
PERSPECTIVE
published: 08 January 2019

doi: 10.3389/fdata.2018.00007

Frontiers in Big Data | www.frontiersin.org 1 January 2019 | Volume 1 | Article 7

Edited by:

Enrico Capobianco,

University of Miami, United States

Reviewed by:

Martin Romacker,

Roche, Switzerland

Reinhard Schneider,

University of Luxembourg,

Luxembourg

*Correspondence:

Stuart Jackson

stuart.jackson@ibm.com;

stuart.jackson@nyu.edu

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Big Data

Received: 28 August 2018

Accepted: 13 December 2018

Published: 08 January 2019

Citation:

Jackson S, Yaqub M and Li C-X

(2019) The Agile Deployment of

Machine Learning Models in

Healthcare. Front. Big Data 1:7.

doi: 10.3389/fdata.2018.00007

The Agile Deployment of Machine
Learning Models in Healthcare
Stuart Jackson*, Maha Yaqub and Cheng-Xi Li

Analytics Center of Excellence, IBM Watson Health, Ann Arbor, MI, United States

The continuous delivery of applied machine learning models in healthcare is often

hampered by the existence of isolated product deployments with poorly developed

architectures and limited or non-existent maintenance plans. For example, actuarial

models in healthcare are often trained in total separation from the client-facing software

that implements the models in real-world settings. In practice, such systems prove

difficult to maintain, to calibrate on new populations, and to re-engineer to include newer

design features and capabilities. Here, we briefly describe our product team’s ongoing

efforts at translating an existing research pipeline into an integrated, production-ready

system for healthcare cost estimation, using an agile methodology. In doing so, we

illustrate several nearly universal implementation challenges for machine learning models

in healthcare, and provide concrete recommendations on how to proactively address

these issues.

Keywords: agile, analytics engineering, continuous delivery, health informatics, machine learning

1. INTRODUCTION

Contemporary software engineering is driven by a number of key themes, such as agile
development cycles and the continuous delivery of production software (Fowler and Highsmith,
2001; Shore and Warden, 2008). Such approaches allow for neater partition of development work
related to current and future software capabilities, and help to streamline maintenance flows,
product documentation, and development team communication. Unfortunately, the continuous
deployment of predictive analytics is often hampered by poorly thought-out maintenance plans
and non-agile methods of deployment, a phenomenon experienced across widespread industries
(Demirkan and Dal, 2014), including in health informatics settings (Reeser-Stout, 2018). In this
short Perspective, we describe our team’s ongoing efforts and the lessons learned so far in the agile
deployment of a new predictive analytics model related to healthcare cost estimation. While this
model is designed for a specific use case (i.e., predicting cost in the US Medicaid population), our
integrated deployment strategy is more general, and could transfer easily to other claims-based
models.

We begin below with a brief overview of the typical challenges and maintenance issues
experienced when deploying machine learning models in health informatics settings, using
actuarial models as an example. We then describe our use of agile methods in a new actuarial
product deployment, emphasizing the hybrid nature of agile data science, the important concepts
of iteration and experimentation, and the unique challenges faced and solutions developed to fulfill
key product requirements. Along the way, we provide a high-level description of the model that
was trained and productionized, and an illustration of how internal maintenance and client use can
occur side-by-side in the integrated production codebase. Finally, we conclude by providing some

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2018.00007
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2018.00007&domain=pdf&date_stamp=2019-01-08
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:stuart.jackson@ibm.com
mailto:stuart.jackson@nyu.edu
https://doi.org/10.3389/fdata.2018.00007
https://www.frontiersin.org/articles/10.3389/fdata.2018.00007/full
http://loop.frontiersin.org/people/578186/overview
http://loop.frontiersin.org/people/644813/overview
http://loop.frontiersin.org/people/626052/overview

Jackson et al. Engineering Analytics for Health Informatics

general recommendations for hybrid development teams to
consider when tasked with developing and deploying a new
healthcare analytics product.

