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Vegetation state is largely driven by climate and the complexity of involved processes

leads to non-linear interactions over multiple time-scales. Recently, the role of temporally

lagged dependencies, so-called memory effects, has been emphasized and studied

using data-driven methods, relying on a vast amount of Earth observation and climate

data. However, the employed models are often not able to represent the highly non-linear

processes and do not represent time explicitly. Thus, data-driven study of vegetation

dynamics demands new approaches that are able to model complex sequences. The

success of Recurrent Neural Networks (RNNs) in other disciplines dealing with sequential

data, such as Natural Language Processing, suggests adoption of this method for Earth

system sciences. Here, we used a Long Short-Term Memory (LSTM) architecture to fit

a global model for Normalized Difference Vegetation Index (NDVI), a proxy for vegetation

state, by using climate time-series and static variables representing soil properties and

land cover as predictor variables. Furthermore, a set of permutation experiments was

performed with the objective to identify memory effects and to better understand the

scales on which they act under different environmental conditions. This was done by

comparing models that have limited access to temporal context, which was achieved

through sequence permutation during model training. We performed a cross-validation

with spatio-temporal blocking to deal with the auto-correlation present in the data and to

increase the generalizability of the findings. With a full temporal model, global NDVI was

predicted with R2 of 0.943 and RMSE of 0.056. The temporal model explained 14%more

variance than the non-memory model on global level. The strongest differences were

found in arid and semiarid regions, where the improvement was up to 25%. Our results

show that memory effects matter on global scale, with the strongest effects occurring in

sub-tropical and transitional water-driven biomes.

Keywords: memory effects, lag effects, recurrent neural network (RNN), long short-termmemory (LSTM) network,
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1. INTRODUCTION

In the past decades, terrestrial ecosystems have been recognized
to play a key role in the global carbon cycle as a sink of
atmospheric CO2, acting as a buffer for human carbon emissions
(Bonan, 2015). Links between terrestrial carbon uptake to short-
and midterm climate variations are still poorly understood and
therefore, identifying driving mechanisms of vegetation state is
crucial (Reichstein et al., 2013).

While the large-scale spatial distribution of vegetation
mainly depends on climatologies, short-term dependencies of
vegetation dynamics on climate variability are more complex
(Papagiannopoulou et al., 2017a). This complexity expresses in
dynamic interactions on multiple temporal scales, generating
patterns that can only be understood and predicted considering
antecedent ecosystem states and environmental conditions
(Chave, 2013; De Keersmaecker et al., 2015; Seddon et al., 2016).
These time-lagged impacts, so-called memory effects, have long
been neglected, but have gained attention recently (Frank et al.,
2015; Ogle et al., 2015).

Recently, different studies investigated memory effects to
understand how vegetation reacts to climate on global level
and how vulnerable ecosystems are toward weather extremes.
Still, a profound comprehension of the involved processes
is lacking (Ogle et al., 2015). Nevertheless, progress toward
a better understanding was made. Seddon et al. (2016), for
example, used an auto-regressive approach to model vegetation
state as a function of temperature, water availability, cloud
cover and the past vegetation state to determine sensitivity
of vegetation toward and importance of the climate drivers.
Similarly, De Keersmaecker et al. (2015) deployed a multiple
linear regression model to analyze ecosystem resistance and
resilience. They modeled anomalies of Normalized Difference
Vegetation Index (NDVI), a proxy for vegetation state (Tucker,
1979), as a function of temperature anomalies, a drought index
and past NDVI anomalies. Liu et al. (2018) used multiple linear
regression to investigate the sensitivity of vegetation toward
climate variability and to assess water memory effects. Wu
et al. (2015) analyzed the impact of temperature, precipitation
and solar short-wave irradiation on vegetation state, using
a linear regression framework with lagged variables. In the
mentioned studies, the learned model coefficients were linked
to memory effects or the closely related ecosystem resilience.
These studies provided important insights into memory effects,
meteorological drivers of vegetation and its sensitivity toward
environmental conditions. However, there is evidence that linear
models are not able to adequately represent the temporal
interactions inherent to ecosystem processes (Papagiannopoulou
et al., 2017a). Thus, non-linear approaches that can cope
with this complexity, are worthwhile exploring. To this
end, Papagiannopoulou et al. (2017a) developed a Granger
causality framework based on random forests to analyze the
impact of climate drivers on anomalies of vegetation state
and showed that non-linear approaches are needed to model
vegetation dynamics. Other non-linear approaches to study
global vegetation dynamics, however, have not been tested to
our knowledge.

