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Network embedding, which aims at learning distributed representations for nodes in

networks, is a critical task with wide downstream applications. Most existing studies

focus on networks with a single type of edges, whereas in many cases, the edges of

networks can be derived from two opposite relationships, yielding signed networks. This

paper studies network embedding for the signed network, and a novel approach called

TEA is proposed. Similar to existing methods, TEA (Triad+Edge+Attention) learns node

representations by predicting the sign of each edge in the network. However, many

existing methods only consider the local structural information (i.e., the representations

of nodes in an edge) for prediction, which can be biased especially for sparse networks.

By contrast, TEA seeks to leverage the high-order structures by drawing inspirations

from the Structural Balance Theory. More specifically, for an edge linking two nodes,

TEA predicts the edge sign by considering the triangles connecting the two nodes

as features. Meanwhile, an attention mechanism is proposed, which assigns different

weights to the different triangles before aggregating their predictions for more precise

results. We conduct experiments on several real-world signed networks, and the results

prove the effectiveness of TEA over many strong baseline approaches.

Keywords: signed network, network representation, structural balance theory, attention mechanism, higher order

structures

1. INTRODUCTION

Networks are the universal choice of data structure for representing relationships between
interconnected objects in a wide variety of disciplines. This includes computer networks,
biological network, chemical compounds, the socio-economical phenomenon like the six degrees
of separation (Backstrom et al., 2011) etc. Given the ubiquity of network data, various approaches
have been proposed in the literature to learn network embedding (Perozzi et al., 2014; Tang et al.,
2015; Grover and Leskovec, 2016; Wang et al., 2016; Yang et al., 2016). These techniques map the
nodes in the network to low dimensional real-valued vectors which can encode important node
attributes and connectivity structure. Essentially, network embedding techniques aim to learn node
embeddings which preserve proximity between the nodes. Such techniques are critical tools in
the toolbox of network analysis. The learned node embeddings have been shown to be useful in a
variety of downstream applications, such as node classification (Perozzi et al., 2014), link prediction
(Grover and Leskovec, 2016) and graph visualization (Tang et al., 2016). The basic assumption
underlying these methods is that the nodes, that are connected by edges, are more likely to be
similar to each other than the unconnected nodes. This is known as the homophily effect (can be
described as Birds of a feather flock together).
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Though these network embedding techniques have been
very successful on a variety of tasks and domains, they have
largely focused on the unsigned networks. In the unsigned
networks, all the edges are derived from similar semantic
relationships like friendship, collaboration etc. While the edges
can encode different relationships, the relationships themselves
are not opposing in nature. But in many real-life situations,
the interactions are not limited to positive interactions and
the effect of negative (or opposing) relationships inter-plays
with the positive effects. In the context of social networks, the
interaction between the users could be friendly or hostile or the
relationships could be based on trust or distrust. In such cases,
the edges are derived from two opposite relationships and can
have opposite signs, thus forming a signed network. For example,
in the Epinions social network1, users can create relationships
(links) with other users that are based on opposing semantics
of “trust” (positive) and “distrust” (negative). In the Slashdot
social network2, users can mark other users as “friends” and
“foes,” forming the positive and the negative edges, respectively.
Another instance could be in the context of elections where a
voter could either vote in favor of (positive edge) or against
(negative edge) a candidate. While the positive edges indicate
strong relationship connections between nodes, the negative
edges usually indicate anti-relationship connections. There is
a subtle difference between negative edge and absence of an
edge. The absence of a connection between two users in a social
network does not tell us if the two users are likely to be friends
or enemies while the presence of a negative edge tells us that the
two users are enemies. Hence the effect of negative edges is not
the same as the effect of absent positive edges. Further, the socio-
psychological effects underlying the dynamics in signed networks
are different from those for unsigned networks (section 2.2).
Therefore, existing network embedding techniques, that have
been developed in the context of unsigned networks, can not be
applied directly on the signed networks.

It is important to highlight the difference between signed
edges and labeled edges. In the case of labeled edges, the different
type of relations may occur between different nodes but these
relationships need not be contrasting or opposing. In the case of
signed networks, the positive and the negative edges represent
relationships that are opposite of each other-friend vs. foes, trust
vs. distrust. The interplay of opposing relationships is distinct to
the signed networks.

To learn effective node representations in the signed networks,
some recent methods (Wang et al., 2017a,b; Wang H. et al., 2017)
are proposed, which can take into account both the positive
and the negative edges when learning the node representations.
For example, Wang et al. (2017b) proposed an approach to
discriminate between the positive edges, the negative edges and
the unlabeled edge with a neural network classifier. Though their
approach performs quite well on the link prediction task, they
typically consider only the local structure of the given network. In
other words, only the observed edges (i.e., positive and negative
edges) are used during training. However, in many real-world

1http://snap.stanford.edu/data/soc-sign-epinions.html
2http://snap.stanford.edu/data/soc-sign-Slashdot090221.html

networks, the observed edges can be very scarce, making existing
methods perform poorly on such real-world networks. To learn
more effective node representations, we seek to develop an
approach that can leverage high-order network structures along
with the observed edges when learning the representation of the
given network.

In this paper, we leverage the high-order structures in the
network by drawing inspiration from the Structural Balance
Theory as described in the context of social networks and social
psychology by Heider (1946) and as described in the context
of graphs by Harary (1953), Davis (1963), and Cartwright and
Harary (1956). The Structural Balance Theory states that in a
social setup, people would prefer forming relationships such that
a balanced state emerges in their interpersonal relationships. For
example, consider a group of three nodes (users) where there
exists an edge between all pair of nodes (that is, all the users have a
relationship with each other). When we consider the relationship
between any two nodes in isolation, they could either be friends
(positive edge) or enemies (negative edge). Now, when we think
of the group as a whole, the relationship between any two nodes
would affect their relationship with the third node. For instance,
if two of the users are friends with each other, they are both likely
to be friends (or enemies) with the third user. In more general
terms, given a set of three nodes, the relationship between the
nodes is said to be balanced when the multiplication of all the
edge signs is positive. Figure 1 presents a signed network with
both balanced and unbalanced states. Green edges have a positive
sign while the blue edges have a negative sign. The circles marked
in yellow are examples of balanced states while the other two
triangles (unmarked) are examples of unbalanced states. Based
on the Structural Balance Theory, the relationship between any
two nodes is likely to be consistent with the sign of the triad
connecting them. If there is a (+,+) or (−,−) triad between the
nodes, then it is more likely that the nodes would have a positive
relation. Otherwise, a negative relation is more likely to form.
Therefore, the information from the triads in a signed network
can effectively complement the information from the edges for
the task of inferring the relationship between the nodes. A natural
application of the Structural Balance Theory, for learning node
representations in a signed network, would be to use triads, along
with the edges, in the given signed network.