In passing, note that an earlier version of the research model
we deployed was developed by a separate team at IBM, and
has been described in detail in their separate methods paper
(Ramamurthy et al., 2017). As such, we refrain from discussing
this model from a deeper research or design perspective. Our
aim in this short Perspective is to describe the challenges faced
in refining and productionizing one instantiation of a research
model, and the considerations required in sustaining continuous
delivery and internal maintenance of a new healthcare analytic.
In the spirit of continuous delivery, these efforts are necessarily
ongoing.

2. ACTUARIAL MODELS IN HEALTHCARE

Accurate healthcare cost estimation is of critical importance to
medical organizations, governments, and societies at large, with
healthcare expenditures a primary drain on public resources
worldwide. The availability of reliable cost estimates for a
population can aid insurance plan administrators and other
healthcare professionals in effective resource planning, in risk
adjustment, and in developing strategies for population health
management (Duncan, 2011). A wide variety of predictive
algorithms have been developed over the years for estimating
healthcare costs from administrative claims data, including
numerous proprietary models (Winkelman and Mehmud, 2007).
These models are often tailored for very specific patient
populations, use cases, or input data needs; yet, a common
goal of such models is the prospective identification of
future high-cost claimants, often using linear or tree-based
regression methods (Meenan et al., 2003; Bertsimas et al.,
2008).

While the development of a high-quality risk model is itself
a challenge, the successful, long-term deployment of such a
model in applied settings is equally challenging, requiring careful
consideration of the potential maintenance issues that could
arise from changing industry, client, or technical needs. For
example:

• Regular (e.g., yearly) updates might be required when new
training or scoring data become available

• Irregular updates might be required when industry reference
files (e.g., ICD diagnosis codes) change

• Minor model improvements or technical corrections and bug
fixes might be required on an ad-hoc basis

• Major model improvements or new functionalities might be
required subject to evolving client needs

• Changes to deployment hardware or other architectural
constraints may need to be accommodated

Following the completion of any such maintenance task,
an additional period of code review, model retraining, and
product testing might also be necessary. Yet, the typical research
model lacks the continuously-integrated organization necessary
to efficiently handle such commonmaintenance issues. Below, we
describe how our team adopted an agile framework in deploying

a new actuarial model into production, streamlining the model
training, and production process to support effective continuous
delivery.

3. PRINCIPLES OF AGILE DATA SCIENCE

3.1. Avoiding the “Pull of the Waterfall”
Our product team was tasked with training and deploying a
new claims-based risk model, which we approached initially
from an agile framework. Agile software development practices
are now industry standard, supporting efficient methods of
collaboration and effective ways of getting work done (Fowler
and Highsmith, 2001; Shore and Warden, 2008). As the field of
data science evolves, however, it is increasingly clear that existing
agile methods will need to adapt to successfully support this
hybrid development domain (Jurney, 2017; Reeser-Stout, 2018).
For example, the typical time allowed for a research data science
project conflicts sharply with the standard agile development
cycle. This can have the effect of forcing otherwise agile predictive
analytics projects toward more sequential development cycles–
the so-called “pull of the waterfall” (Jurney, 2017). This can
be particularly problematic in healthcare research and product
work, where additional constraints are often at play (e.g., strict
data access rules).

To avoid the sequential handover of work from one group
(e.g., analytics) to another (e.g., engineering), we established early
on a hybrid development squad (Figure 1A), which facilitated the
direct interaction between data scientists, software engineers, a
quality assurance (QA) engineer, and a product owner. We also
adopted the development and deployment terminology common
in software engineering. For example, as a given development
phase was completed, our product code was scheduled to
pass first to a QA testing phase (or “TST”), then onto user-
acceptance testing (“UAT”), and only then into production.
While such terminology is somewhat foreign to many research
data scientists, these methods prove essential in a highly
collaborative, production context. In contrast, prior attempts
at formalizing methods for predictive analytics development,
such as CRISP-DM (Shearer, 2000), are too far removed from
contemporary software engineering practices, having little to say
about code deployment or collaboration across multi-functional
(and often remotely-located) teams. That being said, there is
enormous potential for the refinement of improved hybrid
agile methodologies that more smoothly integrate with standard
research science practices. Below, we describe one such hybrid
strategy that we adopted during our product deployment.

