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Objectives: Prolonged intubation (PI) is a frequently encountered severe
complication among patients following cardiac surgery (CS). Solely
concentrating on preoperative data, devoid of sufficient consideration for the
ongoing impact of surgical, anesthetic, and cardiopulmonary bypass
procedures on subsequent respiratory system function, could potentially
compromise the predictive accuracy of disease prognosis. In response to this
challenge, we formulated and externally validated an intelligible prediction
model tailored for CS patients, leveraging both preoperative information and
early intensive care unit (ICU) data to facilitate early prophylaxis for PI.
Methods: We conducted a retrospective cohort study, analyzing adult patients
who underwent CS and utilizing data from two publicly available ICU
databases, namely, the Medical Information Mart for Intensive Care and the
eICU Collaborative Research Database. PI was defined as necessitating
intubation for over 24 h. The predictive model was constructed using
multivariable logistic regression. External validation of the model’s predictive
performance was conducted, and the findings were elucidated through
visualization techniques.
Results: The incidence rates of PI in the training, testing, and external validation
cohorts were 11.8%, 12.1%, and 17.5%, respectively. We identified 11 predictive
factors associated with PI following CS: plateau pressure [odds ratio (OR),
1.133; 95% confidence interval (CI), 1.111–1.157], lactate level (OR, 1.131; 95%
CI, 1.067–1.2), Charlson Comorbidity Index (OR, 1.166; 95% CI, 1.115–1.219),
Sequential Organ Failure Assessment score (OR, 1.096; 95% CI, 1.061–1.132),
central venous pressure (OR, 1.052; 95% CI, 1.033–1.073), anion gap (OR,
1.075; 95% CI, 1.043–1.107), positive end-expiratory pressure (OR, 1.087; 95%
CI, 1.047–1.129), vasopressor usage (OR, 1.521; 95% CI, 1.23–1.879), Visual
Analog Scale score (OR, 0.928; 95% CI, 0.893–0.964), pH value (OR, 0.757;
95% CI, 0.629–0.913), and blood urea nitrogen level (OR, 1.011; 95% CI,
1.003–1.02). The model exhibited an area under the receiver operating
characteristic curve (AUROC) of 0.853 (95% CI, 0.840–0.865) in the training
cohort, 0.867 (95% CI, 0.853–0.882) in the testing cohort, and 0.704 (95% CI,
0.679–0.727) in the external validation cohort.
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Conclusions: Through multicenter internal and external validation, our model,
which integrates early ICU data and preoperative information, exhibited
outstanding discriminative capability. This integration allows for the accurate
assessment of PI risk in the initial phases following CS, facilitating timely
interventions to mitigate adverse outcomes.
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1 Introduction

For cardiac surgery (CS), the sternum-median incision

represents an invasive procedure. Following surgery, cardiac

patients are typically transferred to the intensive care unit (ICU)

and placed on invasive mechanical ventilation (MV) (1). The

Society of Thoracic Surgeons (STS) defines prolonged intubation

(PI) as requiring intubation for more than 24 h (2). PI can lead

to extended ICU stays, an increased 30-day mortality rate for

CS patients (14% vs. 1%, p < 0.05), and heightened rates of

ineffective medical interventions (3). Consequently, the

development of a reliable postoperative PI prediction model and

the implementation of targeted early interventions for high-risk

patients would be immensely advantageous.

The STS has recently utilized preoperative data to construct a

scoring system for postoperative outcomes in CS, including PI (2).

However, postoperative complications encompass multiple phases.

Many existing models primarily focus on predicting outcomes

based solely on preoperative data, thus limiting their applicability

in clinical settings (4). Postoperative outcomes are influenced not

only by the patient’s preoperative medical condition but also by

the potential risks introduced by the surgical procedure itself and

the management of anesthesia (5). It is important to note the

significant role of the perfusionist in cardiac surgical procedures

(6). Failure to adequately account for the persistent impact of

surgical, anesthetic, and cardiopulmonary bypass procedures on

subsequent respiratory function can compromise the performance

of disease prediction models (7). Recent findings by Brescia

indicate that much of the variation in pneumonia incidence

remains unexplained by predictive models focused solely on the

type of CS and preoperative risk factors. These results suggest that

other unmeasured factors related to medical practices may

contribute to the observed variation (8). We hypothesize that the

intraoperative process involves complex factors that are challenging

to fully capture while standardizing data presents its own set of

difficulties. Notably, the ongoing disruption of the respiratory

system by surgery, anesthesia, cardiopulmonary bypass, and

human factors is ultimately reflected in early physiological

indicators (such as urine output, blood gases, and tissue perfusion)

and aspects of ICU management (e.g., hemodynamics, vasopressor

usage, and ventilator settings) following ICU admission (9).