Building on the above idea, we propose a novel framework
for learning node embeddings in the context of signed networks.
Our approach leverages both the Structural Balance Theory and

FIGURE 1 | An example signed network, where green edges have positive

signs and blue edges have negative signs. Yellow circles mark two examples

of balance states.
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the network structure by considering both edges and triads when
learning the node embeddings. For each node, we learn two sets
of node embeddings-one focusing of the sign information and
the other focusing on the structure information. We combine
these two embeddings based on the principle of Structural
Balance Theory to predict the sign between any pair of nodes
in the network. Specifically, for each pair of linked nodes, our
approach samples a number of triads connecting the nodes.
Then, we use the sign embeddings of nodes, along with the
sampled path, to predict the sign between the given pair of
nodes. Since we sample multiple triads, each of which is used
to make an independent prediction, we need a mechanism
to integrate the result of different predictions into a single
prediction. To that end, we leverage the attention mechanism
(Bahdanau et al., 2014) that enables us to assign different
weights or importance to the different triads so that we can
focus on the most informative triads. We describe the model
and the training schemes in detail in section 4 and show that
our approach can be used for both directed and undirected
signed networks.

We conduct experiments on three real-world signed networks
of varying sizes. Experimental results on the edge sign prediction
task show that our, simple and intuitive approach, is very close in
performance as compared to the state of the art approaches for
learning signed network embedding.

In summary, we make the following contributions in
this paper:

• We study the problem of signed network embedding, and we
draw key inspirations from the Structural Balance Theory for
leveraging high-order structures of a network.

• We propose a novel approach to learn node embeddings in the
signed networks. Our approach leverages information from
both edges and triads in the networks.

• We leverage the attention mechanism to aggregate
information from different triads and edges. Our extensive
experiments on 3 real-world signed networks highlight the
effectiveness of our approach.

2. PRELIMINARIES

2.1. Problem Definition
Networks are the most common choice of data structure for
representing the relationship between objects. Hence networks
are ubiquitous in the real world withmany different forms. In this
paper, we study a specific class of networks, the signed network.
We formally define the signed networks to distinguish them from
other class of networks.

Definition 1. (Signed Network.) A Signed Network can be
formally denoted as G = (V ,Epos ∪ Eneg). Here, V represents the
set of nodes in the network. Epos and Eneg represents the set of edges
with the positive and the negative signs, respectively. These signs
indicate opposite relationships.

Signed networks are very popular in the context of social
networks. For example, in the Epinions social network, users
can form positive and negative edges based on the “trust” and
“distrust” relations. In the Slashdot social network, users can

mark other users as “friends” and “foes,” which can be treated as
positive and negative edges, respectively.

In this paper, we are interested in learning node embeddings
in the given signed network. The learned node embeddings
are expected to preserve both the structural properties and
the signed properties of the nodes in the network while
being useful for various downstream tasks including the
task of edge sign prediction. We now formally define our
problem as follows:

Definition 2. (Signed Network Embedding) Given a signed
network G = (V ,Epos ∪ Eneg) and a vector dimension d ≪ |V|,
the problem of Signed Network Embedding aims to learn a vector
representation {xv} for each node v ∈ V.

Real-world signed networks tend to be very sparse (Table 1)
and hence using just the edge information for learning the
node embeddings would not be sufficient. So we propose to
leverage the higher order structures in the network to learn node
embeddings. Specifically, we propose to leverage the triads in the
networks, which are formally defined below.

Definition 3. (Triad) Given a signed network G = (V ,Epos ∪
Eneg), a triad is a collection of 3 nodes (x, y, z) such that there exists
edges between nodes (x, y), (y, z) and (x, z). If the given graph G is
directed, then directed edges should exist between (x, y), (y, z), and
(x, z). A triad has three signs corresponding to the three edges. We
denote the sign of the triad (x, y, z) by the sign between edges (x, y)
and (y, z). If the sign between the two edges are “(positive, positive),”
we denote the sign of the triad to be “pos-pos.” Similarly, we use
the notation “pos-neg,” “neg-pos” and “neg-neg” when edge signs
are (“positive,” “negative”), (“negative,” “positive”) and (“negative,”
“negative”), respectively.

2.2. Structural Balance Theory
The concept of Structural Balance is grounded in the principles
from social psychology (Heider, 1946) and has been extended
for graphs by Harary (1953), Davis (1963), and Cartwright and
Harary (1956). Consider a group of three nodes (users) where
every node is related to every other node. This implies there
exists an edge between any pair of nodes. The sign of each
edge could either be positive (indicating friendship) or negative
(indicating enmity). When the relationship between a pair of
nodes is considered in isolation to the other nodes, the edge
could be either positive or negative. But when the group is
considered as a whole, the Structural Balance Theory puts some

TABLE 1 | Statistics of the datasets.

Epinions Slashdot Wikipedia

No. of nodes 131,828 82,140 7,118

No. of edges 841,372 549,202 103675

% of positive edges 85.3 77.4 78.8

% of negative edges 14.7 22.6 21.2

No. of training edges 673,097 439,361 82940

% of nodes with positive degree one 38.2 25.5 24.9
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constraints on which configuration of signs are more likely
than others.

More specifically, it states that when the 4 distinct ways of
labeling the edges are considered, as described in Figure 1, the
triangles with 3 positive edges or with 2 negative edges and
1 positive edge are balanced (and are more likely to form)
while the other two configurations are unbalanced (and are less
likely to form). The notion of balanced vs. unbalanced states
can be explained in terms of the interpersonal relationships
between the nodes. In Figure 2A, the 3 nodes are mutual
friends and in Figure 2C, two nodes are friends with each
other and have a mutual enemy. These 2 kinds of relationships
are natural and more likely. In Figure 2B, the orange node is
friends with both green and blue nodes but they themselves
are not friends. In such a scenario, the orange node would
either try to bring green and blue nodes closer and change the
negative sign of the edge between them to positive or would
side with either one of them, hence turning one of its positive
edges to negative. Similarly, in Figure 2D, all the 3 nodes are
enemies with each other and two of them are likely to join
forces against the third (based on the conventional wisdom that
enemy of my enemy is my friend) thereby turning one of the
negative edges to positive. In both Figures 2B,D there is some
kind of social unbalance or strain that could be remedied by
having an odd number of positive edges. This is the crux of
Structural Balance Theory-in signed networks, when groups of
3 completely connected nodes (triads or cliques of size 3) are
considered, the configurations with an odd number of positive
edges are more likely to occur than configurations with an even
number of positive edges. This insight provides the inspiration
for our proposed approach where we leverage the information
about paths in the network when predicting the sign between
the edges.