3.2. Iteration and Experimentation
Our product team actively experienced the conflict between
research and software development worlds, learning the hard
way that specifying a final production date ahead of time is
often incompatible with doing successful, agile data science
(Jurney, 2017). To overcome this conflict, we evolved a process
that roughly centered around two key ideas–iteration and
experimentation. In the spirit of agile, our iterative process
encompassed groups of tasks completed over individual three-
week sprints, often involving extremely dynamic code changes

Frontiers in Big Data | www.frontiersin.org 2 January 2019 | Volume 1 | Article 7

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Jackson et al. Engineering Analytics for Health Informatics

FIGURE 1 | The agile deployment of machine learning models in healthcare. (A) Organization of roles in our hybrid data science development squad, (B) Synthetic

illustration of how different sets of production tasks typically warranted working with claimant dataset sizes of a particular scale, from technical debugging with smaller

input datasets, to product model training with large-scale input data, (C) Schematic depicting higher-level modularization within the core model pipeline.

that ranged across the entire product pipeline. As a rule-of-
thumb, we aimed to not only have the code running end-to-
end at key iteration milestones, but more importantly, to better
understand the data flow and model behavior at key points in
the pipeline. Only then was the model pipeline deemed worthy of
intermediate delivery to other users (e.g., QA engineer).

As iterations progressed, however, the importance of parallel
experimentation quickly became apparent, both from a technical
debugging and model training perspective (Figure 1B). For
example, when building a client-facing product that deals with
medical claims data, comprehensive edge-case handling is a
particularly challenging technical issue. In our case, smaller
input datasets often included blank or missing claims data for
time ranges that the model expected (i.e., empty months), and
revealed bugs in parts of the original pipeline dealing with
the aggregation of disease and cost information. Given the
numerous time-related, cross-dependencies in the prediction
pipeline, the development of appropriate code fixes benefited
greatly from over-and-back interactions with a QA engineer,
and trial code runs with smaller datasets of varying size (e.g.,
101 or 103 claimant records). In general, experiments with
smaller dataset sizes were essential throughout development, for
performing quick, technical debugging. As the product code was
better refined, experiments on larger datasets (e.g., 105 claimant
records) allowed for deeper code and model understanding (e.g.,
parameter exploration and tuning). Finally, as a given release
date approached, production model fits were carried out on
a formally-curated, large training dataset, with up to several
million unique claimant records (Figure 1B).

3.3. Reinforcing the “Hybrid” Nature of the
Work
How successful was this hybrid agile approach from a data
science perspective? All of the data scientists agreed that this
more foundational, agile approach to development provided
clear advantages over isolated development styles, removing
crucially the need for analytics developers to deliver code
to a separate production team in a sequential fashion. The
hybrid approach was self-reinforcing, in the sense that it
encouraged all squad members to play multiple, interacting

roles throughout development. For example, while data scientists
played the major role in finalizing the core prediction model
(described in detail later), the QA and software engineers
had numerous opportunities to examine and refine this code,
providing complementary feedback which improved the overall
quality of the data science work. Likewise, while the QA
and software engineers were primarily responsible for smooth
deployment of the end-to-end pipeline (described in detail
later), the data scientists spent substantial time facilitating this
process through proper packaging and documentation of code.
This facilitated the deployment process, and again, involved
constant cross-squad interaction and feedback. The end results
were successful, iterative deployments of the full codebase into
production.

One broader advantage of this hybrid system is the ability to
more easily organize data science projects at the level of multiple
squads, thereby maximizing resource use and collaboration
potential. For example, the hybrid squad described here (aka
Mercury), worked independently of several other “planet” squads
(e.g., Jupiter), although with some higher-level direction from
a scrum master working across multiple teams. While this
type of organization is already common in traditional software
engineering environments (e.g., tribes, chapters, etc.), we believe
it requires the creation of truly hybrid squads, involving both data
scientists and software engineers, to be successful in an analytic
development context.