We take this opportunity to test the applicability of a state-
of-the-art machine learning model to study global memory
effects: Recurrent Neural Networks (RNNs). RNNs maintain a
hidden state representing the system’s memory (Werbos, 1990;
Goodfellow et al., 2016). This memory evolves through time
and is accessed for making predictions in interaction with
concurrent factors. The model learns during training what share
of information must be retained, forgotten and updated in
order to predict the target variable and thus learns a complex
representation of the modeled system. A widely used instance
of the RNN model is the Long Short-Term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997; Greff et al., 2017)
that solves some of the shortcomings of the standard RNN.
LSTMs have been proven to perform excellently on sequential
data, for example in speech recognition (Graves et al., 2013),
energy load forecasting (Marino et al., 2016), or crop field
classification (Rußwurm and Körner, 2017, 2018). LSTMs model
time explicitly and can learn interactions on multiple time-scales
(Lipton et al., 2015; Reichstein et al., 2019) and can easily be
extended in a modular fashion. Further, LSTMs allow the usage
of raw time-series as input rather than lagged and aggregated
features. For an introduction to Deep Learning and related terms
we refer to Goodfellow et al. (2016), also available online (https://
www.deeplearningbook.org/). For Deep Learning in the context
of Earth system sciences, we recommend Reichstein et al. (2019).

In this study, we model NDVI using precipitation,
temperature, short-wave irradiation and relative humidity,
together with static variables representing land cover and soil
properties as predictor variables. To quantify memory effects,
we test and extend a time-series permutation approach that has
been contemplated by Reichstein et al. (2018) and applied to
CO2 fluxes at site level by Besnard et al. (2019). By permuting
the feature and target time-series in unison during model
training, the model is restricted to learn instantaneous effects
only, which allows to quantify the model improvement when
including memory effects. Here, we extend this method by using
a block-permutation approach: By successively permuting the
time-series while keeping blocks of a given length in original
order during training, we limit the access to past observations
of meteorological time-series to a specific length. The different
models are then analyzed and compared to improve our
understanding of memory effects. We consider this study a
“proof of concept” that introduces a new approach for using
machine learning for process understanding.

2. MATERIALS AND METHODS

2.1. Vegetation Data (NDVI)
The Global Inventory Monitoring and Modeling System
(GIMMS) NDVI 3g v1 (update of the NDVI 3g v0 dataset, Pinzon
and Tucker, 2014) is a widely used, 15-daily global product
based on data collected by the Advanced Very High Resolution
Radiometer (AVHRR) that spans the period of July 1981 to
December 2015. We used 33 years of the data from 1983 to 2015
(792 time-steps) in order to match the cross-validation scheme
described later. To match other data used in this study and to
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reduce noise as well as observations gaps, the NDVI data was
aggregated from its original spatial resolution of 0.083 to 0.5◦.
Only non-interpolated observations with good quality were used,
and pixel-time-steps were dropped if more than 50% missing
data was present at aggregation level. Also, aggregated pixels with
more than 50%missing data in the time dimension were rejected,
which mainly removes high latitude regions. Finally, pixels with
more than 20% water are dropped to exclude coastal areas,
and such with more than 50% barren were removed to exclude
deserts. This speeds up model training while only locations with
a marginal vegetation signal are removed.

