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Social network analysis is an important problem in data mining. A fundamental

step for analyzing social networks is to encode network data into low-dimensional

representations, i.e., network embeddings, so that the network topology structure

and other attribute information can be effectively preserved. Network representation

leaning facilitates further applications such as classification, link prediction, anomaly

detection, and clustering. In addition, techniques based on deep neural networks

have attracted great interests over the past a few years. In this survey, we conduct

a comprehensive review of the current literature in network representation learning,

utilizing neural network models. First, we introduce the basic models for learning node

representations in homogeneous networks.Wewill also introduce some extensions of the

base models, tackling more complex scenarios such as analyzing attributed networks,

heterogeneous networks, and dynamic networks. We then introduce techniques for

embedding subgraphs and also present the applications of network representation

learning. Finally, we discuss some promising research directions for future work.

Keywords: deep learning, social networks, deep social network analysis, representation learning, network

embedding

1. INTRODUCTION

Social networks, such as Facebook, Twitter, and LinkedIn, have greatly facilitated communication
between web users around the world. The analysis of social networks helps summarizing
the interests and opinions of users (nodes), discovering patterns from the interactions (links)
between users, and mining the events that take place in online platforms. The information
obtained by analyzing social networks could be especially valuable for many applications.
Some typical examples include online advertisement targeting (Li et al., 2015), personalized
recommendation (Song et al., 2006), viral marketing (Leskovec et al., 2007; Chen et al., 2010),
social healthcare (Tang and Yang, 2012), social influence analysis (Peng et al., 2017), and academic
network analysis (Dietz et al., 2007; Guo et al., 2014).

One central problem in social network analysis is how to extract useful features from
non-Euclidean structured networks, to enable the deployment of downstream machine learning
prediction models for specific analysis. For example, in the case of recommending new friends
to a user in a social network, the key challenge might be how to embed network users into a
low-dimensional space so that the closeness between users could be easily measured with distance
metrics. To process structure information in networks, most previous efforts mainly rely on hand-
crafted features, such as kernel functions (Vishwanathan et al., 2010), graph statistics (i.e., degrees
or clustering coefficients) (Bhagat et al., 2011), or other carefully engineered features (Liben-Nowell
and Kleinberg, 2007). However, such feature engineering processes could be very time-consuming
and expensive, rendering it ineffective formany real-world applications. An alternative way to avoid
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this limitation, is to automatically learn feature representations
that capture various information sources in networks (Bengio
et al., 2013; Liao et al., 2018). The goal is to learn a transformation
function that maps nodes, subgraphs, or even the whole network
as vectors to a low-dimensional feature space, where the spatial
relations between the vectors reflect the structures or contents
in the original network. Given these feature vectors, subsequent
machine learning models such as classificationmodels, clustering
models and outlier detection models could be directly used
toward target applications.

Along with the substantial performance improvement gained
by deep learning on image recognition, text mining, and natural
language processing tasks (Bengio, 2009), developing network
representation methods using neural network models have
received increased attention in recent years. In this review, we
provide a comprehensive overview of recent advancements in
network representation learning, using neural network models.
After introducing the notations and problem definitions, we
first review the basic representation learning models for node
embedding in homogeneous networks. Specifically, based on
the type of representation generation modules, we divide the
existing approaches into three categories: embedding look-up
based, autoencoder based and graph convolution based. We then
provide an overview of the approaches that learn representations
for subgraphs in networks, which to some extent rely on the
techniques of node representation learning. After that, we list
some applications of network representation models. Finally, we
discuss some promising research directions for future work.

2. NOTATIONS AND PROBLEM
DEFINITIONS

In this section, we define some important terminologies that
will be used in later sections, and then provide the formal
definition of the network representation learning problem. In
general, we use boldface uppercase letters (e.g., A) to denote
matrices, boldface lowercase letters (e.g., a) to denote vectors, and
lowercase letters (e.g., a) to denote scalars. The (i, j) entry, the i-th
row and the j-th column of a matrix A is denoted as Aij, Ai∗, and
A∗j, respectively.

Definition 1 (Network). Let G = {V , E ,X,Y} be a network,
where the i-th node (or vertex) is denoted as vi ∈ V and ei,j ∈ E

denotes the edge between node vi and vj. X and Y are node
attributes and labels, if available. Besides, we let A ∈ R

N×N

denote the associated adjacency matrix of G. Aij is the weight of
ei,j, where Aij > 0 indicates that the two nodes are connected,
and otherwise Aij = 0. For undirected graphs, Aij = Aji.

