9907 0.6439

All-Cause Death

Model
Logistic Regression 0.9960 0.6664 0.9827 0.7606

Decision Tree 0.9924 0.5532 0.9642 0.5219

Naïve Bayes 0.8827 0.7552 0.8247 0.7670

Random Forest 0.9962 0.8738 0.9830 0.7857

Support Vector Machine 0.9967 0.6258 0.9830 0.5352

Artificial Neural Network 0.9961 0.6409 0.9826 0.6576

MACE

Model
Logistic Regression 0.9670 0.6059 0.9712 0.5907

Decision Tree 0.9304 0.5208 0.9375 0.5163

Naïve Bayes 0.8074 0.6708 0.8412 0.6636

Random Forest 0.9671 0.6843 0.9712 0.6560

Support Vector Machine 0.9673 0.6019 0.9712 0.4818

Artificial Neural Network 0.9666 0.5466 0.9710 0.5896

AUC, area under the curve; MACE, major adverse cardiovascular event.
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of 3-year MACE, where it dropped to the 14th position. Further

details based on the random forest algorithm are provided in

Supplementary Tables 3, 4.

The SHAP summary plots depicting the random forest’s

attributions are represented in Supplementary Figure S2. To

illustrate, when examining 1-year cardiovascular death, the SHAP

values for BMI range from −0.0009 (minimum) to 0.0287

(maximum), with a median value of 0.0139. In addition, including

the predictor BMI in the random forest model resulted in a 1.39%

increase in the probability of experiencing cardiovascular death

during the 1-year follow-up, particularly for a participant at the

median level. Interestingly, the impact of BMI exhibited a varied

pattern across different outcomes, elucidated through the SHAP

dependence plots showcased in Figure 4. For instance, in the

context of 3-year MACE (Figure 4F), as the BMI value increases,

its corresponding SHAP value traces a U-shaped trajectory,

signifying a sequence of decline followed by elevation. This

distinctive pattern is exemplified by the interplay between blue

and red dots representing low and high C-reactive protein levels,

respectively. Additionally, a noticeable correlation emerges between

BMI and C-reactive protein levels in terms of their SHAP values

for MACE at the 3-year follow-up.
4 Discussion

Based on a nationwide prospective registry of AMI patients,

we developed a machine learning-based prediction model that

estimates major long-term outcomes after AMI. The main

findings from this study could be summarized as follows

(Figure 5). First, the machine learning-based algorithms,

especially the random forest approach, outperformed the

conventional logistic regression-based algorithms in predicting

the outcomes after AMI. In particular, the random forest

model’s prediction of the primary and secondary outcomes of

cardiovascular death at 1-year resulted in outstanding

performance (with AUC values of 0.874 and 0.881,
frontiersin.org
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FIGURE 3

Predictors for 1-year and 3-year all-cause death as determined by random forest analysis. (A) Top 30 predictors for 1-year all-cause death based on
random forest variable importance. (B) Top 30 predictors for 3-year all-cause death based on random forest variable importance. NT-proBNP, N-
terminal pro-brain natriuretic peptide; MACE, major adverse cardiovascular event; PCI, percutaneous coronary intervention; VI, variable importance.

FIGURE 4

Random forest SHAP dependence plots: body mass index. (A) All-cause death at 1 year. (B) Cardiovascular death at 1 year. (C) MACE at 1 year. (D) All-
cause death at 3 years. (E) Cardiovascular death at 3 years. (F) MACE at 3 years. MACE, major adverse cardiovascular event; PCI, percutaneous coronary
intervention; CABG, coronary artery bypass graft, SHAP, shapley additive explanations.

Jeong et al. 10.3389/fcvm.2024.1340022
respectively). Second, diverse patient-related factors from

different time periods were included to predict outcomes. The

factors used were (1) prehospital variables (demographic factors

and comorbidities), (2) in-hospital variables (laboratory markers

and clinical events during index admission), (3) procedure-

related variables (coronary lesion severity and revascularization

strategies), and (4) postdischarge variables (medications and
Frontiers in Cardiovascular Medicine 06
patient compliance). Lastly, the identified predictors did not

influence the outcomes in a uniform, linear manner, as typically

seen with conventional regression-based algorithms. The results

were nonlinear, exerting variable influences as indicated by the

SHAP values. These values effectively captured the

amalgamation of factors in the real-world scenario, reflecting

the inherent outcome variability.
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FIGURE 5