2.2. Explanatory Variables
A total of 27 explanatory variables were used of which 6
were dynamic and 21 static. The dynamic variables 2 m air
temperature (mean, minimum, and maximum), 2 m relative
humidity and incoming short-wave radiation from ERA-Interim
(Dee et al., 2011) and precipitation from the Multi-Source
Weighted-Ensemble Precipitation (MSWEP) global precipitation
dataset version 2.0 (Beck et al., 2019) were temporally aggregated
to match the 15-daily NDVI data. Static variables used are
Available Water Capacity from the Harmonized World Soil
Database version 1.1 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009)
and Water Table Depth (Fan et al., 2013, provided by the
Global Water Scarcity Information Service: http://glowasis.
eu). In addition, Land Cover Fractions (LCF) for the classes
Water, Evergreen Needleleaf Forest, Evergreen Broadleaf Forest,
Deciduous Needleleaf Forest, Deciduous Broadleaf Forest, Mixed
Forest, Closed Shrublands, Open Shrublands, Woody Savannas,
Savannas, Grasslands, Permanent Wetlands, Croplands, Urban
and Built-up, Cropland/Natural vegetation mosaic, Snow and
ice, Barren or Sparsely Vegetated were derived from Moderate
Resolution Imaging Spectroradiometer (MODIS) MCD12Q1
collection 5 (Friedl et al., 2010). Finally, C4 fractions for
the classes Croplands and Croplands/Natural Vegetation mosaic
were obtained from Monfreda et al. (2008). All data was
aggregated to 0.5◦ resolution. For an analysis of the effect of
using static variables as predictors on the model performance
and patterns of memory effects, we refer the reader to the
Supplementary Material, section 1.

2.3. Modeling Approach
To model global vegetation dynamics, we chose an RNN
architecture. RNNs efficiently encode information seen at past
time-steps. This property emerges from its hidden state h,
representing the memory of the network (Goodfellow et al.,
2016). Information is extracted context-based from the state
h〈t−1〉 and is used together with predictor X〈t〉 to compute
output h〈t〉, which is also the input for the next time-step. An
extensively reported issue with the standard RNN is the vanishing
and exploding gradient problem (Pascanu et al., 2013), which
limits its power to capture long-term dependencies. Thus, more
complex models, such as the LSTM are used in practice to
circumvent this issue (Greff et al., 2017).

The model architecture is illustrated in Figure 1. To find an
optimal set of hyper-parameters for the model, we performed
a grid search (searched range reported in brackets). The 27
predictor variables were standardized and each time-step was

FIGURE 1 | The proposed model: At its core, it consists of a standard Long

Short-Term Memory (LSTM) network. In addition, the input variables X〈t〉 (a

time-step t from the time-series concatenated with the static variables) are fed

through two fully connected layers, yielding X∗〈t〉. X∗〈t〉 is concatenated to the

hidden state of the last time step h〈t−1〉 and then passed through the LSTM’s

internal layers. The cell c〈t〉 bypasses the non-linear transformations to

maintain long-term dependencies. The output h〈t〉 is passed through a fully

connected layer to map the LSTM’s output to a single value, ˆNDVI∗〈t〉, the

prediction for time-step t. Figure adapted from colah.github.io/posts/2015-08-

Understanding-LSTMs.

passed through a fully connected neural network with 2 (1–
3) layers, each consisting of 128 (32–256) nodes. Dropout
regularization of 0.1 (0.0–0.4) was applied after both layers. The
output was used as input for a single (1–3) LSTM layer with
a hidden size of 256 (32–512) nodes. A fully connected layer

was attached to the output in order to map h〈t〉 to ˆNDVI
〈t〉
.

We used a mini-batch size of 20 (10–100) and Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 0.001 (0.0001–
0.1) and Mean Squared Error (MSE) as objective function. Early
stopping was used as regularization to avoid over-fitting on the
training data. The model was implemented in PyTorch v0.4
(Paszke et al., 2017).