In many scenarios, the nodes and edges in G can also be
associated with the type information. Let τv :V → Tv be a node-
type mapping function and τe : E → Te be an edge-type mapping
function, where Tv and Te denote the set of node and edge types,
respectively. Here, each node vi ∈ V has one specific type, e.g.,
τv(vi) ∈ Tv. Similarly, for each edge eij, τe(eij) ∈ Te.

Definition 2 (Homogeneous Network). A homogeneous
network is a network in which |Tv| = |Te| = 1. All nodes and
edges in G belong to one single type.

Definition 3 (Heterogeneous Network). A heterogeneous
network is a network with |Tv| + |Te| > 2. There are at least
two different types of nodes or edges in heterogeneous networks.

Given a network G, the task of network representation
learning is to train a mapping function f that maps certain
components in G, such as nodes or subgraphs, into a latent space.
Let D be the dimension of the latent space and usually D ≪ |V|.
In this work, we focus on the problem of node representation
learning and subgraph representation learning.

Definition 4 (Node Representation Learning). Suppose z ∈ R
D

denotes the latent vector of node v, node representation learning
aims to build a mapping function f so that z = f (v). It is expected
that nodes with similar roles or characteristics, which are defined
according to specific application domains, are mapped close to
each other in the latent space.

Definition 5 (Subgraph Representation Learning). Let g denote
a subgraph of G. The nodes and edges in g are denoted as VS and
ES, respectively, and we have VS ⊂ V and ES ⊂ E . The subgraph
representation learning aims to learn a mapping function f so
that z = f (g), where in this case z ∈ R

D corresponds to the latent
vector of g.

Figure 1 shows a toy example of network embedding. There
are three subgraphs in this network distinguished with different
colors: VS1 = {v1, v2, v3}, VS2 = {v4}, and VS3 = {v5, v6, v7}.
Given a network as input, the example below generates one
representation for each node, as well as for each of the
three subgraphs.

3. NEURAL NETWORK BASED MODELS

It has been demonstrated that neural networks have powerful
capabilities in capturing complex patterns in data, and have
achieved substantial success in the fields of computer vision,
audio recognition, and natural language processing, etc. Recently,
some efforts have been made to extend neural network models
to learn representations from network data. Based on the type
of base neural networks that are applied, we categorize them
into three subgroups: look-up table based models, autoencoder
based models, and GCN based models. In this section, we first
give an overview of network representation learning from the
perspective of encoding and decoding. We then discuss the details
of some well-known network embedding models and how they
fulfill the two steps. In this section, we only discuss representation
learning for nodes. The models dealing with subgraphs will be
introduced in later sections.

3.1. Framework Overview From the
Encoder-Decoder Perspective
In order to elaborate the diversity of various neural network
architectures, we argue that different techniques can be derived
from the aspect of encoding and decoding schema, as well as their
target network structure constrained for low dimensional feature
space. Specifically, existingmethods can be reduced to solving the
following optimization problem:

min
9

∑

φ∈8tar

L(ψdec(ψenc(Vφ)),φ|9), (1)
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FIGURE 1 | A toy example of node representation learning and subgraph representation learning (best viewed in color). There are three subgraphs in the input

network denoted by different colors. The target of node embedding is to generate one representation for each individual node, while subgraph embedding is to learn

one representation for an entire subgraph.

where 8tar is the target relations that the embedding algorithm
expects to preserve, and Vφ denotes the nodes involved in
φ. ψenc :V → RD is the encoding function that maps
nodes into representation vectors, and ψdec is a decoding
function that reconstructs the original network structure from
the representation space. 9 denotes the trainable parameters
in encoders and decoders. By minimizing the loss function
above, model parameters are trained so that the desired network
structures 9tar are preserved. As we will show in subsequent
sections, from the overview framework aspect, the primary
distinctions between various network representation methods
rely on how they define the three components.

3.2. Models With Embedding Look-Up
Tables
Instead of using multiple layers of nonlinear transformations,
network representation learning could be achieved simply by
using look-up tables which directly map a node index into
its corresponding representation vector. Specifically, a look-up
table could be implemented using a matrix, where each row
corresponds to the representation of one node. The diversity of
different models mainly lies in the definition of target relations
in the network data that we hope to preserve. In the rest of
this subsection, we will first introduce DeepWalk (Perozzi et al.,
2014) to discuss the basic concepts and techniques in network
embedding, and then extend the discussion to more complex and
practical scenarios.