Structural Balance Theory is one of the reasons why
the approaches developed for unsigned networks cannot be
directly applied for signed networks. In unsigned networks,
a node is more likely to be similar to its second order
neighbors as compared to a node with which it is not
connected even in terms of second order neighbors. In signed
networks, the nature of the relationship between second-
order nodes depends on the nature of the path connecting
them. A node is more likely to have a positive edge with
“friends of their friends” and a negative edge with “enemy
of their friends.” Such dependence is not exhibited by the
unsigned networks.

3. RELATED WORK

We propose to leverage the Structural Balance Theory along
with the network structure to learn node representations for a
given signed network. We further use the attention mechanism
to aggregate the predictions from the different higher order
structures. As such, our work is related to the paradigm of node
representation learning, to the Structural Balance Theory and to
the attention mechanism.

3.1. Node Representation Learning
Given a network, the goal of node representation learning
techniques is to embed the network into a low-dimensional
vector space, where every node is represented as a dense, real-
valued vector. The learned node representations are expected to
preserve the properties of the nodes and have been shown to
perform well across various tasks, including node classification
(Perozzi et al., 2014), link prediction (Grover and Leskovec,
2016) and network visualization (Tang et al., 2016). Most node
representation learning algorithms (Perozzi et al., 2014; Tang
et al., 2015) focus on unsigned networks, in which only a single
type of edge exists. A different class of approaches focuses on
using matrix factorization based techniques to embed the high
dimensional adjacency matrix into a low dimensional vector
space. Techniques like eigendecomposition of the Laplacian
matrix (Chung, 1997) and factorizing the k-step transition
matrix (Cao et al., 2015) fall under this category. Different from
these studies, in this paper we focus on the task of learning
representation for the signed networks, where the edges have two
opposite signs and represent contradictory relationships.

There are also some studies working on node representation
learning in signed networks (Wang et al., 2017a,b; Wang H.
et al., 2017). Typically, these methods will learn a classifier to
discriminate between the positive, the negative and the unlabeled
edges. The idea behind these approaches is that the learned
node representations can well preserve both the positive and the
negative relations in the network which is helpful in achieving
impressive results on link prediction task (Wang et al., 2017b).
However, these methods only consider the local structure of
the network. More specifically, they consider only the observed
edges (i.e., positive edges and negative edges) for training the
model. In many real-life networks, the observed edges can be
very scarce and these approaches suffer from the problem of data
sparsity. Our approach circumvents the problem by considering
the high-order structure of the given network. Specifically, we

FIGURE 2 | Different combinations of signs in a triad. In (A), all the edges have a positive sign and the triad is balanced. In (B), two edges have the positive sign and

one edge has the negative sign. This makes the triad unbalanced. In (C), two edges have the negative sign and one edge has the positive sign. This makes the triad

balanced. In (D), all the edges have the negative sign, which makes the triad unbalanced.
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draw inspiration from the Structural Balance Theory and leverage
the triads in the network when learning the node representations.

Guha et al. (2004) was one of the earliest works that proposed
to model the problem of predicting edge signs in a social network
as a computational problem. They proposed a framework based
on the trust propagation schemes based on the idea that a user
is much more likely to believe statements from a trusted friend
than from a stranger. The framework could be used to build a
web of trust and predict trust and distrust between a given pair
of users. Given the adjacency matrix corresponding to the signed
network, a combined matrix is computed. This combined matrix
is equivalent to the one-step propagation of trust in the signed
network. The linear combinations of the higher powers of this
combinedmatrix are computed to propagate the trust and distrust
effects further in the network. Unlike our approach, Guha et al.
(2004) does not model the problem as that of representation
learning. Further, it does not seek to leverage theories grounded
in social sciences.

3.2. Structural Balance Theory
Leskovec et al. (2010) was one of the earliest works to explore
the edge sign prediction problem under the light of social-
psychological theories of balance and statues (Heider, 1946;
Cartwright and Harary, 1956). The underlying idea is that the
sign of the edge (a, b) should be such that it minimizes the
number of unbalanced triangles which have (a, b) as one of
its edges. In the context of the Structural Balance Theory, an
unbalanced triangle is defined as a triangle with an odd number
of negative edges. If we denote the positive edges as “+1” and
negative edges as “-1,” the product of the edges, in a balanced
triangle, is positive while it is negative in an unbalanced triangle.
Leskovec et al. (2010) employ supervised learning approaches
and use two class of features. The first class of features is
based on (signed) degree of nodes and includes the number of
incoming (and outgoing) positive (as well as negative) edges. The
second class of features is based on the principles from social-
psychological theories and uses the count of the different kind
of triads (or triangles) in the given network. The paper reported
results on 3 datasets and just like (Guha et al., 2004), adopted
a leave-one-out cross-validation approach. While this approach
works very well in practice, it relies on hand engineering the
features, In contrast, we model the problem from the perspective
of representation learning and do not need hand-crafted features.

Chiang et al. (2011) extends the idea of leveraging features
guided by theories from social sciences and describe many
measures of imbalance that can be derived from Social Balance
Theory and Signed Graph Theory. Further, they show that the
performance of the model can be improved if the measure of
imbalance depends on higher order cycles in the network. This
effect is more predominant for sparse graphs where the edges
are scarce. Like their approach, our model also uses higher order
structures in the network but the emphasis of our model is on
learning the representation of the network. Further our approach
does not need different handcraftedmeasures of social imbalance.

Recently, Kim et al. (2018) proposed a general network
embedding method that can represent both the sign and the
direction of edges in the embedding space. They formulate (and

optimize) likelihood functions over both the direct and indirect
signed networks and their approach outperforms all the other
approaches we have discussed so far. Hence we consider their
model among the baselines that we use to evaluate our proposed
model. Just like their approach, our approach works for both
directed and undirected signed networks (explained in detail in
section 4.7). Our work is different from their work as we leverage
both triads (based on principles from Structural Balance Theory)
and attention mechanism (to assign an importance weight to
predictions corresponding to different triads).

