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Cooperation is a fundamental social mechanism, whose effects on human performance

have been investigated in several environments. Online games are modern-days natural

settings in which cooperation strongly affects human behavior. Every day, millions of

players connect and play together in team-based games: the patterns of cooperation can

either foster or hinder individual skill learning and performance. This work has three goals:

(i) identifying teammates’ influence on players’ performance in the short and long term,

(ii) designing a computational framework to recommend teammates to improve players’

performance, and (iii) setting to demonstrate that such improvements can be predicted

via deep learning. We leverage a large dataset from Dota 2, a popular Multiplayer Online

Battle Arena game. We generate a directed co-play network, whose links’ weights depict

the effect of teammates on players’ performance. Specifically, we propose a measure

of network influence that captures skill transfer from player to player over time. We

then use such framing to design a recommendation system to suggest new teammates

based on a modified deep neural autoencoder and we demonstrate its state-of-the-art

recommendation performance. We finally provide insights into skill transfer effects: our

experimental results demonstrate that such dynamics can be predicted using deep

neural networks.

Keywords: recommendation system, link prediction, deep neural network, graph factorization, multiplayer

online games

1. INTRODUCTION

Cooperation is a common mechanism present in real world systems at various scales and in
different environments, from biological organization of organisms to human society. A great
amount of research has been devoted to study the effects of cooperation on human behavior
and performance (Deutsch, 1960; Johnson and Johnson, 1989; Beersma et al., 2003; Tauer and
Harackiewicz, 2004; Levi, 2015). These works include domains spanning from cognitive learning
to psychology, and cover different experimental settings (e.g., classrooms, competitive sport
environments, and games), in which people were encouraged to organize and fulfill certain
tasks (Johnson et al., 1981; Battistich et al., 1993; Cohen, 1994; Childress and Braswell, 2006). These
works provide numerous insights on the positive effect that cooperation has on individual and
group performance.

Many online games are examples of modern-day systems that revolve around cooperative
behavior (Hudson and Cairns, 2014; Losup et al., 2014). Games allow players to connect
from all over the world, establish social relationships with teammates (Ducheneaut et al.,
2006; Tyack et al., 2016), and coordinate together to reach a common goal, while trying
at the same time to compete with the aim of improving their performance as individuals
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(Morschheuser et al., 2018). Due to their recent growth in
popularity, online games have become a great instrument
for experimental research. Online games provide indeed rich
environments yielding plenty of contextual and temporal features
related to player’s behaviors as well as social connection derived
from the game organization in teams.

In this work, we focus on the analysis of a particular type
of online games, whose setting boosts players to collaborate
to enhance their performance both as individuals and teams:
Multiplayer Online Battle Arena (MOBA) games. MOBA
games, such as League of Legends (LoL), Defense of the
Ancient 2 (Dota 2), Heroes of the Storm, and Paragon,
are examples of match-based games in which two teams of
players have to cooperate to defeat the opposing team by
destroying its base/headquarter. MOBA players impersonate a
specific character in the battle (a.k.a., hero), which has special
abilities and powers based on its role, e.g., supporting roles,
action roles, etc. The cooperation of teammates in MOBA
games is essential to achieve the shared goal, as shown by
prior studies (Drachen et al., 2014; Yang et al., 2014). Thus,
teammates might strongly influence individual players’ behaviors
over time.

Previous research investigated factors influencing human
performance in MOBA games. On the one hand, studies
focus on identifying player’s choices of role, strategies as
well as spatio-temporal behaviors (Drachen et al., 2014; Yang
et al., 2014; Eggert et al., 2015; Sapienza et al., 2018b) that
drive players to success (Sapienza et al., 2017; Fox et al.,
2018). On the other hand, performance may be affected by
player’s social interactions: the presence of friends (Pobiedina
et al., 2013a; Park and Kim, 2014; Sapienza et al., 2018b),
the frequency of playing with or against certain players
(Losup et al., 2014), etc.

Despite the efforts of quantifying performance in presence
of social connections, little attention has been devoted to
connect the effect that teammates have in increasing or
decreasing the actual player’s skill level. Our study aims to
fill this gap. We hypothesize that some teammates might
indeed be beneficial to improve not only the strategies
and actions performed but also the overall skill of a
player. On the contrary, some teammates might have a
negative effect on a player’s skill level, e.g., they might not
be collaborative and tend to obstacle the overall group
actions, eventually hindering player’s skill acquisition
and development.

Our aim is to study the interplay between a player’s
performance improvement (resp., decline), throughout matches
in the presence of beneficial (resp., disadvantageous) teammates.
To this aim, we build a directed co-play network, whose links
exist if two players played in the same team and are weighted
on the basis of the player’s skill level increase/decline. Thus,
this type of network only take into account the short-term
influence of teammates, i.e., the influence in the matches they
play together. Moreover, we devise another formulation for
this weighted network to take into account possible long-
term effects on player’s performance. This network incorporates
the concept of “memory”, i.e., the teammate’s influence on

a player persists over time, capturing temporal dynamics of
skill transfer. We use these co-play networks in two ways.
First, we set to quantify the structural properties of player’s
connections related to skill performance. Second, we build a
teammate recommendation system, based on a modified deep
neural network autoencoder, that is able to predict their most
influential teammates.