The objective of this study was to integrate early ICU data

(collected within 12 h of ICU admission) with preoperative data

to develop and externally validate an explanatory and

generalizable predictive model for PI in CS patients. The goal

was to assess the risk of early respiratory system deterioration in
02
CS patients and to offer a valuable 12-h intervention window in

the initial stages for intensivists.
2 Methods

2.1 Study designs, cohorts, and outcomes

In this retrospective study, we focused on patients admitted to

the ICU following coronary artery bypass grafting (CABG), valve

surgery, or a combination of these procedures. We defined PI as

requiring intubation for more than 24 h in accordance with the

latest guidelines from the STS (2). The study design included the

development of an explainable prediction model, its external

validation, and the assessment of its predictive performance

using multiple metrics.

We utilized two publicly available ICU databases for our analysis:

the Medical Information Mart for Intensive Care (MIMIC), which

encompasses MIMIC-III CareVue and MIMIC-IV (2001–2019),

and the eICU Collaborative Research Database (eICU-CRD, 2014–

2015). The selection criteria for both databases are illustrated in

Figures 1A,B. The eligibility criteria required patients to be over 18

years of age, to have their first hospital and ICU admissions, to

have a hospital stay exceeding 48 h, to have an ICU stay exceeding

24 h, to have undergone CABG or valve surgery, and to have been

admitted to the cardiac care unit (CCU) or cardiac surgery

recovery unit (CSRU) postsurgery. Consequently, 10,857 (11.9%)

patients from MIMIC and 4,008 (16.1%) patients from 34

hospitals in the eICU-CRD were included in the study.

To construct the development set, we randomly selected half

of the patients from MIMIC and patients from six hospitals,

considering the number of patients, hospital type (teaching or non-

teaching), and region in the eICU-CRD. The hospital IDs were

used to train the model, including 122, 176, 382, 413, 416, and

420. A detailed description is presented in Supplementary Table S1.

Subsequently, the development set was divided into a training set

(80%) and a test set (20%). The remaining patients from the

additional 28 hospitals in the eICU-CRD were allocated to the

external validation datasets. The primary outcome of interest was

the occurrence of PI.
2.2 Feature construction and imputation

Patient information was collected within the initial 12-h period,

encompassing baseline data, administered treatments, laboratory
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FIGURE 1

Study design and cohorts. The study encompassed (A) 10,857 (11.9%) patients from the MIMIC database and (B) 4,008 (16.1%) patients from 34
hospitals included in the eICU-CRD. MIMIC, Medical Information Mart for Intensive Care; BIDMIC, Beth Israel Deaconess Medical Center; eICU-
CRD, eICU Collaborative Research Database; hps, hospital; CCU, coronary care unit; CSRU, Cardiac Surgery Recovery Unit; CABG, coronary artery
bypass grafting.
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results, vital signs, and clinical scores, as detailed in the

supplementary table (Supplementary Table S2). The missing ratio

for each variable was computed and is documented in

Supplementary Table S3. Variables with more than 50% missing

values were excluded from subsequent analyses.