3.3. Attention Mechanism
When predicting the sign for an edge (a, b), our approach
sample multiple higher order structures which connect the nodes
a and b. For each of the sampled paths, the model makes a
prediction for the sign of the edge (a, b). Sampling multiple
higher order structures lead to multiple predictions which need
to be aggregated into one prediction. For aggregating these
predictions, we use the attention mechanism where the model
attends to each higher order structure and assigns a weight
to the prediction corresponding to that structure. Attention
mechanism was first proposed in the context of machine
translation systems by Bahdanau et al. (2014). Since then, it has
been successfully applies to many applications including image
classification (Mnih et al., 2014), question answering (Seo et al.,
2016) and graph representation learning (Lin et al., 2016) among
others (Vaswani et al., 2017). While our proposed method draws
inspirations from the prior work on attention, we apply the idea
of using attention to a new application ie learning representation
for a signed network. This has not been explored before to the
best of our knowledge.

4. MODEL

In this section, we introduce our approach for learning
representations for signed networks. Our proposed model can be
described in terms of three broad ideas. The first idea is that in the
case of signed networks, each node has two kinds of attributes (or
properties)-one which affects which other nodes would it link to
and the other which affects the sign of those links. Given these
two related but different tasks, we propose to have two set of
embeddings which are jointly used for predicting the sign of a
given edge. The second idea is that the Structural Balance Theory
provides us with a way to leverage the higher order structures
along with the edges for learning the network representation. The
third idea is that attention mechanism can provide an effective
technique for combining predictions made using multiple higher
order structures. Note that we will first describe all the three ideas
assuming the network to be undirected. Then we would describe
how the proposed approach can be easily extended for the case of
directed networks (section 4.7). In fact, all the network datasets
that we consider for evaluating our proposed model are directed
in nature which shows that our approach works quite well on the
directed networks.

We now describe each of the three ideas in detail.
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4.1. Two Sets of Node Embedding
In the case of an unsigned network, the network structure can
be described just in terms of edge connections (which gives the
degree of proximity or closeness between the nodes) while in case
of signed networks, the network structure needs to be described
in terms of both edge connections and the sign of the edges.
Hence, we propose to learn two sets of embeddings for each
node. The first set of node embeddings is referred to as the
structural node embeddings and are denoted by Embstruct . Here
the subscript “struct” indicates that these embeddings are learned
while focusing only on the structural (or edge) connectivity. The
sign of the edges is ignored while training Embstruct . Since this
learning phase treats the network to be an unsigned network, we
can use any of the existing unsigned node embedding techniques
and in particular, we use the LINE embedding technique as
described in Tang et al. (2015). LINE uses an edge sampling
algorithm to tune a carefully designed objective function that
can preserve both the local and global network structures. We
used LINE given that it is shown to work with many different
classes of networks: undirected, directed, and/or weighted. Note
that we plug in any other node embedding learning technique
here (like Perozzi et al., 2014; Grover and Leskovec, 2016) as
the downstream model is independent of the node embedding
technique used here.

As we have already discussed (section 2.2), treating the signed
network as an unsigned network is not a sound strategy and
thus we learn another set of node embeddings which we refer
to as the signed node embedding and denote as Embsign. Here
the subscript “sign” indicates that these embeddings are learned
with the objective of predicting the correct sign between a given
pair of nodes (a, b). The Embsign embeddings are be trained in
the following manner: Consider the edge between two nodes a
and b. If the edge sign is positive, we denote the “true sign” as 1
otherwise as 0. We compute the probability of the sign, between
node a and b to be positive, as

p
edge
sign (a, b) = σ (Embsign(a).Embsign(b)

T) (1)

p
edge
sign (a, b) denotes the probability of the edge sign, between nodes

a and b, as predicted by the sign embedding model. Here the
superscript “edge” indicates that the prediction is made using
the nodes that make up the edge. Then we minimize the cross-
entropy loss between the predicted sign and the actual sign. This
loss is used to train the Embsign embeddings. We discuss some
optimizations in the training procedure in section 4.5.

4.2. Leveraging Higher Order Structures
Using Structural Balance Theory
Most existing network embedding techniques only consider the
edges (i.e., positive and negative edges) in the given network
when learning network representation. When the edges in
networks are scarce, their performance can be very limited. Our
approach addresses this challenge by considering the high-order
structures such as triads (definition 3) in the network. We draw
inspiration from the Structural Balance Theory (Cartwright and
Harary, 1956), which states that nodes would prefer forming

signed edges such that a balanced state emerges in their
interpersonal relationships. The theory implies that the sign
between a pair of nodes should be consistent with the sign of
triads containing them. This motivates us to leverage the triad as
a feature for the task of SignedNetwork Embedding. Note that we
consider only triads as it is very efficient to enumerate all possible
triads in a given network (Azad et al., 2015). In general, our
approach can be easily extended for other higher level structures
as well.

We now describe how we model triads for predicting the
edge sign.

4.3. Modeling Each Triad
Consider a triad (definition 3) of the form [a, b, c] which
comprises of the edges (a, b), (b, c), and (a, c). We want to predict
the sign between nodes a and c. If the signs for the edges (a.b) and
(b.c) are known beforehand, we can compute the sign(a, c) based
on the Structural Balance Theory as follows:

sign(a, c) = xnor(sign(a, b), sign(b, c)) (2)

Here xnor refers to the Exclusive NOR operation and is also
known as enor, exnor or nxor.

There are two downsides to directly using this approach
(Equation 2). The first downside is that in the real-life setting,
we do not know the sign for all the edges, So even if we know that
there is an edge between a and b and between b and c, we may not
know the nature of the relationship between them (ie the sign of
edge between them). The second downside is that if we only rely
on edges where the sign is known beforehand, we can not apply
any learning technique as our “features” (in this case, sign(a, b)
and sign(b, c)) are already fixed.

We get around both of these problems by using the “sign”
embeddings Embsign which are trained to predict the sign for a
given edge ie we use the Embsign embeddings to predict the sign
for edge (a, b) and (b, c). Let the predicted signs be denoted as

p
edge
sign (a, b) and p

edge
sign (b, c) respectively. Now the xnor operation is

described for discrete, boolean symbols while our probabilities
are real numbers. We have two options here: First option is that
we map the probabilities to the predicted sign (which is 0 or 1).
Since this would introduce a non-differentiable component in
the pipeline, we would have to use REINFORCE-style algorithm
(Williams, 1992) for training the model.