We show through our experiments that our teammate
autoencoder model is effective in capturing the structure of
the co-play networks. Our evaluation demonstrates that the
model significantly outperforms baselines on the tasks of
(i) predicting the player’s skill gain, and (ii) recommending
teammates to players. Our predictions for the former result in
a 9.00 and 9.15% improvement over reporting the average skill
increase/decline, for short and long-term teammate’s influence
respectively. For individual teammate recommendation, the
model achieves an even more significant gain of 19.50
and 19.29%, for short and long-term teammate’s influence
respectively. Furthermore, we show that using a factorization
based model only marginally improves over average baseline,
showcasing the necessity of deep neural network based models
for this task.

2. DATA COLLECTION AND
PREPROCESSING

2.1. Dota 2
Defense of the Ancient 2 (Dota 2) is a well-known MOBA
game developed and published by Valve Corporation. First
released in July 2013, Dota 2 rapidly became one of the most
played games on the Steam platform, accounting for millions of
active players.

We have access to a dataset of one full year of Dota
2 matches played in 2015. The dataset, acquired via
OpenDota1, consists of 3,300,146 matches for a total of
1,805,225 players. For each match, we also have access to
the match metadata, including winning status, start time,
and duration, as well as to the players’ performance, e.g.,
number of kills, number of assists, number of deaths, etc., of
each player.

As in most MOBA games, Dota 2 matches are divided
into different categories (lobby types) depending on the game
mode selected by players. As an example, players can train
in the “Tutorial” lobby, or start a match with AI-controlled
players in the “Co-op with AI” lobby. However, most players
prefer to play with other human players, rather than with
AIs. Players can decide whether the teams they form and
play against shall be balanced by the player’s skill levels
or not, respectively in the “Ranked matchmaking” lobby
and the “Public matchmaking” lobby. For Ranked matches,
Dota 2 implements a matchmaking system to form balanced
opposing teams. The matchmaking system tracks each player’s
performance throughout her/his entire career, attributing a
skill level that increases after each victory and decreases after
each defeat.

1Cui, A., Chung, H., and Hanson-Holtry, N. (2015). Yasp 3.5 million data dump.

Frontiers in Big Data | www.frontiersin.org 2 June 2019 | Volume 2 | Article 14

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Sapienza et al. DNNs for Optimal Team Composition

For the purpose of our work, we take only into account the
Ranked and Public lobby types, in order to consider exclusively
matches in which 10 human players are involved.

2.2. Preprocessing
We preprocess the dataset in two steps. First, we select matches
whose information is complete. To this aim, we first filter out
matches ended early due to connection errors or players that
quit at the beginning. These matches can be easily identified
through the winner status (equal to a null value if a connection
error occurred) and the leaver status (players that quit the
game before end have leaver status equal to 0). As we can
observe in Figure 1, the number of matches per player has a
broad distribution, having minimum and maximum values of
1 and 1, 390 matches respectively. We note that many players
are characterized by a low number of matches, either because
they were new to the game at the time of data collection, or
because they quit the game entirely after a limited number
of matches.

In this work we are interested in assessing a teammate’s
influence on the skill of a player. As described in the following
section, we define the skill score of a player by computing his/her
TrueSkill (Herbrich et al., 2007). However, the average number
of matches per player that are needed to identify the TrueSkill
score in a game setting as the one of Dota 2 is 462. For the
scope of this analysis, we then apply a second preprocessing
step: we select all the players having at least 46 played matches.
These two filtering steps yielded a final dataset including 87, 155
experienced players.

3. SKILL INFERENCE

Dota 2 has an internal matchmaking ranking (MMR), which
is used to track each player’s level and, for those game
modes requiring it, match together balanced teams. This
is done with the main purpose of giving similar chance
of winning to both teams. The MMR score depends both
on the actual outcome of the matches (win/lose) and on
the skill level of the players involved in the match (both
teammates and opponents). Moreover, its standard deviation
provides a level of uncertainty for each player’s skill, with
the uncertainty decreasing with the increasing number of
player’s matches.

Player’s skill is a fundamental feature that describes the overall
player’s performance and can thus provide a way to evaluate
how each player learns and evolves over time. Despite each
player having access to his/her MMR, and rankings of master
players being available online, the official Dota 2 API does not
disclose the MMR level of players at any time of any performed
match. Provided that players’ MMR levels are not available in
any Dota 2 dataset (including ours), we need to reconstruct a
proxy of MMR.

We overcome this issue by computing a similar skill score
over the available matches: the TrueSkill (Herbrich et al.,
2007). The TrueSkill ranking system has been designed by

2https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/

Microsoft Research for Xbox Live and it can be considered
as a Bayesian extension of the well-known Elo rating system,
used in chess (Elo, 1978). The TrueSkill is indeed specifically
developed to compute the level of players in online games
that involve more than two players in a single match, such as
MOBA games. Another advantage of using such ranking system
is its similarity with the Dota 2 MMR. Likewise MMR, the
TrueSkill of a player is represented by two main features: the
average skill of a player µ and the level of uncertainty σ for the
player’s skill3.