Basic clinical and demographic information included age,

admission type, BMI, ethnicity, height, weight, gender, and pre-

ICU admission days. Categorical variables, such as CABG

surgery and valve surgery, along with vasopressor usage, were

employed to denote the treatment received. Admission type was

categorized based on whether the patient was an unplanned

admission or not. Continuous variables associated with

mechanical ventilation, including plateau pressure, tidal volume,

and positive end-expiratory pressure (PEEP), were also integrated

into the analysis. For specific laboratory parameters—such as

albumin, base excess, bicarbonate, chloride, hemoglobin,

international normalized ratio (INR), neutrophil count, partial

pressure of oxygen in the artery (PaO2), PaO2/fraction of

inspired O2ratio (FiO2), pH level, and platelet count—minimum

values were selected. Conversely, for parameters like anion gap,

bilirubin, brain natriuretic peptide (BNP), blood urea nitrogen

(BUN), creatinine, hematocrit, lactate, magnesium, partial

pressure of carbon dioxide in the artery (PaCO2), potassium,

prothrombin time (PT), partial thromboplastin time (PTT),

sodium, troponin, white blood cell (WBC) count, PEEP, plateau

pressure, and tidal volume, maximum values were utilized.

Lymphocytes were represented by the mean values. The patient’s

vital signs, encompassing mean central venous pressure (CVP),

heart rate, respiratory rate, systolic blood pressure (SBP), and

temperature, along with minimum pulse oxygen saturation

(SpO2), Glasgow Coma Scale (GCS), and maximum FiO2, were

also considered in the analysis. This included the summation of
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urine output (UO), alongside clinical scores such as Charlson

Comorbidity Index (CCI), peak pain status [evaluating pain

levels using the Visual Analog Scale (VAS)], and Sequential

Organ Failure Assessment (SOFA) score.

Missing data were imputed utilizing a random forest-based

imputation model called Multiple Imputation by Chained

Equations, implemented through the miceforest library in Python

(version 3.7). The algorithm employs a lightGBM random forest,

iteratively imputing missing values through chained equations

across a specified number of datasets within the entire training

set. The imputed data were then used to calculate missing values

for the PaO2/FiO2 ratio, BMI, and SpO2/FiO2 ratio.
2.3 Important feature selection

Feature selection was conducted through a combination of

univariate analysis and LASSO logistic regression (LR),

employing 10-fold cross-validation (CV). The variance inflation

factor (VIF) was also utilized to identify multicollinearity. The

performance of the CV was evaluated based on the area under

the receiver operating characteristic (AUROC) curve.
2.4 Predictive model construction and
evaluation

For the multivariable analysis, we employed binary logistic

regression (LR) with 10-fold CV to assess the relationship

between the selected variables and the outcome. Subsequently,

the trained model was utilized for predictions on the training,

test, and external validation sets. A forest plot was employed to
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visualize the odds ratio (OR). Various evaluation metrics, including

the receiver operating characteristic (ROC) curve, the precision–

recall (PR) curve, AUCROC, the area under the precision–recall

curve (AUPRC), sensitivity, and specificity, were applied.

Decision curve analysis (DCA) was used to evaluate the model’s

applicability across different datasets without additional

information. ROC, PR, and calibration curves were generated to

compare model performance across different ensembles. The

prediction of PI was represented visually through a nomogram

using the selected variables, with the inverse logistic regression

implemented as the nomogram function.
2.5 Statistical analysis

Continuous variables and ordinal variables were represented as

the median value and the interquartile range (IQR), while

categorical variables were presented as numbers with

corresponding percentages. Non-parametric tests were utilized for

the difference test, employing the R package gtsummary version

1.4.2 (https://cloud.r-project.org/web/packages/gtsummary) in R

software version 4.1.1. Specifically, the Kruskal–Wallis test was

employed for comparing continuous variables across two or

more samples, and the χ2 test was utilized for comparing

categorical variables. For the calculated metrics, 95% confidence

intervals (CIs) were computed through 2,000 stratified bootstrap

replications using the Python scikit-learn package version 1.0.2
TABLE 1 Characteristics of three study cohorts.

Variable Training set (6,498, 11.8%) Test
Age (years) 68.0 (60.0, 76.0)

Female, n (%) 1,935 (29.8)

BMI (kg/m2) 28.6 (25.3, 32.6)

Unplanned admission, n (%) 4,651 (71.6)

Ethnicity, n (%)
Asian 147 (2.3)

Black 234 (3.6)

Hispanic 148 (2.3)

Other 1,174 (18.1)

White 4,795 (73.8)

CCI score 4.0 (3.0, 6.0)

SOFA score 6.0 (4.0, 8.0)

CABG, n (%) 4,588 (70.6)

Valve surgery, n (%) 2,928 (45.1)