Alternatively, we could approximate the xnor operator for two
real numbers α and β (which are in the range [0, 1]) as follows:

xnor(α,β) = α ∗ β + (1− α) ∗ (1− β) (3)

This is analogous to the logical form of xnor (between two
boolean variables a and b) which can be written as:

xnor(a, b) = (a and b) or (not a and not b) (4)

Assuming that both p
edge
sign (a, b) and p

edge
sign (b, c) are real numbers in

the range [0, 1],(which we ensured by normalizing the values so
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that we could interpret these numbers as the probability of the
edge being positive) we could predict the sign for edge between a
and b as ptriadsign (a, c) as follows:

ptriadsign (a, c) = p
edge
sign (a, b)∗p

edge
sign (b, c)+(1−p

edge
sign (a, b))∗(1−p

edge
sign (b, c)) (5)

Here the superscript “triad” indicates that the prediction is made
using all the nodes in the triad while the superscript “edge”
indicates that the prediction is made using only the nodes that
make up the edge.

Given the true value of sign(a, c), we can minimize the cross-
entropy loss between the true value and the predicted value of
the sign. The resulting loss would be used to update the node
embeddings of all the three nodes a, b and c.

We describe how our approach is different from the other
works like (Kim et al., 2018) which also propose to use the
Structural Balance Theory for predicting signs of higher order
structures. In those cases, the idea is to sample a walk of nodes
(a, b, c, d...) where the sign between every consecutive pair of
nodes ie (a, b), (b, c) etc are known. The Structural Balance
Theory is used to annotate extra pairs of nodes ie (a, c), (a, d)
etc and then use them as part of the training data. Hence,
in those approaches, the sign for all the edges comprising of
the walk should be known. In our case, we do not need to
know the sign of the triad as we can infer the sign using
the “sign” embedding model Embsign. Further, the Structural
Balance Theory describes a social phenomenon and is not an
absolute physical law. Thus, it can make incorrect predictions.
So when we use the theory to augment the dataset by annotating
unseen edges, it would lead to incorrect training data being
mixed with the correct data. The idea there is to account for
Structural Balance Theory by augmenting the dataset. In our
case, we never modify the given true data and include the effect
of the Structural Balance Theory by augmenting the prediction
mechanism. This allows the model the encode the knowledge of
Structural Balance Theory without having to train on spurious
examples. In the next section, we describe how we make our
model even more robust by sampling multiple triads, computing
predictions corresponding to each triad and aggregating the
predictions by means of attention mechanism.

4.4. Integrating Multiple Triads Using
Attention
So far, we have considered a node embedding model for
learning representation for a given signed network. Then we
discussed how Embsign model can be extended to incorporate
the effect of Structural Balance Theory by considering higher
order structures, namely triads, in the network. In this section,
we explore the third idea that informs the design of our model.

The third idea is to sample multiple triads (and not just one)
when we want to predict the sign for a given edge (a, c) as
this helps to leverage even more information from the network.
Given the edge (a, c), we sample n triads where the ith triad
is represented as (a, bi, c). For each of the n triads, we make

independent predictions as described in Equation 5. That is, for
the ith triad, we have the predicted sign pisign(a, c) given as:

pisign(a, c) = p
edge
sign (a, b

i) p
edge
sign (b

i, c) + (1− p
edge
sign (a, b

i)) ∗ (1− p
edge
sign (b

i, c))

(6)

We can also predict the sign between nodes a and c using the
sign embedding model Embsign as well. We denote the prediction

obtained in this way as p
edge
sign (a, c).

Now, we have n+ 1 predictions corresponding to the sign for
the edge (a, c) and we need to aggregate these predictions into a
single prediction. A straight-forward approach is to combine by
these predictions by performing simple averaging. This approach
is not likely to be very effective as the different features (different
triads and edges) are not likely to be equally informative. Hence
we use the attention mechanism to assign weights to each
prediction and then perform a weighted averaging over the
different predictions.

To obtain the attention weights, we need some notion of
similarity which can guide the model to decide how much
weight should be placed on each prediction. Recall that we
have n tuples of the form (a, bi, c) and an edge of the form
(a, c). For computing the attention scores, we use the structural
embedding, represented as Embstruct . The key benefit here is that
the structural embeddings have been trained to capture node
similarity (irrespective of the sign). Using Embstruct allows the
model to assign attention weights independently to each triad,
irrespective of its prediction.

Formally, we encode the edge (a, b) into a vector by adding the
structural embeddings corresponding to node a and b as shown:

Eedge(a, c) =
Embstruct(a)+ Embstruct(c)

2
(7)

Similarly, the triad (a, bi, c) is also encoded into a vector by adding
the structural embeddings correspponding to nodes a, bi and c
as shown:

Etriad(a, b
i, c) =

Embstruct(a)+ Embstruct(b
i)+ Embstruct(c)

3
(8)

We can then compute the similarity score corresponding to each
triad (a, bi, c) as the dot-product between the representation of
edge(a, c) (given by Eedge(a, c)) and representation of triad(a, b

i, c)

(given by Etriad(a, b
i, c)). This is similar to the dot-product

attention used in Luong et al. (2015). The similarity score

assigned to the prediction p
edge
sign (a, c) is 1. The similarity scores are

then normalized by dividing by the sum of all the similarity scores
to obtain the attention scores. For the ith triad, the attention score
λi is given as :

λi =
exp (Eedge(a, c)

TEtriad(a, b
i, c))

Z
(9)

where Z is the normalization constant. Basically, If the triad
embedding has a large bilinear product with the edge embedding,
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FIGURE 3 | Framework overview. Given a signed network, our framework learns node embeddings by predicting the sign of each training edge. For each pair of the

linked nodes, we first sample a batch of triads that connect the given nodes. The triads are used to make the prediction about the sign of the given edge as described

in section 4.3 (Equation 5). Finally, the prediction results from different triads are integrated using an attention mechanism as described in section 4.4 (Equation 10).

it means that the nodes a and b believe the triad is informative
and the triad would have a large weight in the final prediction.
These steps have been illustrated in Figure 3.

Formally, for a pair of nodes a and c, we will sample a mini-
batch of triads consisting of the two given nodes. The size of the
mini-batch n is an hyper-parameter. If there are less than n triads
between a and c, we will pad the batch with some dummy triads
[a,< pad >, c] that we filter out during training. Each of the k
triads is used to make a prediction about the edge (a, c) using the
Equation 1. Then we use the sign embedding corresponding to
nodes a and b to make the prediction about the sign of the given
edge using Equation 5. Attention scores λi are computed for each
of the predictions as given by Equation 9.

Once we have obtained the attention scores over different
triads, we perform a weighted averaging over the predictions of
the different triads, using the attention scores as the weights. We
present the formal equation:

psign(a, c) = λ0 ∗ p
edge
sign (a, c)+

n∑

i=1

λi ∗ p
triad
sign (a, bi, c) (10)

During training, we expect the predicted sign between node a
and c could be consistent with the real sign. Therefore, the cross-
entropy between the predicted sign and the real sign is treated as
the objective function.