4. CHALLENGES IN ANALYTIC
DEVELOPMENT

4.1. Providing Multiple Model Types in One
Platform
We now describe in detail several key requirements of the
software development product, and the associated development
and coding challenges we faced. In a following subsection, we
illustrate how we tackled these problems and gauged the success
of the improved processes.

The key requirements of our analytic product related to the
functionality to provide access to multiple model results for
a single input claims dataset. Specifically, actuarial predictions

Frontiers in Big Data | www.frontiersin.org 3 January 2019 | Volume 1 | Article 7

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Jackson et al. Engineering Analytics for Health Informatics

TABLE 1 | Parameters of the twelve model variants deployed to fulfill diverse

end-user requirements.

No. Model type No. Model type

1 Concurrent, Total Cost 7 Prospective, Total Cost

2 Concurrent, Total Cost ($100k) 8 Prospective, Total Cost ($100k)

3 Concurrent, Total Cost ($250k) 9 Prospective, Total Cost ($250k)

4 Concurrent, Medical Cost Only 10 Prospective, Medical Cost Only

5 Concurrent, Medical Cost Only

($100k)

11 Prospective, Medical Cost Only

($100k)

6 Concurrent, Medical Cost Only

($250k)

12 Prospective, Medical Cost Only

($250k)

“Concurrent” models predict annual healthcare costs for the same 12-month period as

the input data; “Prospective” models provide predictions for the subsequent 12-month

period (i.e., next year). Note that ‘Total Cost’ refers to models that predict combined

medical and pharmacy costs, and that the dollar values in brackets refer to truncation

thresholds applied to outlier claimant data. See text for further details.

for up to twelve model variants were necessary (Table 1), with
models varying in terms of the time period of prediction (e.g.,
concurrent year vs. prospective year), the cost components being
predicted (e.g., medical costs only vs. medical and pharmacy
costs), and the form of thresholding or truncation applied to
outliers (e.g., no truncation vs. $100k or $250k truncation).
These model variants were selected to support diverse risk-
adjustment use cases, from the retrospective measurement of
provider performance (e.g., using concurrent year models),
to the estimation of a population’s future healthcare costs
for resource planning purposes (e.g., using prospective year
models). While the original research model we inherited
provided some powerful functionality in this regard, there were
numerous engineering challenges to face from a production
and deployment perspective. Crucially, several of the capabilities
below had to be productionized to work identically in both
training and deployment (i.e., scoring) scenarios, thereby
supporting amore easily maintainable codebase and product. For
example:

• The product training data cohort needed to be defined,
and needed to accommodate all twelve model conditions,
in terms of the time range of claims data, pharmacy costs
availability, and the exclusion of certain data sources with
unreliable or incomplete costs (e.g., capitated health plan
data, claimants that are dual-eligible for Medicare, etc.). An
inadequetely-defined training cohort would negatively affect
the functioning of all of the data ingestion, preparation, and
scoring modules (described in detail later), and the lack of a
cohort definition module would make all future updates to the
product unnecessarily cumbersome.

• The functionality for selecting and running only a subset of
models (based on user input) needed to be developed. While
input requests to run the analytic were initially sent in one-at-
a-time, along the way it was decided that the end user should
have the ability to run multiple versions of the model in one
request (e.g., all twelve variants or only a subset). For example,
dependent on the particular risk-adjustment use case, an end
user might request results from only the concurrent year

models, or only those with a specific truncation threshold (e.g.,
$100k).

• The flexibility to change key model parameters automatically
and “online” (i.e., during actual training or scoring) was
similarly required. In some instances, these changes involved
relatively minor parameter updates (e.g., switching from
one truncation threshold to another). For others, substantial
pipeline rerouting was necessary (e.g., switching from local
directory operations during training to directory operations
which are dynamically set during deployment).