Here, we keep track of the TrueSkill levels of players in
our dataset after every match they play. To this aim, we
compute the TrueSkill by using its open access implementation
in Python4. We first generate for each player a starting
TrueSkill which is set to the default value in the Python
library: µ = 25, and σ = 25

3 . Then, we update the
TrueSkill of players on the basis of their matches’ outcomes
and teammates’ levels. The resulting timelines of scores will
be used in the following to compute the link weights of the
co-play network.

For illustrative purposes, Figure 2 reports three aggregate
TrueSkill timelines, for three groups of players: (i) the 10th
percentile (bottom decile), (ii) the 90th percentile (top decile),
and (iii) the median decile (45–55th percentile). The red line
shows the evolution of the average TrueSkill scores of the
10% top-ranked players in Dota 2 (at the time of our data
collection); the blue line tracks the evolution of the 10%
players reaching the lowest TrueSkill scores; and, the green
line shows the TrueSkill progress of the “average players.” The
confidence bands (standard deviations) shrinks with increasing
number of matches, showing how the TrueSkill converges
with increasing observations of players’ performance5. The
variance is larger for high TrueSkill scores. Maintaining a
high rank in Dota 2 becomes increasingly more difficult: the
game is designed to constantly pair players with opponents at
their same skill levels, thus competition in “Ranked matches”
becomes increasingly harsher. The resulting score timelines
will be used next to compute the link weights of the co-
play network. Note that, although we selected only players
with at least 46 matches, we observed timelines spanning
terminal TrueSkill scores between 12 and 55. This suggests that
experience alone (in terms of number of played matches) does
not guarantee high TrueSkill scores, in line with prior literature
(Herbrich et al., 2007).

4. NETWORK GENERATION

In the following, we explain the process to compute the co-
play performance networks. In particular, we define a short-term
performance network of teammates, whose links reflect TrueSkill
score variations over time, and a long-term performance

3https://www.microsoft.com/en-us/research/project/trueskill-ranking-system/
4https://pypi.python.org/pypi/trueskill
5Note that the timelines have different length due to the varying number of

matches played by players in each of the three deciles. In particular, in the bottom

decile just one player has more than 600 matches
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FIGURE 1 | Distribution of the number of matches per player in the Dota

2 dataset.

FIGURE 2 | TrueSkill timelines of players in the top, bottom, and median

decile. Lines show the mean of TrueSkill values at each match index, while

shades indicate the related standard deviations.

network, which allows to takememorymechanisms into account,
based on the assumption that the influence of a teammate on a
player can persist over time.

4.1. Short-Term Performance Network
Let us consider the set of 87, 155 players in our post-processed
Dota 2 dataset, and the related matches they played. For each
player p, we define TSp = [ts−1, ts0, ts1, · · · , tsN] as the TrueSkill
scores after each match played by p, where ts−1 is the default
value of TrueSkill assigned to each player at the beginning of
their history. We also define the player history as the temporally
ordered set Mp = [m0,m1, · · · ,mN] of matches played by
p. Each mi ∈ Mp is the 4-tuple (t1, t2, t3, t4) of player’s
teammates. Let us note that each match m in the dataset can
be represented as a 4-tuple because we consider just Public and
Ranked matches, whose opposing teams are composed by 5
human players each. We can now define for each teammate t

of player p in match mi ∈ Mp the corresponding performance
weight, as:

wp,t,i = tsi − tsi−1, (1)

where, tsi ∈ TSp is the TrueSkill value of the player p after match
mi ∈ Mp. Thus, weight wp,t,i captures the TrueSkill gain/loss
of player p when playing with a given teammate t. This step
generates as a result a time-varying directed network in which,
at each time step (here the temporal dimension is defined by the
sequence of matches), we have a set of directed links connecting
together the players active at that time (i.e., match) to their
teammates, and the relative weights based on the fluctuations of
TrueSkill level of players.

Next, we build the overall Short-term Performance Network
(SPN), by aggregating the time-varying networks over the
matches of each player. This network has a link between two
nodes if the corresponding players were teammates at least once
in the total temporal span of our dataset. Each link is then
characterized by the sum of the previously computed weights.
Thus, given player p and any possible teammate t in the network,
their aggregated weight wp,t is equal to

wp,t =

N
∑

i=0

wp,t,i, (2)

where wp,t,i = tsi − tsi−1 if t ∈ mi, and 0 otherwise. The resulting
network has 87, 155 nodes and 4, 906, 131 directed links with
weights wp,t∈ [−0.58, 1.06].

It is worth noting that the new TrueSkill value assigned
after each match is computed on the basis of both teammates
and opponents current skill levels. However, the TrueSkill
value depends on the outcome of each match, which is
shared by each teammate in the winner/loser team. With
this system in place, players that do not cooperate in the
game, such as players that do not perform any kill or
assist, and win will improve their skill level because of the
teammates’ effort. Nevertheless, this anomalous behavior is
rare (i.e., less than 1% of matches are affected) and it is
smoothed by our network model. By aggregating the weights
over a long period of time, we indeed balance out these
singular instances.