4.5. Optimization
The only trainable components in our model are the embeddings
- Embstruct and Embsign. The entire framework can be effectively
optimized, end-to-end, through the backpropagation algorithm.
We summarize the different steps in the process in Algorithm 1.

We now describe some strategies that we used to accelerate
the training.

The Structural embeddings are only used during when
assigning attention scores to different triads. Hence, we decided
to pre-train the node embeddings using LINE (Tang et al., 2015)
and only slowly finetune them when computing attention scores.
This has many benefits:

1. Since the Embstruct model is trained independently, we are free
to use any technique for learning the embeddings irrespective
of the other components. For example, we could use a random

Algorithm 1: Learning Signed Network Embedding.

Require: Signed network G

Ensure: Learned Node embeddings

1: Train the structural node embedding using LINE (section 4.1)

2: while not converge do

3: Sample an edge (a, c) from G.

4: Predict p
edge
sign (a, c) (Equation 1).

5: Compute edge encoding (Equation 7).

6: Sample n triads {(a, bi, c)}ni=1 which connects a and c.

7: for each triad (a, bi, c) do

8: Predict ptriadsign (a, c) (Equation 5).

9: Compute triad encoding (Equation 8).

10: end for

11: Calculate the attention over different triads (Equation 9).

12: Calculate the final prediction (Equation 10).

13: Compare the predicted sign of (a, c) with the real sign.

14: Perform backpropagation to update parameters.

15: end while

walk based approach even though the other components in the
pipeline do not use random walks for training.

2. Since the embeddings are pretrained, the results from the
attention module are quite good right from the start of the
training. This makes it easier to tune the other components.

3. We could re-use the pretrained embedding model across
different runs which reduces the overall time to train and
validate the models.

Inspired by the benefit of using pretrained Embstruct embeddings,
we perform pretraining for the Embsign embeddings as well where
we do not consider any triads (and hence any attention weights).
This pretrained model is further trained via sampling triads and
the pretraining is seen as a means to provide a good initialization
to the model.

We note that we tried training the model without the
pretraining steps as well. It takes longer time (due to the
required fine-tuning of many more hyper-parameters) when all
the components are being trained simultaneously from scratch.
Hence the main contribution of these optimization tricks is to
accelerate the end-to-end workflow.

Table 1 highlights the high-class imbalance between the
positive and the negative edges. While learning the sign
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embedding, we account for this imbalance by sampling the
negative edges with approx 2x frequency as compared to the
positive edges. Oversampling negative edges seems to be crucial
for learning useful network representation.

Another optimization we did was to separately handle the
nodes with a degree of 1. As shown in Table 1, around 25–30%
of the nodes in the network have a positive degree of one. It
is quite difficult to learn good representations for these nodes
(as they have only 1 neighbor) and they slow down the training
procedure. Some works like Wang et al. (2017b) remove such
nodes from the training data. Instead, we follow the scheme
proposed by Kim et al. (2018) where the nodes with positive
degree-one are eliminated and the embedding is learned for
the rest of the network. Then each of the eliminated nodes is
assigned the embedding corresponding to its only neighbor ie the
eliminated nodes share the embedding with their only neighbor.

4.6. Inference
Once the training process converges, the learned node
embeddings can be leveraged for various downstream tasks. One
popular example is to predict the sign of a potential edge (a, c).
For this task, we first sample a batch of triads connecting both
the nodes. For each triad, we make a prediction using Equation
5. Further, we use just the nodes a and c to make the prediction

for their sign (i.e., p
edge
sign (a, b)). Then we compute the attention

scores using equation 9 and aggregate the different predictions
to obtain the final prediction.

Consider a sampled triad (a, bi, c) where the task is to predict
the sign of the edge (a, c). To predict ptriadsign (a, c), we could either

use the actual signs for edges (a, bi) and (bi, c) or could use

the predicted signs (p
edge
sign (a, b

i) and p
edge
sign (b

i, c)). In section 4.3,

we describe the rationale behind choosing the second approach
during training. But during evaluation, we are free to use either
approach. In practice, we tried three variants-always use true
signs, always use predicted signs, andmix both true and predicted
signs. We find that always using predicted signs or mixing both
true and predicted signs works better than always using just the
true signs. In case of predicted signs, the predictions are real
values between 0 and 1 and is not a hard 0/1 prediction which
probably gives some more flexibility to the model (in terms of
expressing confidence in an edge being positive or negative).

4.7. Directed Graph
So far, we have described our proposed approach assuming
that the given signed network is undirected in nature. Now we
discuss how our model can be applied in the context of the
directed network. Note that all the datasets that we consider
for evaluation are in fact directed signed networks (section
5.1). The only learnable components in our model are the two
embedding layers: Embstruct and Embsign. A very straightforward
way to extend them for directed networks is to consider separate
embeddings for the nodes depending on whether they are the
incoming node for an edge or the outgoing node. We denote
the incoming structural and signed node embeddings as Embinstruct
and Embinsign, respectively. Similarly, we denote the outgoing

structural and signed node embeddings as Emboutstruct and Emboutsign

respectively. Now we can re-express the main equations from
previous sections for the case of directed signed networks. Note
that a directed edge (a, b) means that the a in the outgoing node
and b is the incoming node.

Equation 1, which predicts the sign of an edge as function of
its nodes can be written as:

p
edge
sign (a, b) = σ (Emboutsign(a).Embinsign(b)

T) (11)

Equation 7, which encodes an edge into a continuous vector can
be written as:

Eedge(a, c) =
Emboutstruct(a)+ Embinstruct(c)

2
(12)

Equation 8, which encodes a triad into a continuous vector can
be written as:

Etriad(a, b
i, c) (13)

=
Emboutstruct(a)+ Embinstruct(b

i)+ Emboutstruct(b
i)+ Embinstruct(c)

4

5. EXPERIMENT

Our empirical protocol ensures a rigorous evaluation of the
proposed framework on several real-world signed network
datasets. We compare against a wide variety of models-
models that use handcrafted features, models that were
originally proposed for unsigned networks, models using matrix
factorization based approaches and deep learning based models
that are specifically designed for the task for learning signed
network embedding. We show that despite being very intuitive
and highly modular, our proposed approach performs very well
against these different classes of models.

We now introduce the datasets, baselines models and the
experimental setup.

5.1. Datasets
We evaluated our proposed approach on three real-world signed
networks datasets. Although all these networks are directed in
nature, our model does not make any assumption about the
input graph being directed and can work with both directed and
undirected graphs as discussed in section 4.7.