4.2. Solutions That Satisfy the Key Product
Requirements
How did we tackle these challenges, and how did we measure
the success of the resulting processes? By implementing a variety
of sustainable coding practices, we developed solutions to these
issues as follows:

• To ensure integrity of our training cohort, we first developed
a formal “cohort definition plan” (similar in spirit to a
CONSORT diagram). This plan involved several stages,
including the key steps of: (a) selecting a large random sample
of patient IDs (e.g., 5 million) covering a time range of interest
(e.g., 2013-2017); (b) excluding those subset of IDs linked to
capitated health plans or having dual-eligible for Medicare
status (as claims costs from these subgroups of patients are
often incomplete); (c) extracting the complete enrollment and
medical claims data for all remaining valid patient IDs.

• This plan was then implemented in a series of code modules,
used to extract data from internal, proprietary Medicaid
databases. To verify the success of this implementation,
we monitored the smooth running and completion of the
data extraction code, and ensured that the resulting cohort
data mapped correctly to a formal data dictionary that we
had prepared. The data dictionary in particular acts as a
fundamental reference file for all users of the production
analytic, and was a crucial milestone in our development.
With minimal modifications, the overall cohort definition
module can be used in future analytic developments (e.g., after
new training data is obtained or industry reference files are
updated).

• To ensure that the analytic had the functionality to take
specific user requests and to update parameters “on the
fly,” we began by making the decision to keep the code as
flexible as possible and not to hardcode parameters for any
of the model variants. Our team then developed a series of
input-level scripts (primarily in shell scripting languages),
as well as later module-specific templates (in Python), that
updated dependent on the specific user input. For example, if
the user requested results for models with $100k truncation
only (models 2, 5, 8, and 11; see Table 1), the analytic
proceeded to automatically update relevant parts of the code
and configuration files for each of these models in turn.

• After finalizing these cohort definition andmodel specification
techniques independently, the overall set of solutions was
tested through extensive model running at key iteration
milestones (e.g., during quality assurance and user-acceptance

Frontiers in Big Data | www.frontiersin.org 4 January 2019 | Volume 1 | Article 7

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Jackson et al. Engineering Analytics for Health Informatics

testing). The above functionalities, which served to provide
multiple model types in one platform, were successfully
deployed in each of our iterative releases.

5. DEPLOYING AN END-TO-END
SOLUTION

5.1. The Core Model Pipeline
We deployed an end-to-end healthcare cost estimation solution
that can be maintained internally with relative ease (i.e.,
recalibrated or extended in functionality), and continuously
pushed to cloud production environments where client scoring
can occur. The product we deployed was refined from a
previously developed research pipeline, described in detail
elsewhere (Ramamurthy et al., 2017), and contains a family
of cost models that we trained on Medicaid claims data. As
described earlier, models varied along a number of parameter
dimensions, including the time period of prediction (e.g.,
concurrent year vs. prospective year), the cost components being
predicted (e.g., medical costs only vs. medical and pharmacy
costs), and the form of thresholding or truncation applied to
outliers (e.g., no truncation vs. $100k or $250k truncation).
Model inputs included basic demographics (e.g., age and gender),
enrollment details (e.g., number of months enrolled), and
diagnosis information. In passing, note that while we avoid
discussing Medicaid data in detail here, focusing instead on our
general agile development framework, the interested reader can
find numerous sources discussing specific disease prevalence and
hospitalization issues in these claimant populations e.g., Trudnak
et al. (2014).

To facilitate maintenance and future development, the
pipeline utilizes a core set of code modules, which at a high-
level, perform essentially three functions (Figure 1C). First, a
sequence of data ingestion and preparation modules read in the
required input files (including enrollment, claims, and auxiliary
input files), and perform batch processing on these in order
to aggregate raw input data into intermediate database tables.
Operations such as dummy-encoding, feature enrichment, and
sparse matrix creation are also carried out at this stage, to
improve the efficiency of later data handling. In the second high-
level phase of processing, data is passed to modules that support
model training and evaluation. The data subsets required for
training or evaluation are isolated at this stage, and in the case
of internal training, a multi-stage regression model is trained
and saved. Model parameters can be configured in advance
using configuration files. Model evaluation or scoring is then
performed, either on a separate test dataset (in internal training
mode) or directly on client data (in client scoring mode). Finally,
in the report generation step, patient-level predictions (e.g., costs
and risk scores), as well as overall model performance reports, are
saved to file.