4.2. Long-Term Performance Network
If skills transfer from player to player by means of co-play,
the influence of a teammate on players should be accounted
for in their future matches. We therefore would like to
introduce a memory-like mechanism to model this form of
influence persistence. Here we show how to generate a Long-
term Performance Network (LPN) in which the persistence of
influence of a certain teammate is taken into account. To this
aim, we modify the weights by accumulating the discounted
gain over the subsequent matches of a player as follows. Let
us consider player p, his/her TrueSkill scores TSp and his/her
temporally ordered sequence of matches Mp. As previously
introduced, mi ∈ Mp corresponds to the 4-tuple (t1, t2, t3, t4)
of player’s teammates in that match. For each teammate t of
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player p in match mi ∈ Mp the long-term performance weight
is defined as

wp,t,i = expi−ip,t (tsi − tsi−1), (3)

where ip,t is the index of the last match in Mp in which player p
played with teammate t. Note that, if the current match mi is a
match in which p and t play together than ip,t = i.

Analogously to the SPN construction, we then aggregate the
weights over the temporal sequence of matches. Thus, the links
in the aggregated network will have final weights defined by
Equation (2). Conversely to the SPN, the only weights wp,t,i

in the LPN being equal to zero are those corresponding to
all matches previous to the first one in which p and t co-
play. The final weights of the Long-term Performance Network
are wp,t∈ [−0.54, 1.06].

As we can notice, the range of weights of SPN is close to
the one found in LPN. However, these two weight formulations
lead not only to different ranges of values but also to a different
ranking of the links in the networks. When computing the
Kendall’s tau coefficient between the ranking of the links in
the SPN and LPN, we find indeed that the two networks have
a positive correlation (τ = 0.77 with p-value < 10−3) but
the weights’ ranking is changed. As our aim is to generate a
recommending system for each player based on these weights,
we further investigate the differences between the performance
networks, by computing the Kendall’s tau coefficient over
each player’s ranking. Figure 3 shows the distribution of the
Kendall’s tau coefficient computed by comparing each player’s
ranking in the SPN and LPN. In particular, we have that
just a small portion of players have the same teammate’s
ranking in both networks, and that the 87.8% of the remaining
players have different rankings for their top-10 teammates.
The recommending system that we are going to design will
then provide a different recommendation based on the two
performance networks. On the one hand, when using the
SPN the system will recommend a teammate that leads to an
instant skill gain. As an example, this might be the case of

FIGURE 3 | Kendall’s tau coefficient distribution computed by comparing each

player’s ranking in the short-term and long-term performance networks.

a teammate that is good in coordinating the team but from
which not necessarily the player learns how to improve his/her
performance. On the other hand, when using the LPN the
system will recommend a teammate that leads to an increasing
skill gain over the next matches. Thus, even if the instant
skill gain with a teammate is not high, the player could learn
some effective strategies and increase his/her skill gain in the
successive matches.

4.3. LCC and Network Properties
Given a co-play performance network (short-term or long-
term), to carry out our performance prediction we have to
take into account only the links in the network having reliable
weights. If two players play together just few times, the
confidence we have on the corresponding weight is low. For
example, if two players are teammates just one time their
final weight only depends on that unique instance, and thus
might lead to biased results. To face this issue, we computed
the distribution of the number of occurrences a couple of
teammates play together in our network (shown in Figure 4)
and set a threshold based on these values. In particular,
we decided to retain only pairs that played more than 2
matches together.

Finally, as many node embedding methods require a
connected network as input (Ahmed et al., 2017), we
extract the Largest Connected Component (LCC) of the
performance network, which will be used for the performance
prediction and evaluation. The LCC include the same
number of nodes and links for both the SPN and the LPN.
In particular, it includes 38, 563 nodes and 1, 444, 290 links.
We compare the characteristics of the initial network and its
LCC in Table 1.

5. PERFORMANCE PREDICTION

In the following, we test whether the co-play performance
networks have intrinsic structures allowing us to predict

FIGURE 4 | Distribution of the number of occurrences per link, i.e., number of

times a couple of teammates play together.
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TABLE 1 | Comparison of the overall performance networks’ characteristics and

its LCC.

# Nodes # Links SPN weights LPN weights

Network 87,155 4,906,131 [−0.58, 1.06] [−0.54, 1.06]

LCC 38,563 1,444,290 [−0.58, 1.06] [−0.54, 1.06]

Note that the number of nodes and links are the same for both the Short-term Performance

Network (SPN) and the Long-term Performance Network (LPN), while the range of weights

varies from one case to the other.

performance of players whenmatchedwith unknown teammates.
Such a prediction, if possible, could help us in recommending
teammates to a player in a way that would maximize his/her
skill improvement.

5.1. Problem Formulation
Consider the co-play performance network G = (V ,E) with
weighted adjacency matrix W. A weighted link (i, j,wij) denotes
that player i gets a performance variation of wij after playing
with player j. We can formulate the recommendation problem
as follows. Given an observed instance of a co-play performance
network G = (V ,E) we want to predict the weight of each
unobserved link (i, j) /∈ E and use this result to further
predict the ranking of all other players j ∈ V ( 6= i) for each
player i ∈ V .

5.2. Network Modeling
Does the co-play performance network contain information
or patterns which can be indicative of skill gain for unseen
pairs of players? If that is the case, how do we model the
network structure to find such patterns? Are such patterns
best represented via deep neural networks or more traditional
factorization techniques?

