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Complex networks gathered from our online interactions provide a rich source of

information that can be used to try to model and predict our behavior. While this has

very tangible benefits that we have all grown accustomed to, there is a concrete privacy

risk in sharing potentially sensitive data about ourselves and the people we interact with,

especially when this data is publicly available online and unprotected from malicious

attacks. k-anonymity is a technique aimed at reducing this risk by obfuscating the

topological information of a graph that can be used to infer the nodes’ identity. In this

paper we propose a novel algorithm to enforce k-anonymity based on a well-known

result in extremal graph theory, the Szemerédi regularity lemma. Given a graph, we

start by computing a regular partition of its nodes. The Szemerédi regularity lemma

ensures that such a partition exists and that the edges between the sets of nodes

behave almost randomly. With this partition, we anonymize the graph by randomizing

the edges within each set, obtaining a graph that is structurally similar to the original one

yet the nodes within each set are structurally indistinguishable. We test the proposed

approach on real-world networks extracted from Facebook. Our experimental results

show that the proposed approach is able to anonymize a graph while retaining most of

its structural information.

Keywords: privacy, anonymity, social networks, graph, regularity lemma

1. INTRODUCTION

The beginning of the twenty-first century has been characterized by the rise of online social
media and data-hungry artificial intelligence (AI). In this context, sophisticated machine learning
algorithms feed off massive amounts of data produced by our digital personas to perfect the
way they model and predict our behavior, both online and offline. However, the comforts of an
increasingly AI-assisted life are overshadowed by the threat it poses to our privacy and freedom
(Fung et al., 2010; Rossi and Musolesi, 2014; Rossi et al., 2015b; Qian et al., 2016). At the same
time, the digital traces we produce, particularly interactions between users in an online social
network, are often abstracted using a graph representation and made available in the form of public
datasets, as they offer a unique opportunity for researchers to study real-world complex networks
of interactions (Kwak et al., 2010; Chorley et al., 2016).
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A common practice to protect the identity of the users whose
interactions are captured by the graph is that of stripping the
nodes of sensitive information (e.g., the users names), generating
a random identifier to label the graph nodes. However, it has
been shown that this does not guarantee that the user’s privacy
is preserved (Backstrom et al., 2007). Indeed, it is possible
to disclose the identity of an individual participating in the
network with minimal external background information. One
common example is that of a user for which the number
of connections in the network is known (i.e., the number of
friends on Facebook) and this number happens to be unique
for that individual. In other words, this piece of information
alone would be sufficient to identify that user among the rest
of the nodes. Most importantly, once the identity is revealed,
other potentially sensitive pieces of information can be inferred.
For instance, the individual may turn out to belong to a
group of nodes labeled with a certain sensitive attribute, e.g.,
health condition.

For these reasons, the problem of anonymizing graph data is
becoming an increasingly studied one (Hay et al., 2008; Liu and
Terzi, 2008; Rossi et al., 2015a; Qian et al., 2016). A common
anonymity model is k-anonymity, which aims to ensure that
each node in a network is structurally indistinguishable from at
least other k nodes. Different works have focused on different
definitions of “structurally indistinguishable.” Liu and Terzi
(2008) considered the case of k-degree anonymous graphs, where
k-degree anonymity guarantees that each node of the graph
shares the same degree of at least k other nodes. Successive works
attempted to reduce the total running time of Liu and Terzi
(2008) to make it feasible to scale up to large networks (Hay
et al., 2008). Rossi et al. (2015a), on the other hand, extended
the concept of k-degree anonymity to multi-layer and time-
varying graphs. Other researchers considered different structural
distinguishability criteria where the attacker has increasing levels
of information available to deanomymize the nodes (Hay et al.,
2008; Cheng et al., 2010; Zhou and Pei, 2011), however the
main issue with these approaches lies in the need to add
increasing amounts of noise as increasingly complex structural
information needs to be obfuscated. More recently Rousseau
et al. (2018) considered the problem of anonymizing a graph
maximizing the amount of preserved community information.
Finally, Qian et al. (2016) and Ma et al. (2018) looked at
the complementary problem of deanonymizing a graph in the
case where the attacker has access to richer features as well as
structural information.