3.2.1. Skip-Gram Based Models
As a pioneering network representation model, DeepWalk
treats nodes as words, samples random walks as sentences and
utilizes the skip-gram model (Mikolov et al., 2013) to learn the
representations of nodes as shown in Figure 2. In this case, the
encoder ψenc is implemented as two embedding look-up tables
Z ∈ R

N×D and Zc ∈ R
N×D, respectively for target embeddings

and context embeddings. The network information φ ∈ 8tar that
we try to preserve is defined as the node-context pairs [vi,N (vi)]
observed in the random walks, where N (vi) denotes the context
nodes (or neighborhood) of vi. The objective is to maximize

the probability of observing a node’s neighborhood conditioned
on embeddings:

L = −
∑

vi∈V

∑

vj∈N (vi)

log p(ejZ
c|eiZ), (2)

where ei is a one-hot row vector of length N that picks the i-th
row of Z. Let zi = eiZ and zcj = ejZ

c, the conditional probability

above is formulated as

p(zcj |zi) =
exp(zcj z

T
i )

∑|V|
k=1

exp(zc
k
zTi )

, (3)

so that ψdec could be regarded as link reconstruction based on
the normalized proximity between different nodes. In practice,
the computation of the probability is expensive due to the
summation over every node in the network, but hierarchical
softmax or negative sampling can be applied to reduce
time complexity.

There are also some approaches that are developed based
on similar ideas. LINE (Tang et al., 2015) defines the first-
order and second-order proximity for learning node embedding,
where the latter can be seen as a special case of DeepWalk with
context window length set as 1. Meanwhile, node2vec (Grover
and Leskovec, 2016) applies different random walk strategies,
which provides a trade-off between breadth-first search (BFS)
and depth-first search (DFS) in networks search strategies.
Planetoid (Yang et al., 2016) extends skip-gram models for semi-
supervised learning, which predicts the class label of nodes along
with the context in the input network data. In addition, it has
been shown that there exists a close relationship between skip-
gram models and matrix factorization algorithms (Levy and
Goldberg, 2014; Qiu et al., 2018). Therefore, network embedding
models that utilize matrix factorization techniques, such as
LE (Belkin and Niyogi, 2002), Grarep (Cao et al., 2015), and
HOPE (Ou et al., 2016), may also be implemented in the similar
manner. Random sampling-based approaches have the capacity
to allow a flexible and stochastic measure of node similarity,
making them not only achieve higher performance in many
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FIGURE 2 | Building blocks of models with embedding look-up tables. There are two key components of these works: sampling and modeling. The primary

distinction between different methods under this line relies on how to define the two components.

applications, but also become more scalable toward large-scale
datasets.

3.2.2. Attributed Network Embedding Models
Social networks are rich in side information, where nodes
could be associated with various attributes that characterize
their properties. Inspired by the idea of inductive matrix
completion (Natarajan and Dhillon, 2014), TADW (Yang et al.,
2015) extends the framework of DeepWalk by incorporating
features of vertices into network representation learning. Besides
sampling from plain networks, FeatWalk (Huang et al., 2019)
proposes a novel feature-based random walk strategy to generate
node sequences by considering node similarity on attributes.
With the random walks based on both topological and attribute
information, the skip-gram model is then applied to learn
node representations.

3.2.3. Heterogeneous Network Embedding Models
Nodes in networks could be of different types, which poses the
challenge of how to preserve relations among them. HERec (Shi
et al., 2019) and metapath2vec++ (Dong et al., 2017) propose
meta-path based random walk schema to discover the context
across different types of nodes. The skip-gram architecture in
metapath2vec++ is also modified, so that the normalization
term in softmax only considers nodes of the same type. In
a more complex scenario where we have both nodes and
attributes of different types, HNE (Chang et al., 2015) combines
feed-forward neural networks and embedding models toward
a unified framework. Suppose za and zb denote the latent
vectors of two different types of nodes, HNE defines two
additional transformation matrices U and V to respectively map
za and zb to the joint space. Let vi, vj ∈ Va and vk, vl ∈

Vb, intra-type node similarity and inter-type node similarity
are defined as

s(vi, vj) = zai U(z
a
j U)

T , s(vi, vk) = zai U(z
b
kV)

T , s(vk, vl) = zbkV(z
b
l V)

T ,

(4)

where we hope to preserve various types of similarities
during training. As for obtaining za and zb, HNE applies
different feed-forward neural networks to map raw input (e.g.,
images and texts) to latent spaces, thus enabling an end-to-
end training framework. Specifically, the authors use a CNN
to process images and a fully-connected neural network to
process texts.