2.4. Cross-Validation
To achieve a biased-reduced assessment of memory effects of
climate variables on vegetation, we performed a k-fold cross-
validation with spatial and temporal blocking. In a simple k-
fold cross-validation, the data samples are randomly divided
into k sets and each of them is used consecutively either for
model training, validation or testing. Since most environmental
variables are structured in space and time (Legendre, 1993), a
random partitioning of the samples would possibly introduce a
biased estimation of memory effects: Neglected covariates, as well
as the model itself, often lead to residuals that are structured
in space and time. The model can overfit the emerging residual
dependency structure using predictor variables (Roberts et al.,
2017) and as a consequence, we would overestimate memory
effects of climate variables. Therefore, we performed a spatio-
temporal cross-validation.

We subdivided the spatial and temporal domain into
consecutive blocks and assigned all elements of a block to
one of the cross-validation sets. The choice of the block
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size is a trade-off between data limits, computational
requirements and autocorrelation requirements (Roberts
et al., 2017). Spatial blocking was done by subdividing
the global raster into blocks of 5 × 5 pixels. Each 5 × 5
block was randomly assigned to one of 4 spatial folds. To
account for temporal autocorrelation, the time-series were
split into 4-folds of 9 years, overlapping by 1 year. The
overlapping corresponds to the warmup period which is
applied as the LSTM’s state is initialized as zero and has to
encode some of the time-series history first before becoming
fully effective. The cross-validation scheme is illustrated
in Figure 2.

Model training was done by iteratively using 2 spatial sets
for training, 1 for validation and 1 for testing. For each of these
combinations, 1 temporal block was used for validation and test
while the other 3 were used for training. Note that we did not
separate validation and test set in the temporal domain to not
further reduce the sample size used for training, which is one

FIGURE 2 | Spatio-temporal cross-validation scheme: The 4 temporal folds

consist of 9 years of 15 daily consecutive data, each overlapping by 1 year, the

warmup period. While the temporal partitioning is fixed, the spatial blocking is

random; consecutive blocks of 5 × 5 pixels are assigned to 1 of 4 spatial folds

( ). Each color represents one spatial fold. 2 of the 4 spatial folds

are used for training, 1 for validating and 1 for testing. For a given setting (e.g.,

training: , validating: , testing: ), 3 of the temporal folds are used

for training and the remaining temporal fold is used for validation and testing.

Both the spatial and temporal folds are iterated until each pixel time-step is

predicted once (in the test set). The entire cross-validation is repeated 10 times

with changing anchor point (such that the points covered by one 5 × 5 block

are varying) and random assignment of the blocks to one of the spatial folds.

of the above-mentioned trade-offs. As the model performance
showed a low sensitivity toward the hyperparameters, we expect
that this had a low impact on the results.

As the random assignment of the spatial blocks to the cross-
validation sets may not be ideal (e.g., underrepresentation of
some regions in the training set), anchor point of the spatial
blocks and their assignment to the sets were varied randomly
in 10 repetitions. For each of these repetitions, independent
predictions for the test sets were retrieved. Each fold contained
about 37% of the data for training (10,300,000 observations) and
6% for validation (1,650,000 observations). With the 4 folds from
temporal, the 4 folds from spatial blocking and the 10 repetitions
we ended up with 160 independent runs per model. We used the
median of the 10 runs as final predictions.

2.5. Model Evaluation
To assess the model’s predictive performance, we used the Root
Mean Squared Error (RMSE) and the R2. We decomposed the
raw time-series (NDVIRAW) into the median seasonal cycle
(NDVIMSC) and the anomalies (NDVIANO). NDVIMSC was
calculated pixel-wise as the median of the time-series across
all years and NDVIANO as the difference of NDVIRAW and
NDVIMSC. The decomposition was derived individually for the
observations and the predictions. To quantify global model
performance and memory effects, we used robust metrics based
on R2 and RMSE. First, we aggregated the observed and
predicted time-series per hydro-climatic biome (b), as defined by
Papagiannopoulou et al. (2018), by using the pixel-area weighted
average (yielding R2

b
and RMSEb). The biome-specific metrics

were then aggregated to global level using the biome-area (Ab)
weighted mean:

R2global =
1

A

B∑

b=1

R2b ∗ Ab

RMSEglobal =
1

A

B∑

b=1

RMSEb ∗ Ab

where A is the total area. This aggregation was done because
NDVIANO has a low signal-to-noise ratio compared to NDVIMSC

and NDVIRAW, which has two causes: First, NDVIANO has a
weaker signal (lower amplitude) than NDVIMSC and NDVIRAW
in most cases. Second, NDVIMSC was calculated as the median
over several years, which lowers the impact of noise while this is
not the case for NDVIRAW and NDVIANO. In order to compare
model performance among the different decompositions, we
prefer a metric that corrects for this imbalance. R2

global
and

RMSEglobal reflect how large-scale NDVI patterns are reproduced
while keeping the impact of data noise low.