To answer the above questions, we modify a deep neural
network autoencoder and we test its predictive power against
two classes of approaches widely applied in recommendation
systems: (a) factorization based (Koren et al., 2009; Su and
Khoshgoftaar, 2009; Ahmed et al., 2013), and (b) deep neural
network based (Cao et al., 2016; Kipf and Welling, 2016;
Wang et al., 2016). Note that the deep neural network based
approaches on recommendations use different variations of deep
autoencoders to learn a low-dimensional manifold to capture
the inherent structure of the data. More recently, variational
autoencoders have been tested for this task and have been
shown to slightly improve the performance over traditional
autoencoders (Kipf and Welling, 2016). In this paper, we focus
on understanding the importance of applying neural network
techniques instead of factorizationmodels which are traditionally
used in recommendation tasks and subtle variations in the
autoencoder architecture to further improve performance is left
as future work.

5.2.1. Factorization
In a factorization basedmodel for directed networks, the goal is to
obtain two low-dimensional matrices U ∈ R

n×d and V ∈ R
n×d

FIGURE 5 | An example of deep autoencoder model.

with number of hidden dimensions d such that the following
function is minimized:

f (U,V) =
∑

(i,j)∈E

(wij− < ui, vj >)2 +
λ

2
(‖ui‖

2 + ‖vj‖
2) (4)

The sum in (4) is computed over the observed links to avoid of
penalizing the unobserved one as overfitting to 0s would deter
predictions. Here, λ is chosen as a regularization parameter to
give preference to simpler models for better generalization.

5.2.2. Traditional Autoencoder
Autoencoders are unsupervised neural networks that aim at
minimizing the loss between reconstructed and input vectors. A
traditional autoencoder is composed of two parts(cf., Figure 5):
(a) an encoder, which maps the input vector into low-
dimensional latent variables; and, (b) a decoder, which maps the
latent variables to an output vector. The reconstruction loss can
be written as:

L =

n
∑

i=1

‖(x̂i − xi)‖
2
2, (5)

where xis are the inputs and x̂i = f (g(xi)). f (.) and g(.) are the
decoder and encoder functions respectively. Deep autoencoders
have recently been adapted to the network setting (Cao et al.,
2016; Kipf and Welling, 2016; Wang et al., 2016). An algorithm
proposed byWang et al. (2016) jointly optimizes the autoencoder
reconstruction error and Laplacian Eigenmaps (Belkin and
Niyogi, 2001) error to learn representation for undirected
networks. However, this “Traditional Autoencoder” equally
penalizes observed and unobserved links in the network, while
the model adapted to the network setting cannot be applied
when the network is directed. Thus, we propose to modify the
Traditional Autoencoder model as follows.
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Algorithm 1: Teammate Autoencoder

Function CreatePerformanceNetwork (Player histories
{Mp}, TrueSkill scores {TSp}, NetworkType {SPN, LPN})
for p = 1 . . . P do

1TSp = TSp[0 :]− TSp[:−1] // compute the
TrueSkill gains of p

for i = 0 . . .N do

if NetworkType is SPN then
W[p, t] =W[p, t]+1TSp[i] for each

t ∈ Mp[i] // compute the
weight for each (p,t)

else

idx← getLastSeenIndex() // get the
index of the last match
played by p with t

W[p, t] =W[p, t]+ exp(i− idx)1TSp[i] for
each t ∈ Mp[i] // compute the
weight for each (p,t)

updateLastSeenIndex(p, t, i) // update
index

returnW
Function Teammate Autoencoder (Player history {Mp},
TrueSkill scores {TSp})
W← CreatePerformanceNetwork({Mp},{TSp})

// create performance network
using player history and
TrueSkill scores

ϑ← RandomInit() // initialize the
autoencoder weights

Set F = {(wi)} for each wi ∈W // construct
input set for autoencoder from
weight matrix

for iter = 1 . . . I do
Randomly sample minibatchM from F // get

minibatch

L =
∑n

i=1 ‖(x̂i − xi)⊙ [ai,j]
n
j=1‖

2
2 // compute

loss function

grad← ∂L/∂ϑ // compute gradient

ϑ← UpdateGradSGD(ϑ , grad) // upgrade
model weights using the
gradient

Y← EncoderForwardPass(G, ϑ) // compute
embedding using encoder

return Y

5.2.3. Teammate Autoencoder
To model directed networks, we propose a modification of the
Traditional Autoencoder model, that takes into account the
adjacency matrix representing the directed network. Moreover,
in this formulation we only penalize the observed links in
the network, as our aim is to predict the weight and the
corresponding ranking of the unobserved links. We then write
our “Teammate Autoencoder” reconstruction loss as:

L =

n
∑

i=1

‖(x̂i − xi)⊙ [ai,j]
n
j=1‖

2
2, (6)

where aij = 1 if (i, j) ∈ E, and 0 otherwise. Here, xi represents i
th

row of the adjacency matrix and n is the number of nodes in the
network. Thus, the model takes each row of the adjacency matrix
representing the performance network as input and outputs
an embedding for each player such that it can reconstruct the
observed edges well. For example, if there are 3 players and
player 2 helps improve player 1’s performance by a factor of
α, player 1’s row would be [0,α, 0]. We train the model by
minimizing the above loss function using stochastic gradient
descent and calculate the gradients using back propagation.
Minimizing this loss functions yields the neural network weights
W and the learned representation of the network Y ∈ R

n×d.
The layers in the neural network, the activation function and
regularization coefficients serve as the hyperparameters in this
model. Algorithm 1 summarizes our methodology.