CABG and valve, n (%) 1,018 (15.7)

Vasopressor, n (%) 1,609 (24.8)

PEEP (cmH2O) 5.0 (5.0, 5.0)

Plateau pressure (cmH2O) 18.0 (14.0, 22.0)

Tidal volume (mL) 553.0 (443.0, 658.0) 5

Invasive MV (h) 6.4 (2.3, 15.1)

Invasive MV > 48 h, n (%) 390 (6.0)

VAS 4.0 (2.0, 6.0)

Pre ICU admission (days) 0.7 (0.2, 2.7)

ICU duration (days) 2.1 (1.3, 3.3)

Hospital duration (days) 7.2 (5.3, 10.5)

CCI, Charlson Comorbidity Index; SOFA, Sequential Organ Failure Assessment; ICU,

expiratory pressure; MV, mechanical ventilation; VAS, Visual Analog Scale.
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(https://scikit-learn.org/stable/) with Python software version

3.7.16. A significance level of p < 0.05 in a two-sided test was

considered statistically significant.
3 Results

3.1 Study cohorts and characteristics

The study cohorts comprised 6,498 PI patients from the

training set (event rate 11.8%), 5,429 PI patients from the test set

(event rate 12.1%), and 2,938 PI patients from the external

validation set (event rate 17.5%). Table 1 presents the

characteristics of these cohorts across different groups. The

performance stratified by outcomes is detailed for all study

cohorts in Supplementary Tables S4–S6. Patients with PI

exhibited distinctive features compared to non-PI patients,

showing tendencies to be older, possess higher BMI, undergo

valve surgery or mixed surgeries, and have elevated levels of

PEEP, plateau pressure, tidal volume setting, and CCI score.
3.2 Feature selection and model building

The LASSO LR implemented coefficient shrinkage property,

resulting in a more stable set of selected variables. The one
set (5,429, 12.1%) External validation set (2,938, 17.5%)
68.0 (60.0, 76.0) 68.0 (60.0, 77.0)

1,583 (29.2) 1,005 (34.2)

28.7 (25.5, 32.6) 28.9 (25.2, 33.6)

3,874 (71.4) 2,258 (76.9)

114 (2.1) 37 (1.3)

182 (3.4) 246 (8.4)

133 (2.4) 103 (3.5)

1,134 (20.9) 164 (5.6)

3,866 (71.2) 2,388 (81.3)

5.0 (4.0, 6.0) 3.0 (2.0, 4.0)

6.0 (4.0, 8.0) 7.0 (5.0, 9.0)

3,901 (71.9) 1,866 (63.5)

2,334 (43.0) 1,432 (48.7)

806 (14.8) 360 (12.3)

1,498 (27.6) 413 (14.1)

5.0 (5.0, 5.0) 5.0 (5.0, 5.0)

18.0 (13.0, 22.0) 20.0 (17.0, 23.0)

50.0 (406.0, 652.0) 580.0 (500.0, 664.8)

6.2 (2.0, 15.3) 7.8 (3.6, 17.6)

370 (6.8) 246 (8.4)

5.0 (3.0, 7.0) 4.0 (1.0, 5.0)

0.8 (0.1, 2.8) 0.4 (0.3, 2.2)

2.1 (1.3, 3.4) 2.1 (1.4, 3.4)

7.3 (5.4, 10.8) 7.2 (5.3, 10.5)

intensive care unit; CABG, coronary artery bypass grafting; PEEP, positive end-
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standard error rule was employed to select the lambda that

produced the most parsimonious model with comparable

performance to the best model (Supplementary Figures S1A,B).

Out of the 39 variables with non-zero coefficients, 12 were

selected. Subsequently, through the application of univariable

regression, 11 variables—excluding UO (OR = 1)—were all

found to be significantly significant (Supplementary Figure S2).

Furthermore, the VIF for all considered variables was less

than 5 (Supplementary Table S7). For the prediction of PI, the

final model was the LR model comprising 11 variables,

trained using the training set. Odds ratios from

the multivariate analysis are displayed in Figure 2. This

finding was largely consistent with the univariate analysis

results. Vasopressor usage and increases in the CCI score,

plateau pressure, lactate, SOFA score, PEEP, anion gap, CVP,

and BUN were associated with greater risks of developing PI.