While most of the previous k-anonymity approaches assume
that the attacker has access only to a certain level of structural
information (from the degree of a node, to its immediate
neighborhood or even the whole graph), in this paper we propose
a method that creates k-anonymous groups of nodes where no
degree of structural information can help to break the anonymity
guarantee. Our approach is based on the Szemerédi regularity
lemma (Diestel, 2012), a well-known result of extremal graph
theory. The Szemerédi regularity lemma has been successfully
applied to several problems, from graph theory (Komlós and
Simonovits, 1996) to computer vision and pattern recognition
(Sperotto and Pelillo, 2007; Pelillo et al., 2017). The lemma

roughly states that every sufficiently large and dense graph1

can be approximated by the union of random-like bipartite
graphs called regular pairs. Our observation is that the groups
of graph nodes that form these regular pairs can be anonymized
by rewiring the intra-group edges according to an Erdös-Rényi
process (Erdős, 1960). Thanks to the theoretical guarantees of
the Szemerédi regularity lemma, this has minimal effect on
the overall graph structure and, together with the random-like
behavior of the inter-group connections, ensures that the each
group is anonymous.

The reminder of the paper is organized as follows. We start by
reviewing the key graph theoretical concepts underpinning our
work in section 2. In section 3 we propose our anonymization
method based on the Szemerédi regularity lemma and in section 4
we evaluate it on three different networks abstracted from
Facebook. Finally, section 5 concludes the paper.

2. SZEMERÉDI REGULARITY LEMMA

Let G = (V ,E) be an undirected graph with no self-loops, where
V is the set of nodes and E is the set of edges. If X and Y
are disjoint subsets of V , the edge density of this pair (X,Y) is

defined as d(X,Y) =
|E(X,Y)|
|X||Y| , where E(X,Y) is the set of edges

connecting nodes in X to nodes in Y . The edge density satisfies
0 ≤ d(X,Y) ≤ 1.

Given a positive real ε > 0, a pair of node sets X and Y is
called ε-regular if for all subsets A ⊆ X and B ⊆ Y satisfying
|A| ≥ ε|X| and |B| ≥ ε|Y|we have |d(X,Y)−d(A,B)| ≤ ε. Stated
otherwise, the distribution of the edges between an ε-regular pair
is almost uniform, i.e., the graph overX∪Y behaves like a random
bipartite graph.

Let the node set V be divided into a partition P of l sets
V1, · · · ,Vl. P is an ε-regular partition if: (1) |||Vi| − |Vj|| ≤ 1,
for 1 ≤ i < j ≤ l and (2) all except at most εl2 pairs (Vi,Vj)
(1 ≤ i < j ≤ l), are ε-regular. With these definitions in hand, we
can finally state the following.

Lemma 2.1 (Szemerédi regularity lemma). For every positive real
ε > 0 and every positive integer m, there exist positive integers
N = N(ε,m) and M = M(ε,m) such that, if G = (V ,E) is a
graph with |V| ≥ N nodes, there is an ε-regular partition of V into
l groups with sizes that differ at most by 1, where m ≤ l ≤ M.

In other words, the Szemerédi regularity lemma states that a
graph can be seen as a collection of groups of nodes such that
the edges between these groups are almost uniformly distributed.
More generally, as stated by Komlós and Simonovits (1996), the
regularity lemma states that every graph can be approximated by
generalized random graphs. Note that the lemma also states that
there may be a number of ε-irregular pairs that do not behave like
random bipartite graphs. However, for a sufficiently small ε, the
number of such pairs will be low (i.e., smaller than εl2).

Given a graph G and an ε-regular partition of its nodes, a
reduced graph can be constructed by replacing each pair of ε-
regular groups with two nodes connected by an edge. As shown

1Note that the lemma has been extended to sparse graphs as well (Gerke and Steger,

2005).
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by the Key lemma (Komlós and Simonovits, 1996), the reduced
graph inherits many of the fundamental structural properties of
the original graph, to the point that the graph obtained by simply
replacing each pair of connected nodes of the reduced graph with
a complete bipartite graph over 2t nodes yields a new graph that
can be used as a surrogate of the original one, where t ≥ 1 is
an integer.