2.6. Identification of Memory Effects
To quantify memory effects, we trained multiple models
with limited access to temporal context: During training, the
dynamic features (climate variables) and the target (NDVI)
time-series were permuted at each training step in unison,
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keeping n antecedent elements in original order, referred to as
model Mn (Figure 3). Validation and prediction were done on
non-permuted time-series. We use the case n = 1 for illustration:
Here, NDVIt is a function of X = {Xt−1,Xt}, which includes
the instantaneous effect (t → t) plus one past observation
(t − 1 → t), hence memory of length n = 1, corresponding to
15 days. There are two special cases, the fullmemory model Mfull,
where no permutation is done and M0, which is the non-memory
model where the time-series are permuted randomly without
blocking. To assess memory effects of different lengths, multiple
models Mn with n = {full, 0, 1, 2, 3, 4, 5, 6} corresponding to
{full, 0, 15, 30, 45, 60, 75, 90} days were computed. This choice
was based on preliminary experiments, showing that the model
performance was flattening after a lag of 90 days and the need
to restrict the number of model runs. Note that although the
permutation does destroy the order of the time-series before
element t − n, the model can still learn from the distribution of
the previous values.

We used the metric Memn = R2n − R20 to quantify
memory effects, where n denotes the number of antecedent
observations being included. Mem is the difference in

A

C

B

FIGURE 3 | Permutation scheme for Mfull (A), M0 (B), and M1 (C). For model

Mn, permutation is done at each training step in order to restrict the memory n

observations into past. The feature (X ) and target (y) time-series are permuted

in unison. ht represents the hidden state of the model at time-step t. Mfull

learns the full memory effects as the time-series are not permuted, M0 only

learns instantaneous effects, the time-series are permuted randomly. For M1,

blocks of size 2 are permuted randomly and the first block starts at position

randomly chosen from {0, . . . , n} to vary the elements covered by the blocks.

During training, only the last element of each block is used in the loss

calculation as n antecedent elements must be in original order, which is not the

case for other elements.

R2 between two models describing the impact of giving
more temporal context on the model performance. For
brevity, Mem refers to the total memory effects derived from
Mfull and M0.

To determine pixels of significant memory effects, we
performed a permutation test. Our test statistic is the memory
effect Mem and our null hypothesis was that Mem is equal to 0–
meaning that on average, the models have the same performance.
Each prediction can be labeled as coming from M0 and Mfull,
and under the null hypothesis, they are exchangeable. For the
permutation test, we permuted these labels 999 times (for all
pixels simultaneously) and calculated each test statistic for each
pixel at each permutation. The p-value is the proportion of
test statistics that are as extreme as our observed test statistic.
Since the permutation test was done on each pixel, we incurred
in the multiple testing problem: As we perform thousands of
simultaneous tests, it is more likely to observe significance just
by chance. This was addressed by using the distribution of the
maximum statistic to determine the threshold of significance at
each pixel (Cortés et al. in preparation). At each permutation,
we saved the maximum of the absolute value of the test
statistic amongst all pixels, max(|Mem|). With the original data’s
maximum, these form the distribution of the maximum statistic.
The threshold for significance at the pixel level was determined
by the 90th percentile of this distribution.