5.2. The Integrated Product Codebase
Refining a product codebase is a collaborative effort involving
multiple people contributing to the same overall product vision.
To make this happen, it is important to host the code in
proper software deployment platforms, and to use technologies

that support efficient collaboration. This helps to ensure that
maintenance tasks can be carried out easily without affecting
the core pipeline. For example, changes to industry reference
files (e.g., ICD diagnosis codes) or other evolving industry
requirements (e.g., the use of social determinants information)
can be smoothly incorporated into the product data model
and modular pipeline. The integrated product codebase and
deployment process that we refined allows for easy modification
of code components and model recalibration, without significant
effects on code integration and product delivery. Below we
describe key characteristics of this integrated product pipeline.

The integrated product codebase is defined by three key
platform characteristics–version control, containerization, and
continuous integration. First, by refining the final codebase in an
environment that supports version control (e.g., GitLab; https://
about.gitlab.com), we ensured that every team member had
access to and could modify the same codebase. This facilitated
efficient collaboration on the final product, and limited the
need for having standalone versions of the code existing in
different places. Second, to control the vast array of packages
required in code running, we adopted a containerized approach
to code delivery. Even a single faulty or missing package can
cause critical breakages in a code pipeline similar to the one
we deployed. To avoid this problem, container technologies
(e.g., Docker; https://www.docker.com) allow one to host code
in a virtual environment that has all the required software
packages pre-installed. This approach facilitated deployment on
a production server and eliminated the need for team members
to individually sift through package installation requirements,
saving a considerable amount of time. Finally, the pipeline
was integrated by software engineers into final testing and
production layers, with the aim of automating the code building
and establishing continuous integration of the product. Open-
source continuous integration tools (e.g., Jenkins; https://jenkins.
io) allowed the team tomonitor the code deployment in real-time
and quickly identify any defects.

6. CONCLUSION AND KEY
RECOMMENDATIONS

We provided here a brief overview of our attempts at refining
an agile data science methodology to support a new healthcare
analytic deployment, emphasizing the hybrid nature of agile
data science and the important roles played by team iteration
and model experimentation. There is clearly enormous potential
for the development of more formal approaches to agile data
science, both in healthcare and elsewhere, which we hope this
brief overview has illustrated. As a starting point, we provide
the following general recommendations, when faced with the
challenges of any new healthcare analytic deployment:

• Track your work: Incorporate a formal agile tracking tool into
your work from the outset, and organize each piece of your
work into a separate “user story.” Tracking systems encourage
teams to remain actively engaged and to communicate clearly,
behaviors which are particularly important in hybrid teams,
where skill sets might overlap less than in traditional software

Frontiers in Big Data | www.frontiersin.org 5 January 2019 | Volume 1 | Article 7

https://about.gitlab.com
https://about.gitlab.com
https://www.docker.com
https://jenkins.io
https://jenkins.io
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Jackson et al. Engineering Analytics for Health Informatics

engineering teams. In addition, agile approaches encourage
the use of the “backlog” to keep track of upcoming tasks, as
not every feature or user story will be complete for a given
product release. We recommend using it. For example, at a
preliminary milestone in our development work, non-critical
aspects of the output file formatting were not fully finalized;
by adding appropriate notes to the backlog, the team was able
to more easily monitor the status of this and other remaining
tasks across iterations.