3.2.4. Dynamic Embedding Models
Real world social networks are not static and will evolve over
time with addition/deletion of nodes and links. To deal with this
challenge, DNE (Du L. et al., 2018) presents a decomposable
objective to learn the representation of each node separately,
where the impact of network changes on existing nodes is
measurable and greatly affected nodes will be chosen for updates
as the learning process proceeds. In addition, DANE (Li J.
et al., 2017) leverages matrix perturbation theory to tackle online
embedding updates.

3.3. Autoencoder Techniques
In this section, we discuss network representation models based
on the autoencoder architecture (Hinton and Salakhutdinov,
2006; Bengio et al., 2013). As shown in Figure 3, an autoencoder
consists of two neural network modules: encoder and
decoder. The encoder ψenc maps the features of each node
into a latent space, and the decoder ψdoc reconstructs the
information about the network from the latent space. Usually
the hidden representation layer has a smaller size than that
of the input/output layer, forcing it to create a compressed
representation that captures the non-linear structure of network.
Formally, following Equation (1), the objective function of
autoencoder is to minimize the reconstruction error between
the input and the output decoded from low-dimensional
representations.

3.3.1. Deep Neural Graph Representation (DNGR)
DNGR (Cao et al., 2016) attempts to preserve a
node’s local neighborhood information using a stacked
denoising autoencoder. Specifically, assume S is the PPMI
matrix (Bullinaria and Levy, 2007) constructed from A, then
DNGR minimizes the following loss:

L =
∑

vi∈V

||ψdec(zi)− Si∗||
2
2 s.t. zi = ψenc(Si∗), (5)

where Si∗ ∈ R
|V| denotes the associated neighborhood

information of vi. In this case,8tar = {Si∗}vi∈V andDNSR targets
to reconstruct the PPMI matrix. zi is the embedding of node vi in
the hidden layer.

3.3.2. Structural Deep Network Embedding (SDNE)
SDNE (Wang et al., 2016) is another autoencoder-based model
for network representation learning. The objective function
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FIGURE 3 | An example of autoencoder-based network representation algorithms. Rows of the proximity matrix S ∈ R
|V|×|V| are fed into the autoencoder to learn

and generate embeddings Z ∈ R
|V|×D at the hidden layer.

of SDNE is:

L =
∑

vi∈V

||(ψdec(zi)−Si∗)⊙bi||
2
2+

|V|∑

i,j=1

Sij||zi−zj||
2
2, 9tar = {Si∗, Sij}.

(6)

The first term is an autoencoder as in Equation (5), except
that the reconstruction error is weighted, so that more
emphasis is put on recovering non-zero entries in Si∗. The
second part is motivated by Laplacian Eigenmaps that imposes
nearby nodes to have similar embeddings. Besides, SDNE
differs from DNGR in the definition of S, where DNGR
defines S as the PPMI matrix while SDNE sets S as the
adjacency matrix.

It is worth noting that, unlike Equation (2) which uses one-
hot indicator vector for embedding look-up, DNGR and SDNE
transform each node’s information to an embedding by training
neural network modules. Such distinction allows autoencoder-
based methods to directly model on a node’s neighborhood
structure and features, which is not straightforward for
random walk approaches. Therefore, it is straightforward to
incorporate richer information sources (e.g., node attributes) into
representation learning, as will be introduced below. However,
autoencoder-based methods may suffer from scalability issues as
the input dimension is |V|, which may result in significant time
costs in real massive datasets.

3.3.3. Autoencoder-Based Attributed Network

Embedding
The structure of autoencoders facilitates the incorporation
of multiple information sources toward joint representation
learning. Instead of only mapping nodes to the latent space,
CAN (Meng et al., 2019) proposes to learn the representation
of nodes and attributes in the same latent space by using
variational autoencoders (VAEs) (Doersch, 2016), in order to
capture the affinities between nodes and attributes. DANE (Gao
and Huang, 2018) utilizes the correlation between topological
and attribute information of nodes by building two autoencoders
for each information source, and then encourages the two sets
of latent representations to be consistent and complementary.
Li H. et al. (2017) adopts another strategy, where topological
feature vector and content information vector (learned by

doc2vec Le and Mikolov, 2014) are directly concatenated
and put into a VAE to capture the nonlinear relationship
between them.