In contrast, lower pH levels or VAS scores was associated

with higher PI risks. A nomogram generated using the R

package rms version 6.5.0 (https://cran.r-project.org/web/

packages/rms) is depicted in Figure 3. The nomogram was

utilized to facilitate manual PI prediction for each patient

and provide enhanced visualization of the effect of

coefficients in the LR model. Given the values of the 11

variables of an individual patient, one can obtain a prediction

score by matching each value to its corresponding scale in

the nomogram. The rms package utilizes the coefficients
FIGURE 2

Forest plot of multivariable analysis for risk factors of PI.
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of the trained LR model to compute the point scale of

the nomogram.
3.3 Predictive performance of
discrimination and calibration

The results of the LR model on the training, test, and external

validation sets are presented in Figures 4A,B, while the

corresponding 95% CIs are listed in Supplementary Table S8.

Notably, the LR model exhibited optimal performance on the test

set. These metrics collectively indicated that the model

performed effectively across all ensembles. The AUROC was

0.853 (95% CI, 0.840–0.865) in the training set, 0.867 (95% CI,

0.853–0.882) in the test set, and 0.704 (95% CI, 0.6791–0.727) in

the external validation set. Similarly, the area under the AUPRC

was 0.490 (95% CI, 0.452–0.528) in the training set, 0.521 (95%

CI, 0.481–0.561) in the test set, and 0.370 (95% CI, 0.327–0.414)

in the external validation set. Figure 4C illustrates the calibration

curve of the LR model, showcasing particularly robust calibration

on the training and test sets. However, for external validation

sets, the curves exhibited deviation at the higher end when

higher probabilities were predicted.

In Supplementary Figure S3, the DCA outputs indicated the

applicability of our model to other datasets with varying

occurrence rates. The DCAs consistently demonstrated net
frontiersin.org
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FIGURE 3

Nomogram for early predicting probability of PI. CCI, Charlson Comorbidity Index; SOFA, Sequential Organ Failure Assessment; CVP, central venous
pressure; PEEP, positive end-expiratory pressure; VAS, Visual Analog Scale; BUN, blood urea nitrogen.

FIGURE 4

Prediction performance in training, test, and external validation sets. (A) AUROCs, (B) AUPRCs, and (C) calibration curves.

Wang et al. 10.3389/fcvm.2024.1342586
benefits, surpassing both the treat-all and treat-none strategies. The

prediction model exhibited comparability to the treat-all at low

cutoff probabilities and resembled the treat-none at high cutoff

probabilities. Notably, the curve of the external validation set

displayed a slightly lower net benefit compared to the treat-all

curve when the threshold probability was <10%.
Frontiers in Cardiovascular Medicine 06
4 Discussion

This study aimed to develop and validate a predictive model for

PI, defined as requiring intubation for more than 24 h following

CS. The model was based on merged multicenter datasets from

the MIMIC and eICU-CRD. Previous studies have primarily
frontiersin.org
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focused on identifying risk factors for PI, predominantly analyzing

preoperative and intraoperative variables (4, 10). However, they

rarely incorporated early postoperative physiological data, such as

measurements taken shortly after ICU admission. Moreover,

limitations in the cohort size and external validation have

constrained the performance of existing models. To address these

gaps, we developed the first predictive model for PI after CS

utilizing early postoperative physiological data. Our study

specifically focused on utilizing readily available physiological

variables measured within 12 h of ICU admission to predict PI,

aiming to elucidate early respiratory system deterioration in

patients. Our objective was to establish a model based on

routinely collected data and provide a predictive tool that is both

effective and interpretable for surgical teams. This tool will

facilitate the early identification of high-risk patients requiring

PI, enabling timely intervention strategies (Figure 5).