3. RESULTS

3.1. Model Performance
First, we take a look at the global model performance of the full
memory model Mfull and the non-memory model M0. Therefore,
pooled—all pixels and time-steps combined—metrics RMSE and
R2 were calculated. Mfull achieved an RMSE of 0.056 compared to
model M0 with an RMSE of 0.068. This is an error reduction of
14%. The R2 increased by 2.8% from 0.916 to 0.943 from M0 to
Mfull. As the global variability of NDVI is largely caused by spatial
variability (68%), we also looked at the R2 after removing the
mean from each time-series. There, the improvement was 8.8%
from 0.807 to 0.878.

The spatial variability of the model performance for Mfull is
illustrated in Figure 4. A high R2 in terms of NDVIRAW and
NDVIMSC is achieved in the northern temperate and boreal
regions, eastern South America, as well as Savanna and Steppe
ecosystems of Africa—regions of distinct seasonal NDVI signal.
In contrast, rainforests and dry regions, where the seasonal cycle
is less pronounced, show lower values of R2, as errors take larger
effects due to lower overall variance. For NDVIANO, R

2 is lower
in general but achieves values between 0.25 and 0.4 in arid and
semiarid regions. The RMSE of NDVIRAW and NDVIMSC is
distributed more homogeneously, low values are found in arid
regions due to the low vegetation signal.

3.2. Global Memory Effects
Global memory effects based on the aggregated R2

global
for

NDVIRAW, NDVIMSC and NDVIANO are shown in Table 1.
While Mfull performs better in all cases, memory effects on
NDVIANO are stronger than on NDVIMSC in terms of absolute
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FIGURE 4 | Global model performance of the full memory model Mfull based on NDVI time-series from 1984 to 2015 in terms of R2 (top row) and RMSE (bottom row)

for the raw time-series (RAW, left column), median seasonal cycle (MSC, center column) and anomalies (ANO, right column). The histograms are area-weighted.

TABLE 1 | Model performance of models Mfull and M0 for NDVIRAW, NDVIMSC,

and NDVIANO.

NDVIRAW NDVIMSC NDVIANO

R2
global M0 0.848 0.881 0.323

Mfull 0.904 0.928 0.465

% increase 6.3 6.3 30.6

Mem 0.06 0.06 0.14

RMSEglobal M0 0.025 0.017 0.018

Mfull 0.017 0.008 0.015

% decrease 28.9 50.9 15.0

The metrics were calculated from area-weighted, per bioclimatic region aggregated

time-series.

and relative increases of explained variance. Yet, note that for
the seasonal cycle, the fraction of unexplained variance is halved
from 12 to 7%, which is also reflected in the 50% decrease of the
RMSEglobal in Table 1.

Figure 5 shows the spatial variability of memory effects.
Significant effects were detected in transitional and sub-tropical
biomes in general and—to a lower extent—mid-latitude water-
driven climates, while the weak effects in temperate, boreal and
rainforest climates were not significant on pixel basis. Accounting
for antecedent climate conditions improves R2 for NDVIMSC

mainly in the tropical belt. However, these effects were not
found to be significant. Finally, hotspots of significant memory
effects for NDVIANO are similar to those of NDVIRAW, but more
concentrated on arid and semiarid regions. Some areas show
negative memory effects, especially in the case of NDVIMSC. Note
that a small number of pixels has negative correlations, which is
not reflected by the R2. However, these negative correlations are
close to zero (not shown) and thus neglectable.

3.3. Biome-Specific Memory Effects
To understand how vegetation state is affected by antecedent
climate under different environmental conditions, we take a look
at biome-specific memory effects and how they change along
climatic gradients.

First, we illustrate the predicted time-series for the different
models with a regional example exhibiting strong memory effects
(Figure 6): The Chobe National Park is located in Northern
Botswana (∼ 19◦S 24◦E) and has a transitional water-driven
climate with a distinct dry and wet season, the latter starting in
October and ending in April. The selected area is—compared to
its surroundings—only marginally affected by wildfires (see Fox
et al., 2017 for further details). Both models, Mfull andM0 predict
the overall patterns well, however, Mfull performs considerably
better. During low vegetation activity outside the raining season,
the models perform equally with comparable variability of the
error. In the rainy season when vegetation is active, the anomalies
are stronger in general. Here, the full memory model Mfull

performs best, followed byM1. The error variation of M0 is larger
during this period, whilst Mfull errors have the lowest variation.