• Investigate and implement: For some data science issues (e.g.,
finalizing production parameter settings), it is important to
allow sufficient time for problem understanding. We have
found it beneficial in such cases to pair “investigation” and
“implementation” user stories. What do we mean by this,
and why is it important in a data science context? The
purpose of creating an investigation user story is to allow the
team sufficient scope and time to research complex model
details, and thereby more clearly define the ideal boundaries
of the prediction pipeline. The specifics of a computational
model are often more nuanced in implementation than
traditional software components, and implementation errors
often have subtle effects that are difficult to detect. In
one example, our squad investigated methods for handling
the well-known medical claims “run-out” issue (i.e., the
time lag between recent medical services and subsequent
claims payment processing, which can be several months
in duration). After detailed investigation, we developed a
plan in sync with industry standards, accommodating the
processing of relevant medical claims paid within a 3-month
run-out window after the end of a claim year. By performing
and closing out this investigation story, team flow was at
least maintained, even if production code was not necessarily
updated significantly. We then implemented this plan in
a separate user story, and measured the implementation
success on small samples of data, by comparing aggregated
claims costs from the pipeline to manually aggregated costs.
We believe this “investigate then implement” approach
to work definition is particularly useful in a hybrid
squad context, as it reinforces continual communication
and transfer of learning throughout the diversely-skilled
squad.

• Release in increments: Develop an incremental product release
strategy, and communicate this plan clearly and early to
others. This should help in ensuring that realistic deadlines
are formed, and that these are driven primarily by the team’s
estimation of the workload (not by external stakeholder
needs). More specifically, the release process should comprise
of a strategic set of deadlines which cater appropriately
to development team resources and incremental product
release goals. For example, in our development work, we

first scheduled an early or “Beta” release directed toward an
internal client. By doing this, the deployed codebase was put
through the standard release testing processes (e.g., quality
assurance and user-acceptance testing), without any changes
or biases introduced by the data science team for a defined
period of time. This allowed time for independent feedback
regarding the codebase and for completion of remaining

backlog tasks (e.g., improvements to the formatting of output
reports). It also allowed for fine-tuning and retraining of the
core prediction model on a larger training dataset, thereby
improving the overall performance and quality of a later
“Production” release.

In conclusion, we believe the hybrid squad model has many
benefits over isolated teams when doing data science software
development. In addition to improved communication and
collaboration, as well as the removal of sequential handover of
work, the hybrid squad model provides substantial opportunity
for skills transfer and innovation that would otherwise not occur.
While it is still early days for the hybrid squad system we have
described, the potential has been obvious to everyone involved,
including at the team management level. That being said, the
recommendations above illustrate some likely areas of difficulty
for new hybrid squads, which we suspect will typically arise in
setting sensible release strategies and deadlines. Yet, we firmly
believe that hybrid analytics teams are the future, and sincerely
hope that others can build on the recommendations outlined
here.

DATA AVAILABILITY STATEMENT

No datasets were generated for the purpose of writing this
manuscript, and all relevant information is contained here.
Proprietary code referred to in the manuscript is not publicly
available (property of IBM).

AUTHOR CONTRIBUTIONS

All authors contributed to the conception and design of the
paper. SJ wrote the first draft, and MY, C-XL, and SJ wrote
additional sections. All authors contributed to manuscript
revision and approved the final version.

ACKNOWLEDGMENTS

The authors would like to thank their IBM Watson Health
colleagues for providing guidance during different phases of this
production work, their colleagues in IBM Research for sharing
earlier research code, and their manager (Rajashree Joshi) for
encouraging the drafting and submission of this manuscript.

REFERENCES

Bertsimas, D., Bjarnadottir, M. V., Kane, M. A., Kryder, J. C., Pandey, R., Vempala,

S., et al. (2008). Algorithmic prediction of health-care costs. Operat. Res. 56,

1382–1392. doi: 10.1287/opre.1080.0619

Demirkan, H. and Dal, B. (2014). The data economy: why do

so many analytics projects fail? Analytics Magazine Available

online at: [http://analytics-magazine.org/the-data-economy-why-

do-so-many-analytics-projects-fail/] (Accessed December 20,

2018).

Frontiers in Big Data | www.frontiersin.org 6 January 2019 | Volume 1 | Article 7

https://doi.org/10.1287/opre.1080.0619
http://analytics-magazine.org/the-data-economy-why-do-so-many-analytics-projects-fail/
http://analytics-magazine.org/the-data-economy-why-do-so-many-analytics-projects-fail/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Jackson et al. Engineering Analytics for Health Informatics

Duncan, I. (2011). Healthcare Risk Adjustment and Predictive Modeling. Winsted,

CT:Actex.