3.4. Graph Convolutional Approaches
Inspired by the significant performance improvement of
convolutional neural networks (CNN) in image recognition,
recent years have witnessed a surge in adapting convolutional
modules to learn representations of network data. The intuition
behind it is to generate node embedding by aggregating
information from its local neighborhood as shown in Figure 4.
Different from autoencoder-based approaches, the encoding
function of graph convolutional approaches leverages a node’s
local neighborhood as well as attribute information. Some
efforts (Bruna et al., 2013; Henaff et al., 2015; Defferrard et al.,
2016; Hamilton W. et al., 2017) have been made to extend
traditional convolutional networks for network data to generate
network embedding in the past few years. The convolutional
filters of these approaches are either spatial filters or spectral
filters. Spatial filters operate directly on the adjacency matrix
whereas spectral filters operate on the spectrum of graph
Laplacian (Defferrard et al., 2016).

3.4.1. Graph Convolutional Networks (GCN)
GCN (Bronstein et al., 2017) is a well-known semi-supervised
graph convolutional networks. It defines a convolutional
operator on network, and iteratively aggregates embeddings of
neighbors of a node and uses the aggregated embedding as well
as its own embedding at previous iteration to generate the node’s
new representation. The layer-wise propagation rule of encoding
function ψenc is defined as:

Hk = σ (D̂− 1
2 ÂD̂− 1

2Hk−1Wk−1), (7)

where Hk−1 denotes the learned embeddings in layer k − 1, and
H0 = X. Â = (IG + A) is the adjacency matrix with added self-
connections. IG is the identity matrix, D̂ii =

∑
j Âij. W

k−1 is

a layer-wise trainable weight matrix. σ (·) denotes an activation
function such as ReLU. The loss function for supervised training
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FIGURE 4 | An overview of graph convolutional networks. The dashed rectangles denote node attributes. The representation of each individual node (e.g., node C) is

aggregated from its immediate neighbors (e.g., node A, B, D, E), concatenated with the lower-layer representation of itself.

is to evaluate the cross-entropy error over all labeled nodes:

L = −
∑

vi∈V

F∑

f=1

Yif ln Ŷif , s.t. Ŷ = ψdec(Z), Z = ψenc(X,A),

(8)
where Ŷ ∈ R

N×F is the predictive matrix with F candidate
labels. ψdec(·) can be viewed as a fully-connected network
with the softmax activation function to map representations to
predicted labels. Note that unlike autoencoders that explicitly
treat each node’s neighborhood as features or reconstruction
goals as in Equations (5) or (6), GCN implicitly applies the
local neighborhood links on each encoding layer as pathways
to aggregate embeddings from neighbors, so that higher order
network structures are utilized. Since Equation (8) is a supervised
loss function, 8tar is not applicable here. However, the loss
function can also be formulated in unsupervisedmanners, similar
to the skip-gram model (Kipf and Welling, 2016; Hamilton W.
et al., 2017). GCN may suffer from the scalability problem when
the size ofA is large. The corresponding training algorithms have
been proposed to tackle this challenge (Ying et al., 2018a), where
the network data is processed in small batches and we can sample
a node’s local neighbors instead of using all of them.

3.4.2. Inductive Training With GCN
So far many basic models we have reviewed mainly
generate network representations in a transductive manner.
GraphSAGE (Hamilton W. et al., 2017) emphasized the
inductive capability of GCN. Inductive learning is essential for
high-throughput machine learning systems, especially when
operating on evolving networks that constantly encounter
unseen nodes (Yang et al., 2016; Guo et al., 2018). The core
representation update scheme of GraphSAGE is similar to that of
traditional GCN, except that the operation on the whole network
is replaced by sample-based representation aggregators:

hki = σ (Wk · CONCAT(hk−1
i , AGGREGATEk({h

k−1
j , ∀j ∈ N (vi)}))),

(9)

where hki is the hidden representation of node vi in the k-th

layer. CONCAT denotes concatenation operator and AGGREGATEk
represents neighborhood aggregation function of the k-th layer (e.g.,

element-wise mean or max operator). N (vi) denotes the neighbors of

vi. Compared with Equation (7), GraphSAGE only needs to aggregate

feature vectors from the partial set of neighbors, making it scalable

for large-scale data. Given the attribute features and neighborhood

relations of an unseen node, GraphSAGE can generate the embedding

of this node by leveraging its local neighbors as well as attributes via

forward propagation.