In the context of “Fast-Track cardiac surgery,” early extubation

within 6 h postoperatively serves as a benchmark (11). However,

some patients may experience PI due to the disease itself,

surgical procedures, and perioperative management. Due to

variations in the definition of PI (ranging from 24 h to 14 days),

previous studies have reported incidence rates of PI after

CS ranging from 2.6% to 22.7% (3). This prolongs patient

hospitalization and increases mortality rates while also delaying

long-term functional recovery, thereby imposing a significant

medical burden on patients. For several reasons, we opted for a

24-h threshold to define PI. The latest guidelines from the STS
FIGURE 5

Comprehensive influence of intraoperative factors is ultimately reflected i
patient is admitted to the ICU. Incorporating early ICU data (within 12 h o
validated an interpretable predictive model for PI in CS patients requiring
the risk of early respiratory system deterioration in CS patients and deli
for intensivists.
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consider intubation duration exceeding 24 h as a major endpoint

following CS (2). In addition, this threshold helps us address

challenges such as slow sedation recovery, weak maintenance of

internal environmental stability, insufficient human resources,

and adherence to extubation policies and protocols across

different medical centers, all of which could contribute to PI

time. Furthermore, we posit that the study population primarily

comprises patients undergoing elective CS, whose conditions are

relatively stable compared to emergency cases. Thus, setting

excessively long thresholds (e.g., 48 h or longer) to define PI may

lead to underestimating this complication.

Facing the high complexity and collinearity of physiological

data, machine learning (ML) methods can capture the non-linear

relationship between complex data and construct predictive

models (12–14). However, challenges persist. On one hand,

predictive models are probabilistic and may inadvertently select

or deselect “risk factors” (15). Each predictive model requires

internal and external validation with patient cohorts to assess

internal stability and external generalizability (16). Limited

multicenter data studies for external validation exist, constraining

confidence in the effectiveness and generalizability of predictive

models (17). On the other hand, tools for the interpretability of

predictive models, such as feature importance ranking,

explanation of model inference, or interpretation of model

results, are lacking (18, 19). This hampers the translation of

predictive models into clinical use, undoubtedly widening the

gap in their integration into real clinical practice (17).
n the early physiologic measures and management strategies after the
f ICU admission) with preoperative data, we developed and externally
intubation for more than 24 h. Our objective was to promptly identify
neate an optimal intervention window (12–24 h after ICU admission)
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This disparity is evident in the significant difference between the

number of published prediction models in 2019 (n = 12,422) and

the number of algorithms approved for clinical use by the FDA

in 2020 (n = 130) (17). The STS risk model uses clinically

standardized data to characterize preoperative patient

comorbidities for predictive purposes (2). Different timing of the

model’s predictions provides varying risk stratification at each

stage. Most models are primarily designed to predict on a single

time point (preoperative), limiting their application in the

clinical setting (4). Cai et al. found that prediction models

incorporating both preoperative and postoperative predictors

demonstrated higher prediction accuracy than models relying

solely on preoperative characteristics (20). Models based on both

pre- and postoperative variables may offer dynamic risk

stratification to guide flexible prophylaxis. To date, no study has

predicted PI after CS by analyzing early physiological data

transferred to the ICU.

We utilized a cohort of 6,498 patients from seven hospitals in

our study to develop a model for explanatory prediction of PI based

on preoperative status and records within the first 12 h of ICU

admission. The model underwent evaluation through an internal

validation set (5,429 patients) and an external validation set

using a separate cohort (2,938 patients, 28 hospitals). In our

study, the incidence rates of PI in the training, internal

validation, and external validation cohorts were 11.8%, 12.1%,

and 17.5%, respectively, consistent with other reports (10).

Across all study cohorts, the discriminatory ability and clinical

decision-making advantages of the model were consistently

favorable (Figure 4 and Supplementary Figure S3). Disease

prediction models exhibit good discriminative ability in

predicting PI after CS. The AUROCs were 0.853 (95% CI, 0.840–

0.865) in the training set, 0.867 (95% CI, 0.853–0.882) in the test

set, and 0.704 (95% CI, 0.679–0.727) in the external validation

set. Furthermore, multivariable analysis and a nomogram were

employed to enhance the interpretability and intuitive

understanding of the model. Eleven important risk factors were

identified to early identify the high risk of PI, including plateau

pressure, lactate, CCI score, SOFA, CVP, anion gap, PEEP, VAS,

vasopressor usage, pH, and BUN. Early prediction of PI

identifies high-risk patients entering the ICU and helps clinicians

appropriately allocate intensive care resources.