Overview of machine learning analysis of clinical outcomes after AMI. Based on a nationwide AMI registry from Korea, machine learning analysis was
performed to predict clinical outcomes after AMI. The analysis encompassed a wide range of patient-related factors, spanning from prehospitalization
to postdischarge variables (Left). The random forest algorithm demonstrated the best predictive performance (Right, top). The identified predictors
demonstrated nonlinear, variable influences (SHAP analysis) that reflected the complex interplay of multiple factors in real-world scenarios (Right,
bottom). AMI, acute myocardial infarction; KAMIR-NIH, Korean acute myocardial infarction-national institutes of health; ANN, artificial neural
network; DT, decision tree; LR, logistic regression; NB, naïve Bayes; RF, random forest; SVM, support vector machine; MACE, major adverse
cardiovascular event; CAG, coronary angiography; PCI, percutaneous coronary intervention; SHAP, shapley additive explanations; NT-proBNP,
N-terminal pro-brain natriuretic peptide.
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4.1 Predictors of cardiovascular outcomes
after AMI

The predictors of the 1-year and 3-year outcomes did not reflect

significant differences in their characteristics. Specifically, the

prehospital, in-hospital, postdischarge, and procedural factors

demonstrated close associations with both the 1-year and 3-year

outcomes following AMI. Among these risk factors spanning

different time periods, the in-hospital risk factors and procedure-

related factors accounted for approximately two-thirds of the top

30 predictors for all outcomes. This trend was even more

pronounced in the context of the 3-year outcomes. Notably,

maintenance of statin therapy at discharge emerged as the most

pivotal predictor of the 3-year outcome. This finding implies that

after acute revascularization of coronary lesions, the maintenance

of potent lipid-lowering therapies becomes a crucial therapeutic

strategy that significantly impacts long-term outcomes after AMI.

Furthermore, among the various predictors, BMI was identified as

one of the most powerful predictors of outcomes after AMI.

However, BMI did not exert a uniform influence on the outcomes.

This phenomenon is further discussed in detail in the following.
4.2 Prediction models in AMI

Several predictive models to assess mortality after AMI have

been introduced in the past two decades, and most have been

based on conventional regression-based algorithms (7, 8, 20).

Among these, the thrombolysis in the myocardial infarction
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(TIMI) risk score and global registry of acute coronary events

(GRACE) risk score have emerged as robust prediction scores

(7, 20). These scores were formulated during the early phase of

development of PCI and are tailored to predict short-term

mortality (30 days to 6 months) after AMI. They encompass

simple predictors of in-hospital variables, such as age, blood

pressure, and electrocardiographic findings. Both of these scores

were constructed using substantial populations of AMI cases

during an earlier period and subsequently validated successfully

with validation cohorts. However, the predictive performances of

the TIMI and GRACE risk scores are relatively low (with AUC

values of 0.746 and 0.75, respectively), and their applicability

may be limited due to the evolution of therapeutic strategies for

coronary revascularization and medical therapy.

Recently, several prediction models employing machine

learning algorithms have been developed to predict mortality in

AMI patients. One machine learning-based model, utilizing data

from the previous KAMIR registry (2006–2013), exhibited a fair

discriminative power (AUC 0.915) in predicting 1-year mortality

after AMI (8). This model incorporated both in-hospital and

procedural variables as predictor candidates. In addition, it also

reflected unmodifiable risk factors or initial clinical factors as

important predictors of 1-year mortality (such as age, left

ventricular ejection fraction, initial Killip class, BMI, initial

creatinine, and low-density lipoprotein levels). Similarly, a more

recent machine learning-based risk stratification model (the

PRAISE score) also demonstrated remarkable performance in

predicting 1-year all-cause death after acute coronary syndrome

(AUC 0.82 for internal validation, 0.92 for external validation)

(21). The PRAISE score encompasses eight predictors of 1-year
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all-cause death, including left ventricular ejection fraction, age,

hemoglobin level, statin use at discharge, estimated glomerular

filtration rate, use of angiotensin-converting enzyme inhibitor or

angiotensin-II receptor blockers at discharge, previous bleeding,

and malignancy. While the specific variables investigated may

differ from those used in our study, our prediction model aligns

with the PRAISE score in two key aspects. Both models

incorporate (i) initial in-hospital variables that reflect

hypoperfusion (left ventricular ejection fraction and creatinine

and hemoglobin levels) and (ii) postdischarge medications (statin

use at discharge) as important predictors of 1-year all-cause death.
4.3 New paradigm on the obesity
paradox in AMI