3.4.3. Graph Attention Mechanisms
Attention mechanisms have become the standard technique in many

sequence-based tasks, in order to make models focus on the most

relevant parts of the input in making decisions. We could also utilize

attention mechanisms to aggregate the most important features from

nodes’ local neighbors. GAT (Velickovic et al., 2017) extends the

framework of GCN by replacing the standard aggregation function

with an attention layer to aggregate messages from most important

neighbors. Thekumparampil et al. (2018) also proposes to remove

all intermediate fully-connected layers in conventional GCN and to

replace the propagation layers with attention layers. It thus allows

the model to learn a dynamic and adaptive local summary of

neighborhoods, greatly reduces the parameters, and also achieves more

accurate predictions.

4. SUBGRAPH EMBEDDING

Besides learning representations for nodes, recent years have also

witnessed an increasing branch of research efforts that try to learn

representations for a set of nodes and edges as an integral. Thus,

the goal is to represent a subgraph with a low-dimensional vector.

Many traditional methods that operate on subgraphs rely on graph

kernels (Haussler, 1999), which decompose a network into some

atomic substructures such as graphlets, subtree patterns, and paths, and

treat these substructures as features to obtain an embedding through

further transformation. In this section, however, we focus on reviewing

methods that seek to automatically learn embeddings of subgraphs

using deep models. For those who are interested in graph kernels, we

refer the readers to Vishwanathan et al. (2010).
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According to the literature, most existing methods are built on

the techniques used for node embedding, as introduced in section 3.

However, in graph representation problems, the label information

is associated with particular subgraphs instead of individual nodes

or links. In this review, we divide the approaches of subgraph

representation learning into two categories based on how they

aggregate node-level embeddings in each subgraph. The detailed

discussion for each category is as below.

4.1. Flat Aggregation
Assume VS denotes the set of nodes in a particular subgraph and

zS represents the subgraph’s embedding, zS could be obtained by

aggregating the embeddings of all individual nodes in the subgraph:

zS = ψaggr({zi, vi ∈ VS }), (10)

where ψaggr denotes the aggregation function. Methods based on

such flat aggregation usually define ψaggr that captures simple

correlations among nodes. For example, Niepert et al. (2016)

directly concatenates node embeddings together and utilize standard

convolutional neural networks as an aggregation function to generate

graph representation. Dai et al. (2016) employs a simple element-wise

summation operation to define ψaggr , and learns graph embedding by

summing all embeddings of individual nodes.

In addition, somemethods apply recurrent neural networks (RNNs)

for representing graphs. Some typical methods first sample a number

of graph sequences from the input network, and then apply RNN-

based autoencoders to generate an embedding for each graph sequence.

The final graph representation is obtained by either averaging (Jin

et al., 2018) or concatenating (Taheri et al., 2018) these graph

sequence embeddings.

4.2. Hierarchical Aggregation
In contrast to flat aggregation, the motivation behind hierarchical

aggregation is to preserve the hierarchical structure that might be

presented in the subgraph by aggregating neighborhood information

via a hierarchical way. Bruna et al. (2013) and Defferrard et al.

(2016) attempt to utilize such a hierarchical structure of networks

by combining convolutional neural networks with graph coarsening.

The main idea behind them is to stack multiple graph coarsening

and convolutional layers. In each layer, they first apply graph cluster

algorithms to group nodes, and then merge node embeddings within

each cluster using element-wise max-pooling. After clustering, they

generate a new coarse network by stacking embeddings of clusters

together, which is again fed into convolutional layers and the same

process repeats. Clusters in each layer can be viewed as subgraphs,

and cluster algorithms are used to learn the assignment matrix of

subgraphs, so that the hierarchical structure of the network is also

propagated through the layers. Although these methods work well in

certain applications, they actually follow a two-stage fashion, where the

stages of clustering and embedding may not reinforce each other.

To avoid this limitation, DiffPool (Ying et al., 2018b) proposes an

end-to-end model that does not depend on a deterministic clustering

subroutine. The layer-wise propagation rule is formulated as below:

M(k+1) = C(k)TZ(k), A(k+1) = C(k)TA(k)C(k), (11)

where Z(k) ∈ R
Nk×D denotes node embeddings, C(k) ∈ R

NNk×Nk+1

is the cluster assignment matrix learned from the previous layer.