Recall that the aim of this paper is to anonymize a graph
G = (V ,E) by grouping V into sets of k-anonymous nodes.
The Szemerédi regularity lemma states that the node set of each
graph can be rearranged to reveal a random-like structure, where
pairs of groups of k nodes are connected in an almost uniform
(in other words, random) way. That is, for the purpose of graph
de-anonymization, the edge information between the groups of
nodes is unusable. Unfortunately, the intra-group connections
can be still exploited to deanonymize the nodes. However,
the Szemerédi regularity lemma and the fact that the reduced
graph (where the intra-group connections are lost) preserves the
fundamental structural properties of the original graph imply
that these intra-group connections are small in number and
structurally negligible.

3. ANONYMIZATION FRAMEWORK

In the previous section we introduced the Szemerédi regularity
lemma and we showed how this can be seen as a first step toward
obtaining a k-anonymous graph. To achieve full k-anonymity,
however, we need to obfuscate the structural information
contained in the intra-group connections of the ε-regular
partition. Our solution involves rewiring these connections using
the Erdös-Rényi model (Erdős, 1960), effectively replacing each
subgraph (i.e., each group of the ε-regular partition) with an
Erdös-Rényi graph over the same set of nodes. Crucially, for each
subgraph, we set the parameter p, which governs the probability
of adding/deleting an edge, equal to the density of the original
subgraph. More specifically, our approach follows three steps: (1)
we first find a regular partition using the regularity lemma; (2)
then, we randomize the groups’ intra-connections; and (3) finally,
we randomize the edges connecting irregular pairs.

In the first step we apply the algorithm implemented by
Fiorucci et al. (2019)2. This extends the previous algorithm
of Fiorucci et al. (2017) by proposing a novel heuristic procedure
where the node set is first partitioned into two groups of nodes
and then these are recursively split into smaller groups until a
desired cardinality is met and certain conditions that measure
quality of the ε-regularity of the partition are satisfied (Pelillo
et al., 2017). In particular Fiorucci et al. propose two different
heuristics to split the groups, one called degree based, which
groups together nodes with similar degrees (Fiorucci et al., 2017),
and a second one called indeg guided, which splits a sparse (dense)
partition into two sparse (dense) partitions. Note that using this
method we can only get a number of ε-regular groups which is a
power of 2.

2Code available at: https://github.com/MarcoFiorucci/graph-summarization-

using-regular-partitions.

The second step involves randomly rewiring the connections
within each group of vertices. To this end, we add or delete an
edge with a probability p equal to the density of the subgraph H
spanned by the group of nodes we are trying to anonymize. Note
that we only change the internal connections of H, so we are not
altering the ε-regularity relations. The resulting subgraph H′ will
have the same density of H, however its structural information
will not be of any use when trying to deanonymize its nodes.

Recall that each ε-regular partition allows up to εl2 irregular
pairs, where l is the number of sets of the ε-regular partition.
So far we ensured that the connections within and between ε-
regular pairs are anonymous, however we have not yet dealt
with irregular pairs. The third step addresses this and requires
rewiring the connections between groups forming an ε-irregular
pair. Let (Vi,Vj) be one such pair, with total number of nodes n.
Consider the bipartite subgraphH = (Vi∪Vj,Eij) where we only
consider the set of edges Eij connecting nodes in Vi with nodes
in Vj. In order to render the structural information contained
in these edges unusable for deanonymization purposes, we
randomly rewire each pair of nodes (u, v), with u ∈ Vi and
v ∈ Vj, by adding/deleting an edge to Eij with probability p equal
to |Eij|/(Vi × Vj).