5.3. Evaluation Framework
5.3.1. Experimental Setting
To evaluate the performance of the models on the task
of teammates’ recommendation, we use the cross-validation
framework illustrated in Figure 6. We randomly “hide” 20% of
the weighted links and use the rest of the network to learn the
embedding, i.e., representation, of each player in the network.
We then use each player’s embedding to predict the weights
of the unobserved links. As the number of player pairs is
too large, we evaluate the models on multiple samples of the
co-player performance networks [similar to Ou et al. (2016);
Goyal and Ferrara (2018)] and report the mean and standard
deviation of the used metrics. Instead of uniformly sampling
the players as performed in Ou et al. (2016); Goyal and Ferrara
(2018), we use random walks (Backstrom and Leskovec, 2011)
with random restarts to generate sampled networks with similar
degree and weight distributions as the original network. Figure 7
illustrates these distributions for the sampled network of 1,024
players (nodes).

Further, we obtain the optimal hyperparater values of the
models used using a grid search over a set of values. For Graph
Factorization, we vary the regularization coefficient in powers of
10, λ ∈ [10−5, 1]. For deep neural network based models, we use
ReLU as the activation function and choose the neural network
structure by an informal search over a set of architectures. We set
the l1 and l2 regularization coefficients by performing grid search
on [10−5, 10−1].
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FIGURE 6 | Evaluation Framework: The co-play network is divided into training and test networks. The parameters of the models are learned using the training

network. We obtain multiple test subnetworks by using a random walk sampling with random restart and input the nodes of these subnetworks to the models for

prediction. The predicted weights are then evaluated against the test link weights to obtain various metrics.

FIGURE 7 | Distribution of the weights of the network sampled by using

random walk.

5.3.2. Evaluation Metrics
We use Mean Squared Error (MSE), Mean Absolute Normalized
Error (MANE), and AvgRec@k as evaluation metrics. MSE
evaluates the accuracy of the predicted weights, whereas MANE
and AvgRec@k evaluate the ranking obtained by the model.

First, we compute MSE, typically used in recommendation
systems, to evaluate the error in the prediction of weights. We
use the following formula for our problem:

MSE = ‖wtest − wpred‖2, (7)

where wtest is the list of weights of links in the test subnetwork,
and wpred is the list of weights predicted by the model. Thus,
MSE computes how well the model can predict the weights of
the network. A lower value implies better prediction.

Second, we use AvgRec@k to evaluate the ranking of the
weights in the overall network. It is defined as:

AvgRec@k =

∑k
i=1 w

test
index(i)

k
, (8)

where index(i) is the index of the ith highest predicted link in the
test network. It computes the average gain in performance for top
k recommendations. A higher values implies the model can make
better recommendations.

Finally, to test the models’ recommendations for each player,
we define the Mean Absolute Normalized Error (MANE), which
computes the normalized difference between predicted and
actual ranking of the test links among the observed links and
averages over the nodes. Formally, it can be written as:

MANE(i) =

∑|Etesti |

j=1

∣

∣

∣

rank
pred
i (j)− ranktesti (j)

∣

∣

∣

|Etraini ||Etesti |
,

MANE =

∑|V|
i=1 MANE(i)

|V|
, (9)

where rank
pred
i (j) represents the rank of the jth vertex in the list of

weights predicted for the player i. A lower MANE value implies
that the ranking of recommended players is similar to the actual
ranking according to the test set.

5.4. Results and Analysis
In the following, we evaluate the results provided by the
Graph Factorization, the Traditional Autoencoder and our
Teammate Autoencoder. To this aim we first analyze the models’
performance on both the SPN and the LPN with respect to
the MSE measure, computed in Equation (7), respectively in
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Figures 8A, 9A. In this case, we compare the models against an
“average” baseline, where we compute the average performance
of the players’ couples observed in the training set and use it as a
prediction for each hidden teammate link.

Figures 8A, 9A show the variation of the percentage of the
MSE gain (average and standard deviation) while increasing
the number of latent dimensions d for in each model. We can
observe that the Graph Factorization model generally performs
worse than the baseline, with values in [−1.64%,−0.56%] and
average of −1.2% for the SPN and values in [−1.35%,−0.74%]
and average of −1.05% for the LPN. This suggests that
the performance networks of Dota 2 require the use of
deep neural networks to capture their underlying structure.
However, a traditional model is not enough to outperform the
baseline. The Traditional Autoencoder reaches indeed marginal
improvements: values in [0.0%, 0.55%] and average gain of 0.18%
for the SPN; values in [0.0%, 0.51%] and average gain of 0.20% for
the LPN. On the contrast, our Teammate Autoencoder achieves
substantial gain over the baseline across the whole spectrum
and its performance in general increases for higher dimensions
(they can retain more structural information). The average MSE
gain for different dimensions over the baseline of the Teammate
Autoencoder spans between 6.34% and 11.06% in the SPN and
from 6.68% to 11.34% for the LPN, with an average gain over all
dimensions of 9.00% for the SPN and 9.15% for the LPN.We also
computed the MSE average over 10 runs and d = 1, 024, shown
in Table 2, which decreases from the baseline prediction of 4.55
to our Teammate Autoencoder prediction of 4.15 for the SPN,
and from 4.40 to 3.91 for the LPN.