The summary-statistics for all the three signed network is
available inTable 1. Further, the frequency of different triad types
(in term of signs) is described inTable 2. The datasets are publicly
available 3. We evaluate our dataset on graphs having both a large
number of nodes (>100 K) and very few nodes (<10 k).

1. Epinions is a social network that captures the “who-trust-
whom” relationship between the users of the consumer review
site epinions.com. The members can mark which community
members they want to “trust” (thereby making positive links)
or “distrust” (thereby negative links). this network of the
trust-based relationship becomes a signed network.

3Available at http://snap.stanford.edu/data/#signnets
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TABLE 2 | Triad statistics of the datasets.

Epinions Slahsdot Wikipedia

% of + + + triads 87 84 70.2

% of + - - triads 7.1 7.2 20.7

% of + + - triads 5.2 7.7 8

% of - - - triads 0.7 1.1 11

2. SlashDot is a technology-related news website where
members can tag other members as “friends” (positive
links) or “foes” (negative links) thereby creating explicit
positive/negative relationships within the social community.

3. Wikipedia is a community authored encyclopedia. Wikipedia
hosts elections to determine which users should be promoted
to the admin role. A user could vote in favor of a candidate
(thus making a positive edge) or vote against a candidate (thus
making a negative edge) or abstain from voting (this leads
to absent edge). For our work, we focus only on the signed
network formed by the positive and negative edges and do not
consider the case of abstained voting.

There are some common observations which can be made in
reference to all the datasets: First, all the datasets are highly
unbalanced, not just in terms of frequency of positive vs. negative
edges (around 80% positive edges as shown in Table 1) but also
in terms of frequency of different type of triads (over 70% of
the triads are of type “+ + +” as shown in Table 2). Secondly,
the percentage of nodes with positive degree one is quite high
(up to 38%) shown in Table 1. This highlights the need for
treating these nodes separately in order to save on redundant
computations (section 4.5).

5.2. Experiment Setup
In this section, we describe the general experimental setup that
we used. We describe how the dataset splits were created, what
metrics were used (and why) and include other implementation
specific details that would be helpful for others.

5.2.1. Dataset Splits

The data sets do not have a standard train-val-test split and
different works use different splits. Following Kim et al. (2018),
we perform a 5 fold cross-validation approach. During the
evaluation stage, the learned node representations are used to
predict the sign of edges that were not seen during training.
Since our model uses information about the triads (triangles)
in the given network, we took extra care to ensure that while
enumerating the triads, we consider only those edges which are
“visible” in the training data. This ensures that none of the “test”
edges are seen by the model even as part of the sampled triad.

5.2.2. Evaluation Metrics

Given the input signed network, the downstream task is to
predict the sign for any edge in the network. Since, for a given
edge, edge-sign can either be positive or negative, we formulate
the problem as a two-class classification problem. A common
characteristic of the real-life signed networks is that they are
highly biased toward positive edges (as seen in Table 1). In the

datasets that we consider, the ratio of the number of positive
and negative is roughly 4:1. this high-class imbalance makes the
Micro-F1 (accuracy) score a misleading metric for performance
and we report the AUC metric along with the Micro-F1 score.
AUC is more robust to class imbalance.

5.2.3. Implementation Details

We have implemented our proposed models using PyTorch
(version 0.3.1) from Paszke et al. (2017). Binary cross-entropy
loss and Adam optimizer (Kingma and Ba, 2014), are used for
all the experiments. Early stopping is used to prevent overfitting.
The size of both the “structural” embedding and the “sign”
embedding are kept fixed at 100 and the number of triads
sampled is fixed at 5.We tried some other embedding dimensions
and number of triads and found the results to be quite stable
across these parameters. When using the LINE model, we follow
all the recommendations as specified in the paper (Tang et al.,
2015). When pretraining the “structural” embedding and the
“sign” embedding, we use a part of the training data as the
validation data to decide when to stop training. For the baselines,
we use the results reported in Kim et al. (2018) as they do
a thorough evaluation with 6 baselines. The largest model is
trained with 8 processes and takes around 30 min to converge
(though in practice we ran it longer to ensure that it had
actually converged).

5.3. Baselines
We refer to our proposed model as the TEA

(Triad+Edge+Attention) model. This model uses both triad
features and edge features (in accordance with the Structure
Balance Theory) for learning the representation for the different
nodes in the given signed network. It further uses the attention
mechanism to compute a weighted aggregate of the predictions
corresponding to the edge and the different triads. We compare
the TEAmodel with following models and variants:

1. Count-Based (CB)Model: Leskovec et al. (2010) proposed the
use of two class of count-based features - features based on the
(signed) degree of nodes and the features based on the count
for different kind of triads.

2. Node2Vec (N2V) Model: Grover and Leskovec (2016)
proposed a method to learn node embedding for unsigned
networks by performing random walks on the network. The
method is modified for the signed network by treating only the
positive edges as actual edges and ignoring the negative edges.

3. Matrix Factorization (MF) Model: Hsieh et al. (2012)
proposed to perform matrix factorization to learn a low rank
representation of the given signed network.

4. Balanced Normalized Signed Laplacian (BNS) model:
Zheng and Skillicorn (2015) proposed two spectral approaches
for modeling and analyzing the signed graphs based on the
random walk normalized Laplacian matrix.

5. Signed Network Embedding (SNE) Model: Yuan et al.
(2017) proposed to use the log-bilinear model to learn node
representation for all the nodes sampled along a randomwalk.
in conjunction with the random walks. It also incorporates
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two signed-type vectors to capture the positive or negative
relationship of each edge along the path.

6. Signed Network Embedding (SiNE) Model: Wang et al.
(2017b) proposed to learn node embeddings by discriminating
the positive edges from the negative and unlabeled edges.

7. SIDE: Representation Learning in Signed Directed

Networks: Kim et al. (2018) proposed a new network
embedding method that can represent both the sign and the
direction of edges in the embedding space by use of a carefully
formulated likelihood objective.

8. TE Model: A variant of the TEA model which considers
multiple triads in the signed network but does not
use the attention mechanism. Instead, the predictions
corresponding to the different triads are given the same
weight when aggregating the predictions corresponding to the
different triads.

We note that for the baselines, we are reporting results from
the work done by Kim et al. (2018) as they did a thorough
evaluation with 6 baselines. We ensure that we are using the
same dataset as them and are performing a 5 fold cross validation
just liked they did to make sure our results are comparable to
theirs. Additionally, we re-implemented the CB model and can
confirm that our results are quite close to the results reported in
the Leskovec et al. (2010) paper. We discuss these results in detail
in section 5.4.