In this framework ε can be interpreted as a measure of the
error made by the Szemerédi regularity lemma approximation,
i.e., the smaller ε the better the anonymized graph approximates
the original graph. In fact, the amount of structural information
preserved is inversely proportional to the number of edges
we need to rewire. The Szemerédi regularity lemma allows us
to safely rewire intra-group connections, knowing that these
are small in number and structurally negligible. So the key
to preserving the structural information of the original graph
is to minimize the number of ε-irregular pairs. This becomes
particularly relevant when anonymizing real-world complex
networks, which often display a scale-free structure (Barabási
and Albert, 1999). In these networks a small number of nodes
(i.e., hubs) has a very large degree. If an irregular pair contains
a hub we will end up rewiring a large number of edges,
potentially compromising the structural information for the
sake of anonymity. Therefore, minimizing the number of ε-
irregular pairs is of fundamental importance. Also, recall that
the method of Fiorucci et al. is based on heuristics, and in
general different runs of their algorithm can result in different
ε-regular partitions. For this reason, we repeat the computation
of the ε-regular partition max_iter times and we choose the
partition with the minimum ε and number of ε-irregular pairs.
Note that each iteration of the algorithm of Fiorucci et al. has
computational cost O(n2.376), and this cost dominates in the
overall anonymization complexity.

4. EXPERIMENTAL RESULTS

We test the proposed method on three real-world networks
abstracted from Facebook. Note that all the graphs are sparse,
as shown in Table 1. Facebook Combined represents circles (or
friend lists) from Facebook. It was introduced for the first time
by Mcauley and Leskovec in Leskovec and Mcauley (2012). The
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two remaining networks, Tv Shows and Politicians describe blue
verified pages of different kinds, where edges represent mutual
likes among them (Rozemberczki et al., 2018).

With these graphs in hand, we compute their anonymized
versions and we measure the amount of structural information
lost with respect to the original graphs. In particular, we track
the changes in number of edges, degree distribution, average
clustering coefficient (Watts and Strogatz, 1998), and page
rank vector (Page et al., 1999). We compute these changes for
different levels of k-anonymity, which in turn correspond to
different choices of the partition cardinality l. Recall in fact
that k and l are related by the fact that in a graph with n
nodes an ε-regular partition groups the vertices into l sets of
cardinality k ≈ n

l
.

Note also that larger values of l also imply larger values of
εl2, the maximum number of ε-irregular pairs we can find in the
network. Irregular pairs force us to randomly rewire connections
that are not guaranteed to be structurally negligible by the
Szemerédi regularity lemma (like the intra-group connections),
so in general for large values of l more effort has to go into
finding an ε-regular partition with minimum value of ε (in

TABLE 1 | Summary of the main structural characteristics of the original graphs.

Dataset Nodes Density Edges Avg. clustering
coefficient

Facebook Combined 4,039 0.011 88,234 0.606

Politicians 3,892 0.002 41,729 0.385

Tv shows 5,908 0.002 17,262 0.374

these experiments we vary ε from 0.01 to 0.2, with steps of
0.025). This is also the reason why we were only able to compute
the ε-regular partitions for a small range of values of l. In
fact, for some combinations of dataset and l, the algorithm of
Fiorucci et al. was unable to find an optimal partition within
max_iter = 100 iterations. In our experiments, the runtime
to compute an ε-regular partition varies between approximately
10 and 80 s, on a machine with an 8-core 3.6 GHz CPU and 16GB
of RAM.

We start by comparing the degree distributions of the
original graphs and the anonymized ones, using both the
degree based and the indeg guided heuristics. Figure 1 shows
the log-log plots of the results. Note that larger values of l
tend to correspond to more accurate approximations of the
original degree distribution. This is confirmed by looking at
the Jensen-Shannon (JS) divergence Lin (1991) between the
degree distributions, which for the degree guided heuristic and
the Politicians dataset goes from 0.062 (with l = 4) to 0.011

TABLE 2 | Average variation in the number of edges (average clustering

coefficient) between the original graph G and the anonymized graph G̃, calculated

as |sG − s
G̃
|/sG, where sG and s

G̃
are the statistics considered.