We then compare the models’ performance in providing
individual recommendations by analyzing the MANE metric,
computed in Equation (9). Figures 8B, 9B show the percentage
of the MANE gain for different dimensions computed against
the average baseline respectively for the SPN and the LPN.
Analogously to the MSE case, the Graph Factorization performs
worse than the baseline (values in [−3.34%,−1.48%] with
average gain of -2.37% for SPN and values in [−3.78%,−0.78%]
-2.79% for LPN) despite the increment in the number of
dimensions. The Traditional Autoencoder achieves marginal
gain over the baseline for dimensions higher than 128
([0.0%, 0.37%] for SPN and [0.0%, 0.5%] for LPN), with an
average gain over all dimensions of 0.16% for SPN and 0.19%
for LPN. Our model attains instead significant percentage gain
in individual recommendations over the baseline. For the SPN,
it achieves an average percentage of MANE gain spanning
from 14.81 to 22.78%, with an overall average of 19.50%. For
the LPN, the average percentage of MANE gain spans from
16.81 to 22.32%, with an overall average of 19.29%. It is worth
noting that the performance in this case does not monotonically
increase with dimensions. This might imply that for individual
recommendations the model overfits at higher dimensions. We
report the average value ofMANE in Table 2 for d = 1, 024. Our
model obtains average values of 0.059 and 0.062, for the SPN and
LPN respectively, compared to 0.078 of the average baseline for
both cases.

Finally, we compare our models against the ideal
recommendation in the test subnetwork to understand how

close our top recommendations are to the ground truth. To
this aim, we report the AvgRec@k metric, which computes the
average weight of the top k links recommended by the models
as in Equation (8). In Figures 8C, 9C, we can observe that the
Teammate Autoencoder significantly outperforms the other
models, both for the SPN and LPN respectively. The theoretical
maximum line shows the AvgRec@k values by selecting the
top k recommendations for the entire network using the test
set. For the SPN, the link with the highest predicted weight
by our model achieves a performance gain of 0.38 as opposed
to 0.1 for Graph Factorization. This gain is close to the ideal
prediction which achieves 0.52. For the LPN, instead, our model
achieves a performance gain of 0.3 as opposed to 0.1 for Graph
Factorization. The performance of our model remains higher
for all values of k. This shows that the ranking of the links
achieved by our model is close to the ideal ranking. Note that the
Traditional Autoencoder yields poor performance on this task
which signifies the importance of relative weighting of observed
and unobserved links.

6. RELATED WORK

There is a broad body of research focusing on online games to
identify which characteristics influence different facets of human
behaviors. On the one hand, this research is focused on the
cognitive aspects that are triggered and affected when playing
online games, including but not limited to gamer motivations
to play (Choi and Kim, 2004; Yee, 2006; Jansz and Tanis,
2007; Tyack et al., 2016), learning mechanisms (Steinkuehler,
2004, 2005), and player performance and acquisition of
expertise (Schrader and McCreery, 2008). On the other hand,
players and their performance are classified in terms of in-game
specifics, such as combat patterns (Drachen et al., 2014; Yang
et al., 2014), roles (Eggert et al., 2015; Lee and Ramler, 2015;
Sapienza et al., 2017), and actions (Johnson et al., 2015; Xia et al.,
2017; Sapienza et al., 2018a).

Aside from these different gaming features, multiplayer online
games especially distinguish from other games because of their
inherent cooperative design. In such games, players have not
only to learn individual strategies, but also to organize and
coordinate to reach better results. This intrinsic social aspect has
been a focal research topic (Ducheneaut et al., 2006; Hudson
and Cairns, 2014; Losup et al., 2014; Schlauch and Zweig, 2015;
Tyack et al., 2016). In Cole andGriffiths (2007), authors show that
multiplayer online games provide an environment in which social
interactions among players can evolve into strong friendship
relationships. Moreover, the study shows how the social aspect
of online gaming is a strong component for players to enjoy
the game. Another study (Pobiedina et al., 2013a,b) ranked
different factors that influence player performance in MOBA
games. Among these factors, the number of friends resulted to
have a key role in a successful teams. In the present work, we
focused on social contacts at a higher level: co-play relations.
Teammates, either friends or strangers, can affect other players’
styles through communication, by trying to exert influence over
others, etc. (Kou and Gui, 2014; Leavitt et al., 2016; Zeng et al.,
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FIGURE 8 | Short-term Performance Network. (A) Mean Squared Error (MSE) gain of models over average prediction. (B) Mean Absolute Normalized Error (MANE)

gain of models over average prediction. (C) AvgRec@k of models.

FIGURE 9 | Long-term Performance Network. (A) Mean Squared Error (MSE) gain of models over average prediction. (B) Mean Absolute Normalized Error (MANE)

gain of models over average prediction. (C) AvgRec@k of models.
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TABLE 2 | Average and standard deviation of player performance prediction

(MSE) and teammate recommendation (MANE) for d = 1, 024 in both SPN

and LPN.