We investigated the relative influence of BMI on different

outcomes using SHAP dependence plots. In this study, we

demonstrated that BMI was an important predictor of all

outcomes, with this factor consistently ranking within the top

seven predictors, except for 3-year MACE. However, the SHAP

dependence plot has revealed varying effects of BMI on each

outcome, contingent on its value. For example, the degree of

obesity represented by BMI did not significantly impact 1-year

all-cause mortality or 1-year cardiovascular mortality. However, it

did result in a U-shaped influence on 1-year and 3-year MACE

and all-cause mortality. Additionally, we explored the interplay

between BMI and outcomes in the presence of other

independent variables. For example, the absence of new-onset

heart failure during index admission exhibited a strong

association with BMI in the context of 1-year all-cause mortality,

while a low level of C-reactive protein showed a similar

association with BMI in the context of 3-year MACE.

The relative influence described by the SHAP dependence plots

partly aligns with the obesity paradox observed in coronary heart

disease and heart failure, However, it enhances the existing

paradigm by highlighting several key points: (i) obesity assessed

through BMI does not affect various cardiovascular outcomes in

a uniform manner; (ii) the degree of obesity exerts varying

degrees of influence on outcomes; and (iii) obesity is also

associated with other independent variables (22–25). The

nonlinear and dynamic impacts of BMI on different

cardiovascular outcomes complement the observed obesity

paradox in cardiovascular contexts (24, 26). Thus, this implies

the emergence of a new paradigm that reflects the uncertainties

inherent in the real world that cannot be fully explained by

conventional statistics.

In this study, we investigated a validated, multi-center registry

of AMI that includes more than 9,000 patients and developed

machine learning-based algorithms that could predict various

long-term outcomes. Large volumes of clinical variables that rise

from different times were also included. We included extensive

clinical variables spanning various time points and scrutinized

their correlations with distinct clinical outcomes. In comparison

to conventional regression-based methods, our machine learning-

based prediction algorithms showcased superior discriminatory
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capabilities across all outcomes. To the best of our knowledge,

this is the first study to investigate the dynamic interplay of

individual predictors across varying degrees, influencing diverse

outcomes. Moreover, we delved into the associated covariates

that mirrored the intricacies, variations, and uncertainties of the

real-world scenario among patients with AMI.
4.4 Limitations

This study has several limitations. First, while the original

registry reported a 1-year mortality of 4.3%, our cohort exhibited

a considerably lower incidence of 1-year mortality (0.4%). This

discrepancy could be attributed to the exclusion of variables with

missing values. Notably, individuals who did not survive across

various time intervals may have been associated with a higher

likelihood of missing data. Consequently, this approach might

have introduced a selection bias, shifting the patient cohort

towards those with milder conditions. Second, the current

prediction model has not been externally validated. Although the

training set included more than 7,000 patients that was internally

validated, validation with independent datasets may improve the

generalizability of our prediction model. Third, investigating the

variety of mechanisms that could exist between the six dependent

variables and their major predictors was beyond the scope of this

study. Limited attention has been devoted to this aspect,

underscoring the need for further exploration in this direction.

Fourth, regarding the rapidly evolving interventional strategy and

change of the clinical guidelines, prediction model based on

relatively remote data may need to be updated with recent data.

Nonetheless, KAMIR-NIH registry is a validated, nationwide

registry of AMI, and independent variables included in our

database are risk factors that still matters in clinical field. Lastly,

synthesizing diverse modes of machine learning-based methods

for different types of cardiovascular data could pioneer a new

approach in this field.
5 Conclusion

In AMI patients, numerous patient-related risk factors

spanning the prehospitalization, in-hospitalization, and

postdischarge periods exert an impact on both 1-year and 3-year

outcomes. Dynamic associations among risk factors should be

understood, and appropriate clinical interventions are needed

after AMI. Our study suggests potential role of machine

learning-based algorithm to predict adverse outcomes in patients

with AMI. Further validation based on an external cohort may

be needed to generalize the prediction model.
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