Dataset l = 4 l = 8 l = 16 l = 32 l = 64

Facebook

Combined

0.0012

(0.7162)

0.0012

(0.6310)

0.0010

(0.5696)

0.0010

(0.5302)

0.0010

(0.4822)

Politicians 0.0021

(0.6983)

0.0020

(0.6415)

0.0015

(0.5261)

0.09

(0.2395)

n.a.

Tv shows 0.0034

(0.6553)

0.0036

(0.5064)

0.0013

(0.3158)

n.a. n.a.

FIGURE 1 | Degree distribution of the graphs with degree based (A–C) and indeg guided (D–F) heuristics.
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FIGURE 2 | Cosine similarity and Spearman’s correlation of the page rank vectors (indeg guided heuristic). (A) Tv shows, (B) Politicians, and (C) Facebook Combined.

(with l = 32)3. Interestingly, the indeg guided heuristic seems
to yield the best approximations. This could be because the
degree-based heuristic struggles to create groups of nodes with
similar degree when there are hubs among them. Indeed, for
the indeg guided heuristic the JS divergence goes from 0.066
(with l = 4) to 0.016 (l = 8), whereas for l = 8
the degree guided heuristic achieves a JS divergence of 0.0344.
In the remainder of the experiments we focus only on the
indeg guided heuristic.

Table 2 shows the variation in the number of edges and
average clustering coefficient with respect to the original
graph. More precisely, we report |sG − sG̃|/sG, where sG and
sG̃ are statistics computed on the original and anonymized
graphs, respectively (averaged over 10 anonymizations). We
first note that the number of edges of the graphs changes
only very slightly. Indeed, when we alter the structure of a
group of vertices we do it by adding/deleting edges with a
probability equal to the original edge density of the group.
This in turn has the effect of keeping the number of edges
approximately the same, regardless of the size k of the
anonymity sets.

We then check the effect of the anonymization on the
average clustering coefficient of the graph. Table 2 shows that
these statistics change significantly. Recall that the average
clustering coefficient is proportional to the number of triangles
in a network (Watts and Strogatz, 1998), however the Erdös-
Rényi rewiring used to anonymize the vertex groups and the
ε-irregular pairs is likely to break these triangles. While the
Szemerédi regularity lemma ensures that the vertex groups are
sufficiently sparse that we can ignore their inner structure,
this clearly does not hold for ε-irregular pairs, which we
also need to anonymize. This is particularly an issue when
hubs fall within such an irregular pair. However, note that
increasing l (i.e., reducing the size k of the anonymity
sets) allows us to preserve the average clustering coefficient
better. In general, a low value of l implies larger anonymity
groups, but it also forces the heuristic procedure used to

3 The JS divergence takes a value between 0 and 1, with 0 indicating identical

distributions. Results on other datasets are omitted due to space constraints.
4Note, however, that the value of the JS divergence is biased by the fact that most

of the probability mass is on low-degree nodes.

approximate the ε-regular partition to bring more edges (and
triangles) inside the groups, which are then affected by the
Erdös-Rényi rewiring. Indeed, high anonymity demands several
more structural modifications. In practice it is common to look
for smaller k-anonymity groups (i.e., larger l), and for these
values we are better able to preserve the average clustering
coefficient information.

Finally, Figure 2 shows the cosine similarity and the
Spearman’s rank correlation between the page rank vectors (Page
et al., 1999) of the original and anonymized graphs. The results
confirm that the proposed anonymization procedure is able to
preserve well the centrality information of the nodes, once again
with the quality of the approximation generally improving as we
reduce the size of the anonymity groups.

5. CONCLUSION

We considered the problem of protecting the identity
of the nodes of a network from an attacker with
background structural knowledge. We proposed to
use the Szemerédi regularity lemma to compute an ε-
regular partition of the original graph which is then
anonymized by injecting Erdös-Rényi at selected locations.
This creates a k-anonymous graph where the loss of
structural information is minimized. We validated our
method on three real-world networks abstracted from
Facebook. Future work should perform a more extensive
evaluation of the proposed method on larger graphs, with
a wider range of values, and compare our method with
alternative anonymization approaches.
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