5.4. Results
In this section, we compare the performance of our proposed
TEA model with the baselines and the variants (described in
section 5.3) on the different datasets (described in section 5.1).
The results have been summarized in Table 3.

The Count-Based (CB) model uses simple features like node
degree and frequency of different kind of triads. While the model
is quite straightforward and intuitive, it actually performs quite
well as compared to the more sophisticated baselines. One reason
could be that the CBmodel uses the hand-picked features which
are very well suited for the task of predicting the edge sign. The
poor performance of N2V is not surprising as the technique is
designed for unsigned networks and it is unfair to compare it with
techniques that are designed specifically for signed networks.
An important trend that applies to most of the approaches
considered here is the wide gap in their performance in terms
of AUC and the F1 score. This suggests that the models are able
to pick on the data imbalance which helps on the metrics like
F1-score but not on metrics like AUC which are more robust to
data imbalance.

We observe that our proposed TEA model consistently
performs better than most of the baselines and is quite close in
performance to the best performing Representation Learning in
Signed Directed Networks (SIDE)model. This is despite the fact
that the TEAmodel is very simple (the only trainable parameters
are the node embeddings) and highly modular. Specifically, our
model decouples the modules for learning structural embedding,
signed embedding and triad embedding. For example, we could
use the SIDEmodel in place of our Embsign module and finetune
over the triad data using the attention mechanism. Also note
that both SIDE and TEA models leverage both the higher order

TABLE 3 | Quantitative results in the link prediction task.

Model Epinions Slashdot Wiki

AUC Micro-F1 AUC Micro-F1 AUC Micro-F1

CB 0.951 0.960 0.889 0.906 0.879 0.907

N2V 0.764 0.893 0.697 0.811 0.648 0.879

MF 0.920 0.957 0.877 0.910 0.875 0.913

BNS 0.893 0.948 0.842 0.895 0.861 0.901

SNE 0.820 0.924 0.746 0.874 0.762 0.882

SiNE 0.860 0.922 0.816 0.887 0.790 0.882

SIDE 0.967 0.972 0.889 0.911 0.901 0.918

TE 0.923 0.943 0.851 0.872 0.875 0.891

TEA 0.959 0.966 0.878 0.898 0.90 0.92

structures and the Structural Balance Theory, albeit in different
ways (as described in section 3. For instance, we incorporate the
effect of the Structural Balance Theory by using triads for sign
prediction while others use the theory of augmenting the dataset.
Further, the use of attention mechanism is unique to our model
and is not used by other models. In the next section, we study
the effect of attention mechanism by means of some ablation
studies (section 5.5).

5.5. Ablation Study
In this section, we study how the use of attention mechanism
contribute to the performance of the complete model. To that
end, we consider a variant of the TEAmodel which does not use
attention mechanism. The resulting model is referred to as the
TE model (Table 3). This model still sample multiple triads but
then performs an unweighted averaging of the prediction for the
different triads. We observe that without the use of the attention
mechanism, the model’s performance falls consistently by 2–3%
across all the datasets. We suspect that given the high imbalance
ratio between triads of different signs (Table 2), the model is
more likely to sample the “pos-pos” triads as compared to any
other kind of triads. In the absence of the attention mechanism,
all the triads are given equal weight. This biases the model to
be affectd more by the “pos-pos” triads and this results in the
fall in the performance for both the metrics. With the attention
mechanism, the model can choose which triads are important
for a given edge and reduce the importance of other triads there
by overcoming the sample bias. In section 5.6, we present some
actual examples of this kind of biases from the datasets.

We consider one more abalation study where we neither
consider the attention mechanism nor do we use the triads. In
that case, the model is just learning embeddings to perform the
task of edge-sign prediction. Even though it is still has the same
learning parameters (Embsign) as the TEA, it is neither using
the Structural Balance Theory nor is it using the higher order
structures. While we do not report the results for this case, we
notice that the model’s performance falls down drastically. It is
just slightly better than the performance of the N2V model and
worse than many of the considered baselines. The AUC is (0.77,
0.70 and 0.656) and theMicro-F1 score is (0.904, 0.811, 0.885) for
Epinions, Slashdot and Wiki datasets respectively.
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This suggests that even a vanilla edge-sign classification
model benefits drastically by incorporating the Structural Balance
Theory and higher order structures.

5.6. Case Study
In this section, we perform a case study to understand
how sampling multiple triads and using attention mechanism
augments the use of Structural Balance Theory in our model.

Consider the edge between nodes 7, 406 and 22, 295 in the
Epinions dataset. If we just use the Embsign model and do not
sample any triads, the model predicts the edge sign to be negative
even though the correct edge sign is positive. Now if we sample
triads and use them along with the Embsign model, the predicted
sign becomes positive which is the correct sign. There are two
triads in the graph corresponding to this edge and both the triads
have the sign “pos-pos.” In such a setting, sampling triads is
sufficient to improve the performance of the model. Next, we will
take an example to show why attention mechanism is needed.

Consider the edge between nodes 966 and 7, 588 in the
Epinions dataset. The true sign for the edge is positive. When
we use the TE model (where we sample multiple triads but do
not use attention mechanism), the model predicts the sign to be
negative with high confidence. The reason for this observation is
that there are 30 triads for the given edge. 22 of these triads have
the sign “neg-pos” and just 8 triads have the sign “pos-pos.” Given
this imbalance, The “neg-pos” signs are likely to be in majority
among the sampled triads. We can not counter this problem by
sampling more triads alone. Our TEA model can handle such
cases easily. When we use the TEAmodel, the model predicts the
edge sign to be positive by giving a higher attention score to the
“pos-pos” triads (even though they are fewer) and less attention

weight to the “neg-pos” triads. This redistribution of importance
by means of attention scores helps to complement the strenghts
of the Structural Balance Theory.

6. CONCLUSIONS

This paper studied network embedding for the signed network,
and an approach called TEA was proposed. TEA learned
network embedding by predicting the sign of edges in a
network. Inspired by the Structural Balance Theory, for each edge
between two nodes, TEA predicted the edge sign by considering
different triads connecting the two nodes. Moreover, an attention
mechanism was leverage to weighted integrate the information
from different triads during prediction. Experimental results on
real-world signed networks prove the effectiveness of TEA. In
the future, we plan to study network data with more edge types,
such as the heterogeneous networks (Sun and Han, 2013) and the
knowledge graphs (Bordes et al., 2013).
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