Fowler, M. and Highsmith, J. (2001). The agile manifesto. Softw. Dev. 9,

28–35. Available online at: http://www.drdobbs.com/open-source/the-agile-

manifesto/184414755?queryText=the+agile+manifesto (Accessed December

20, 2018).

Jurney, R. (2017). Agile Data Science 2.0. Sebastopol, CA:O’Reilly.

Meenan, R. T., Goodman, M. J., Fishman, P. A., Hornbrook, M. C., O’Keeffe-

Rosetti, M. C., et al. (2003). Using risk-adjustment models to identify

high-cost risks. Med. Care 41, 1301–1312. doi: 10.1097/01.MLR.0000094480.

13057.75

Ramamurthy, K. N., Wei, D., Ray, E., Singh, M., Iyengar, V., Katz-Rogozhnikov,

D., et al. (2017). “A configurable, big data system for on-demand healthcare

cost prediction,” in 2017 IEEE International Conference on Big Data (Boston,

MA), 1524–1533.

Reeser-Stout, S. (2018). “A hybrid approach to the use of agile in health

IT [conference presentation],” in Healthcare Information and Management

Systems Society (HIMSS), Annual Conference 2018 (Las Vegas, NV).

Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. J.

Data Warehousing 5, 13–22. Available online at: https://mineracaodedados.

files.wordpress.com/2012/04/the-crisp-dm-model-the-new-blueprint-for-

data-mining-shearer-colin.pdf (Accessed December 20, 2018).

Shore, J. and Warden, S. (2008). The Art of Agile Development. Sebastopol,

CA:O’Reilly.

Trudnak, T., Kelley, D., Zerzan, J., Griffith, K., Jiang, H. J., and Fairbrother,

G. L. (2014). Medicaid admissions and readmissions: understanding the

prevalence, payment, and most common diagnoses. Health Affairs 33, 1337–

1344. doi: 10.1377/hlthaff.2013.0632

Winkelman, R. and Mehmud, S. (2007). A comparative analysis of claims-based

tools for health risk assessment. Society of Actuaries Report Available online

at: http://www.soa.org/research-reports/2007/hlth-risk-assement/ (Accessed

December 20, 2018).

Conflict of Interest Statement: At the time of original drafting, the authors were

all full-time employees of IBM. The authors share this perspective with the sole aim

of contributing to open dialogue on the topics described in the manuscript.

Copyright © 2019 Jackson, Yaqub and Li. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Big Data | www.frontiersin.org 7 January 2019 | Volume 1 | Article 7

http://www.drdobbs.com/open-source/the-agile-manifesto/184414755?queryText=the+agile+manifesto
http://www.drdobbs.com/open-source/the-agile-manifesto/184414755?queryText=the+agile+manifesto
https://doi.org/10.1097/01.MLR.0000094480.13057.75
https://mineracaodedados.files.wordpress.com/2012/04/the-crisp-dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf
https://mineracaodedados.files.wordpress.com/2012/04/the-crisp-dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf
https://mineracaodedados.files.wordpress.com/2012/04/the-crisp-dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf
https://doi.org/10.1377/hlthaff.2013.0632
http://www.soa.org/research-reports/2007/hlth-risk-assement/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	The Agile Deployment of Machine Learning Models in Healthcare
	1. Introduction
	2. Actuarial Models in Healthcare
	3. Principles of Agile Data Science
	3.1. Avoiding the ``Pull of the Waterfall''
	3.2. Iteration and Experimentation
	3.3. Reinforcing the ``Hybrid'' Nature of the Work

	4. Challenges in Analytic Development
	4.1. Providing Multiple Model Types in One Platform
	4.2. Solutions That Satisfy the Key Product Requirements

	5. Deploying an End-to-End Solution
	5.1. The Core Model Pipeline
	5.2. The Integrated Product Codebase

	6. Conclusion and Key Recommendations
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