Several studies have documented severe cases in which

patients experience unstable hemodynamics, necessitating the

administration of positive inotropic agents or vasopressors and

prolonged mechanical ventilation via tracheal intubation (21).

Elevated CVP has been shown to correlate with mortality,

length of stay, and duration of MV in a large heterogeneous

cohort of patients admitted to the ICU (22). The majority of

patients experiencing severe respiratory failure exhibit varying

degrees of inadequate tissue perfusion and impaired

oxygenation, ultimately resulting in increased lactate production

or anion gap, which are considered independent risk factors for

hospitalization and all-cause mortality in critically ill patients

with cardiac disease (23, 24).

Plateau pressure serves as a common metric for assessing lung

compliance. Maintaining low plateau pressures is crucial for lung-
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protective ventilation, as elevated plateau pressures may

precipitate ventilator-induced lung injury (25). In extensive

surgical investigations, Thomas Bluth and his collaborators

observed that although employing a high PEEP strategy

consistently enhanced intraoperative oxygenation and

respiratory maneuvers, it did not yield improvements in

outcomes pertaining to postoperative pulmonary complications

(26). Consequently, a recent consensus among experts suggests

that intraoperative PEEP should be capped at a low fixed level

as a standard intraoperative practice (27).

For decades, MV has been pivotal in clinical research and

practice. However, reports indicate that the 1-year

postdischarge survival rate for patients undergoing long-term

MV is below 50% (28). Assessing the risk of PI in patients is of

interest to clinicians and patients alike. While previous studies

have identified numerous risk factors (4, 10), it is important to

note that CS encompasses varied surgical techniques,

cardiopulmonary bypass methods, and surgical access types,

each exerting distinct effects on postoperative outcomes and

clinical trajectories, potentially prolonging the intubation

duration (29, 30). Furthermore, advancements in modern

cardiac anesthesia practices, such as optimized intraoperative

temperature management, fast-track anesthesia, and ventilator

protocols (31), indisputably impact the postoperative intubation

duration (9). Human factors also play a crucial role (32, 33).

For instance, patients with cardiac valve disease devoid of

underlying conditions and with satisfactory lung function are

theoretically at low risk for PI. However, cases involving

significant intraoperative bleeding or repeated aortic clamping

necessitate extended ventilatory support upon return to the

ICU after surgery, introducing bias in predictive modeling. The

cumulative effect of various factors on patient physiology

eventually influences early ICU interventions (34). In essence,

intraoperative procedures may directly or indirectly contribute

to the prolonged postoperative intubation duration (35, 36).

Regrettably, existing predictive models for postoperative cardiac

PI yield suboptimal results. Few researchers have examined the

cumulative comprehensive impact of intraoperative adverse

factors on postoperative patient outcomes. For instance, Atlas

et al. assembled 918 patients from a single center to predict

pulmonary complications occurring 24–72 h after elective

cardiac surgery, achieving an AUROC of 0.70–0.75 (37).

Building upon this, Sharma et al. employed a significantly

larger sample size of cardiac surgical patients (32,045) to

develop prediction models for prolonged ventilation

following CS, achieving an AUROC of 0.787 (38). This may

be attributed to limitations in the sample size and the

intricate physiological changes during prolonged surgery under

cardiopulmonary bypass (35).

Hence, we developed a PI prediction model by incorporating

early ICU data with the patient’s preoperative condition. This

approach allowed us to circumvent the challenges associated with

intraoperative data collection, which often yields sparse effects

and requires intricate normalization. Instead, we acknowledged

that early ICU data could indirectly capture the cumulative

impact of intraoperative interventions. Our study facilitates a
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more intuitive assessment of PI risk for patients upon ICU

admission. High risk denotes a heightened likelihood of

requiring a prolonged postoperative intubation duration,

underscoring the importance of diligently optimizing ventilation

parameters and preparing for extubation. Conversely, low risk

suggests the potential for swift extubation and liberation

from invasive ventilation, emphasizing the need for vigilance

regarding potential postoperative complications that could

impede extubation (39).