The goal of the left equation is to generate the (k + 1)-th

coarser network embedding M(k+1) by aggregating node embeddings

according to cluster assignment C(k); while the right equation is

to learn a new coarsened adjacency matrix A(k+1) ∈ R
Nk+1×Nk+1

from the previous adjacency matrix A(k), which stores the similarity

between each pair of clusters. Here, instead of applying deterministic

clustering algorithm to learn C(k), they adopt graph neural networks

(GNNs) to learn it. Specifically, they use two separate GNNs on

the input embedding matrix M(k) and coarsened adjacency matrix

A(k) to generate assignment matrix C(k) and embedding matrix

Z(k), respectively. Formally, Z(k) = GNNk,embed(A
(k),M(k)), and

C(k) = softmax[GNNk,pool(A
(k),M(k))]. The two steps could reinforce

each other to improve the performance. DiffPool may suffer from

computational issues brought by the computation of soft clustering

assignment, which is further addressed in Cangea et al. (2018).

5. APPLICATIONS

The representations learned from networks can be easily applied to

downstream machine learning models for further analysis on social

networks. Some common applications include node classification, link

prediction, anomaly detection, and clustering.

5.1. Node Classification
In social networks, people are often associated with semantic labels with

respect to certain aspects about them, such as affiliations, interests, or

beliefs. However, in real-world scenarios, people are usually partially

or sparsely labeled, since labeling is expensive and time consuming.

The goal of node classification is to predict labels of unlabeled nodes

in networks by leveraging their connections with the labeled ones

considering the network structure. According to Bhagat et al. (2011),

existing methods can be classified into two categories, e.g., random

walk based, and feature extraction-based methods. The former aims to

propagate labels with randomwalks (Baluja et al., 2008), while the latter

targets to extract features from a node’s surrounding information and

network statistics.

In general, the network representation approach follows the second

principle. A number of existing network representation models,

like Yang et al. (2015), Wang et al. (2016), and Liao et al. (2018), focus

on extracting node features from the network using representation

learning techniques, and then apply machine learning classifiers like

support vector machine, naive Bayes classifiers, and logistic regression

for prediction. In contrast to separating the steps of node embedding

and node classification, some recent work (Dai et al., 2016; Hamilton

W. et al., 2017; Monti et al., 2017) designs an end-to-end framework to

combine the two tasks, so that the discriminative information inferred

from labels can directly benefit the learning of network embedding.

5.2. Link Prediction
Social networks are not necessarily complete as some links might be

missing. For example, friendship links between two users in a social

network can be missing even if they actually know each other in real

world. The goal of link prediction is to infer the existence of new

interactions or emerging links between users in the future, based on the

observed links and the network evolution mechanism (Liben-Nowell

and Kleinberg, 2007; Al Hasan and Zaki, 2011; Lü and Zhou, 2011).

In network embedding, an effective model is expected to preserve

both network structure and inherent dynamics of the network in

the low-dimensional space. In general, the majority of previous work

focuses on predicting missing links between users under homogeneous

network settings (Grover and Leskovec, 2016; Ou et al., 2016; Zhou

et al., 2017), and some efforts also attempt to predict missing links in

heterogeneous networks (Liu Z. et al., 2017, 2018). Although, beyond
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the scope of this survey, applying network embedding for building

recommender systems (Ying et al., 2018a) may also be a direction that

is worth exploring.

5.3. Anomaly Detection
Another challenging task in social network analysis is anomaly

detection. Malicious activities in social networks, such as spamming,

fraud, and phishing, can be interpreted as rare or unexpected behaviors

that deviate from the majority of normal users. While numerous

algorithms have been proposed for spotting anomalies and outliers in

networks (Savage et al., 2014; Akoglu et al., 2015; Liu N. et al., 2017),

anomaly detection methods, based on network embedding techniques,

have recently received increased attention (Hu et al., 2016; Liang et al.,

2018; Peng et al., 2018). The discrete and structural information in

networks are merged and projected into the continuous latent space,

which facilitates the application of various statistical or geometrical

algorithms in measuring the degree of isolation or outlierness of

network components. In addition, in contrast to detect malicious

activities in a static way, Sricharan and Das (2014) and Yu et al. (2018)

also attempted to study the problem in dynamic networks.