MSESPN MANESPN MSELPN MANELPN

Baseline prediction 4.55/0.14 0.078/0.02 4.40/0.14 0.078/0.01

Graph factorization 4.59/0.17 0.081/0.02 4.45/0.18 0.084/0.021

Traditional autoencoder 4.54/0.15 0.074/0.01 4.37/0.13 0.075/0.012

Teammate autoencoder 4.15/0.14 0.059/0.008 3.91/0.10 0.062/0.008

Bold values show the best performance for that metric.

2018). Moreover, we leveraged these teammate-related effects on
player performance to build a teammate recommendation system
for players in Dota 2.

Recommendation systems have been widely studied in the
literature on applications such as movies, music, restaurants and
grocery products (Lawrence et al., 2001; Lekakos and Caravelas,
2008; Van den Oord et al., 2013; Fu et al., 2014). The current work
on such systems can be broadly categorized into: (i) collaborative
filtering (Su and Khoshgoftaar, 2009; Kluver et al., 2018; Liang
et al., 2018), (ii) content based filtering (Pazzani and Billsus, 2007;
Shu et al., 2018), and (iii) hybrid models (Burke, 2002; Ji et al.,
2019). Collaborative filtering is based on the premise that users
with similar interests in the past will tend to agree in the future
as well. Content based models learn the similarity between users
and content descriptions. Hybridmodels combine the strength of
both of these systems with varying hybridization strategy.

In the specific case ofMOBA games, recommendation systems
are mainly designed to advise players on the type of character
(hero) they impersonate6 (Conley and Perry, 2013; Agarwala
and Pearce, 2014; Chen et al., 2018). Few works addressed the
problem of recommending teammates in MOBA games. In Van
De Bovenkamp et al. (2013), authors discuss how to improve
matchmaking for players based on the teammates they had in
their past history. They focus on the creation and analysis of the
properties of different networks in which the links are formed
based on different rules, e.g., players that played together in
the same match, in the same team, in adversarial teams, etc.
These networks are then finally used to design a matchmaking
algorithm to improve social cohesion between players. However,
the author focus on different relationships to build their networks
and on the strength of network links to design their algorithm,
while no information about the actual player performance is
taken into account. We here aim at combining both the presence
of players in the same team (and the number of times they play
together) and the effect that these combinations have on player
performance, by looking at skill gain/loss after the game.

7. CONCLUSIONS

In this paper, we set to study the complex interplay between
cooperation, teams and teammates’ recommendation, and
players’ performance in online games. Our study tackled

6DotaPicker: http://dotapicker.com/

three specific problems: (i) understanding short and long-
term teammates’ influence on players’ performance; (ii)
recommending teammates with the aim of improving players
skills and performance; and (iii) demonstrating a deep neural
network that can predict such performance improvements.

We used Dota 2, a popular Multiplayer Online Battle
Arena game hosting millions of players and matches every
day, as a virtual laboratory to understand performance and
influence of teammates. We used our dataset to build a co-
play network of players, with weights representing a teammate’s
short-term influence on a player performance.We also developed
a variant of this weighting algorithm that incorporates a
memory mechanism, implementing the assumption that player’s
performance and skill improvements carry over in future
games (i.e., long-term influence): influence can be intended
as a longitudinal process that can improve or hinder player’s
performance improvement over time.

With this framework in place, we demonstrated the
feasibility of a recommendation system that suggests new
teammates, which can be beneficial to a player to play
with to improve their individual performance. This system,
based on a modified autoencoder model, yields state-of-
the-art recommendation accuracy, outperforming graph
factorization techniques considered among the best in
recommendation systems literature, closing the existing
gap with the maximum improvement that is theoretically
achievable. Our experimental results suggest that skill transfer
and performance improvement can be accurately predicted with
deep neural networks.

We plan to extend this work in multiple future directions.
First, our current framework takes only into account the
individual skill of players to recommend teammates that are
indeed beneficial to improve a player’s performance in the game.
However, multiple aspects of the game can play a key role in
influencing individual performance. These are aspects such as
the impersonated role, the presence of friends or strangers in
the team, cognitive budget of players, and their personality.
Thus, we are planning to extend our current framework to take
into account these aspects of the game and train a model that
recommends teammates on the basis of these multiple factors.

Second, from a theoretical standpoint, we intend to
determine whether our framework can be generalized to
generate recommendations and predict team and individual
performance in a broader range of scenarios, beyond online
games. We will explore whether more sophisticated factorization
techniques based on tensors, rather than matrices, can be
leveraged within our framework, as such techniques have
recently shown promising results in human behavioral
modeling (Hosseinmardi et al., 2018a,b; Sapienza et al.,
2018a). We also plan to demonstrate, from an empirical
standpoint, that the recommendations produced by our
system can be implemented in real settings. We will carry
out randomized-control trials in lab settings to test whether
individual performance in teamwork-based tasks can be
improved. One additional direction will be to extend our
framework to recommend incentives alongside teammates:
this to establish whether we can computationally suggest
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incentive-based strategies to further motivate individuals and
improve their performance within teams.
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