Guidelines advocating for the early liberation of patients from

invasive mechanical ventilation recommend implementing

protocols such as spontaneous breathing trials, early

mobilization, physiotherapy, and reduced sedation (40). PI

following CS may predispose patients to complications such as

dysphagia, aspiration pneumonia, and neurological issues

associated with prolonged sedation (41). Previous studies have

demonstrated that early multimodal rehabilitation intervention

programs can reduce the duration of MV after CS from 22 h to

15 h (42). Early identification of high-risk patients and timely

intervention are paramount. Therefore, the development of a

reliable postoperative PI prediction model and the

implementation of early targeted interventions for high-risk

patients would be advantageous.

Invasive mechanical ventilation plays a crucial role as a

supportive therapy for critically ill patients suffering from

respiratory failure. These patients manifest diversity in disease

etiology, pulmonary pathophysiology, and respiratory mechanics

(43). Leveraging the widespread use of electronic monitoring and

recording in high-income countries, along with the wealth of

data generated during mechanical ventilation of ICU patients,

artificial intelligence (AI) emerges as a promising avenue for

optimizing mechanical ventilation modes. Previous studies have

underscored the capacity of AI to forecast sepsis, circulatory

failure, and mortality, highlighting its potential for further

deployment in critical care settings. Notably, the development of

more robust predictive models necessitates adherence to key

conditions, listed as follows (17, 44): (a) external validation to

ensure the reliability and generalizability of predictive models

across different geographical regions; (b) calibration of predictive

models to translate model outcomes into actionable insights at

the patient level; and (c) enhancement of model interpretability

to facilitate their bedside application. This interpretability aids

physicians in the early identification of critical factors

contributing to patient complications, including modifiable

variables. Armed with such insights, clinicians can promptly

discern potential risk factors for complications and devise

evidence-based treatment strategies to mitigate them. The

implications of our findings are manifold, bearing significant

relevance for the clinical management of respiratory system

complications in CS patients and guiding future research

endeavors. Importantly, they have the potential to drive progress

in the perioperative management of CS patients, encompassing

improved preoperative optimization of high-risk individuals,

prognostication of ICU workload and subsequent hospital

expenditures, and the refinement of PI protocols tailored to high-

risk patients.
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Acknowledging that no individual predictive model can

achieve flawless risk stratification is imperative. Dependence

solely on predictors is unwarranted. Clinical expertise must be

preserved, along with the capability to identify potentially life-

threatening occurrences, to supplement these risk evaluation

instruments and guarantee superior perioperative care. The

significance of physiological measurements in the ICU and the

selected ventilatory parameters cannot be overstated and

warrants further investigation in subsequent studies.

Furthermore, additional research on causal analysis is needed

to further explore the important predictor variables found by

the data-driven model, which could further facilitate the

decision-supporting and early intervention for postoperative

rehabilitation (45, 46).
4.1 Limitation

Our study encounters several limitations. First, it assumes a

retrospective design, introducing potential selection bias in

patient recruitment and data collection. The inclusion criteria

focused solely on patients undergoing CABG or valve surgery,

potentially affecting the applicability and accuracy of the model

when extrapolating to other CS patients. Second, despite

external validation in 28 U.S. hospitals, the validation cohort

remains confined to Europe and Asia. Given that the success of

CS hinges on comprehensive team support, the existing

variations in decision-making and postoperative management

across institutions exert significant influence. Third, the

research on dynamic risk assessment models, such as the long

short-term memory-based and transformer-based models, could

potentially further improve the predictive performance of the

model and the duration of early identification. Finally, our

model exhibited poorer performance in external compared to

internal validation, possibly attributed to differing proportions

of missing data in the two cohorts. To support this conjecture,

Gupta et al. developed a risk calculator for postoperative

cardiac risk prediction based on 211,410 patients, noting a

similar decline in AUROC when externally tested (47). This

underscores the need for a thorough analysis of contributing

factors and enhancement of the generalizability of our risk-

scoring system.
5 Conclusion

Our predictive model offers both generalizability and

precision, presenting a straightforward and visual tool for

intensivists to estimate the risk of PI early in the ICU, enabling

timely intervention within a critical 12-h window. This study

serves as a proof of concept that postoperative infection

following cardiac surgery can be accurately predicted by

incorporating early ICU information with readily available

preoperative data, thereby optimizing decision-making for

patients undergoing CS with PI.
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