5.4. Node Clustering
In addition to the above applications, node clustering is another

important network analysis problem. The target of node clustering is to

partition a network into a set of clusters (or subgraphs), so that nodes

in the same cluster are more similar to each other than those from

other clusters. In social networks, such clusters are widely spread in

terms of communities, such as groups of people that belong to similar

affiliations or have similar interests. Most previous work focuses on

clustering networks with various metrics of proximity or connection

strength between nodes. For example, Shi and Malik (2000) and Ding

et al. (2001) seek to maximize the number of connections within

clusters while minimizing the connections between clusters. Recently,

many efforts have resort to network representation techniques for node

clustering. Some methods treat embedding and clustering as disjointed

tasks, where they first embed nodes to low-dimensional vectors, and

then apply traditional clustering algorithms to produce clusters (Tian

et al., 2014; Cao et al., 2015; Wang et al., 2017). Other methods such

as Tang et al. (2016) and Wei et al. (2017) consider the optimization

problem of clustering and network embedding in a unified objective

function and generate cluster-induced node embeddings.

6. CONCLUSION AND FUTURE
DIRECTIONS

In recent years there has been a surge in leveraging representation

learning techniques for network analysis. In this review, we have

provided an overview of the recent efforts on this topic. Specifically,

we summarize existing techniques into three subgroups based on

the type of the core learning modules: representation look-up tables,

autoencoders, and graph convolutional networks. Although many

techniques have been developed for a wide spectrum of social networks

analysis problems in the past few years, we believe there still remains

many promising directions that are worth further exploring.

6.1. Dynamic Networks
Social networks are inherently highly dynamic in real-life scenarios.

The overall set of nodes, the underlying network structure, as well

as attribute information, might evolve over time. As an example,

these elements in real world social networks such as Facebook could

correspond to users, connections, and personal profiles. This property

makes existing static learning techniques fail in working properly.

Although several methods have been proposed to tackle dynamic

networks, they often rely on certain assumptions, such as assuming

that the node set is fixed and only deals with dynamics caused by edge

deletion and addition (Li J. et al., 2017). Furthermore, the changes

in attribute information are rarely considered in existing works.

Therefore, how to design effective and efficient network embedding

techniques for truly dynamic networks remains an open question.

6.2. Hierarchical Network Structure
Most of the existing techniques mainly focus on designing advanced

encoding or decoding functions trying to capture node pairwise

relationships. Nevertheless, pairwise relations can only provide

insights about local neighborhoods, and might not infer global

hierarchical network structures, which is crucial for more complex

networks (Benson et al., 2016). How to design effective network

embedding methods that are capable of preserving hierarchical

structures of networks is a promising direction for further work.

6.3. Heterogeneous Networks
Existing network embedding methods mainly deal with homogeneous

networks. However, many relational systems in real-life scenarios

can be abstracted as heterogeneous networks with multiple types

of nodes or edges. In this case, it is hard to evaluate semantic

proximity between different network elements in the low-dimensional

space. While some work has investigated the use of metapaths (Dong

et al., 2017; Huang and Mamoulis, 2017) to approximate semantic

similarity for heterogeneous network embedding, many tasks on

heterogeneous networks have not been fully evaluated. Learning

embeddings for heterogeneous networks is still at the early stage,

and more comprehensive techniques are required to fully capture the

relations between different types of network elements, towardmodeling

more complex real systems.

6.4. Scalability
Although deep learning based network embedding methods have

achieved substantial performances due to their great capacities,

they still suffer from the problem of efficiency. This problem will

become more severe when dealing with real-life massive datasets with

billions of nodes and edges. Designing deep representation learning

frameworks that are scalable for real network datasets is another

driving factor to advance the research in this domain. Additionally,

similar to using GPUs for traditional deep models built on grid

structured data, developing computational paradigms for large-scale

network processing could be an alternative way toward efficiency

improvement (Bronstein et al., 2017).

6.5. Interpretability
Despite the superior performances achieved by deep models, one

fundamental limitation of them is the lack of interpretability (Liu N.

et al., 2018). Different dimensions in the embedding space usually

have no specific meaning, thus it is difficult to comprehend the

underlying factors that have been preserved in the latent space. Since

the interpretability aspect of machine learning models is currently

receiving increased attention (Du M. et al., 2018; Montavon et al.,

2018), it might also be important to explore how to understand the

representation learning outcome, how to develop interpretable network

representation learning models, as well as how to utilize interpretation

to improve the representation models. Answering these questions is

helpful to learn more meaningful and task-specific embeddings toward

various social network analysis problems.
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