We further tested the impact of memory length on model
performance on global as well as on biome level compared to
baseline M0 (Figure 7), based on the permutation approach. In
general, themodel performance is increasing withmore temporal
context in a saturating way. Even if the model performance
is not strictly increasing in all cases with longer memory,
a positive (asymptotic) relationship was found. Some biomes
show a small drop in model performance with increasing
memory length. We must keep in mind that the global MSE
is minimized in model training. The different models may
invest in reducing MSE in different regions as long as the
global cost decreases, thus we only expect the global model
performance to increase strictly, while regional discrepancies
are expected. On global level, memory effects on NDVIRAW,
NDVIMSC, and NDVIANO are congruent. Transitional and sub-
tropical biomes show strong yet highly variable memory effects
onNDVIMSC. Distinct memory effects on NDVIANO are found in
water-driven ecosystems.

Furthermore, we look at memory effects in the climate space
of mean annual precipitation and temperature (Figure 8). For
NDVIRAW, we observe increasing memory effects with higher
mean temperature, similar to NDVIMSC. Below a threshold of
around 14◦C, memory effects are barely present. For NDVIMSC,
precipitation seems to play a minor role. In contrast, memory
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FIGURE 5 | Global memory effects based on NDVI time-series from 1984 to 2015 for the raw time-series (RAW, top), median seasonal cycle (MSC, center) and

anomalies (ANO, bottom). Values represent the difference in R2 between the full memory model (Mfull ) and the non-memory (M0). Black striped areas indicate

significant memory effects after accounting for the multiplicity (α = 0.1). The histograms are area-weighted.
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FIGURE 6 | Model predictions for a 10 × 5 pixel area located in the Chobe national park, Botswana (∼ 19◦S 24◦E). The time-aggregated absolute error and its

standard deviation over all pixels of M0, M1, Mfull are shown in the top row, time aggregated observed NDVI in middle row (note that the MSC is contained in the RAW

plot), and a subset of the observed and predicted NDVI time-series from 1990 to 2015 in the bottom row.

FIGURE 7 | Global and biome-specific mean and interquartile range (Q1–Q3) of memory effects (Mem) for NDVIRAW (mean removed), NDVIMSC (mean removed) and

NDVIANO. The x axis represents the memory length, the number of days that are taken into account by the model. The shown R2 reflect the performance of the full

memory model (Mfull ). See Papagiannopoulou et al. (2018) for biome definition.

effects on NDVIANO are higher with lower mean precipitation
and higher temperatures. We see low memory effects above
700 mm annual precipitation and again, mean temperatures
below 14◦C.

Finally, we show the inter-biome mean and variation of
memory effects per month separately for the Northern and
Southern Hemisphere (Figure 9). In other words, this is the
increase in explained variance across years per month from the
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FIGURE 8 | Memory effects (Mem) in the climate space, annual precipitation vs. temperature for NDVIRAW (left), NDVIMSC (middle), and NDVIANO (right). The spatial

variability of NDVIRAW and NDVIMSC has been removed, i.e., the mean of each pixel’s time-series has been subtracted prior to calculating Mem. Gray cells represent

cases with <10 values.

non-memory model M0 to the full memory Mfull model. Note
that we only display the results for NDVIRAW, as NDVIANO
yields the same results and the approach is not applicable to
NDVIMSC. In boreal regions, the patterns are widely consistent,
with small or no memory effects in winter, stronger effects in
the start of the growing season and moderate effects at peak
vegetation activity with a peak toward autumn. The transitional
and sub-tropical water-driven biomes exhibit stronger memory
effects in the Southern Hemisphere, with high values from
December to May. The respective energy-driven regions show
low memory effects in general. Furthermore, we see remarkable
differences between the water and temperature-driven mid-
latitudes: The water-driven regions show opposite patterns in
Northern and Southern hemisphere, strongest memory effects
occur in summer during the growing season. In temperature-
driven regions, however, we see a distinct peak in the beginning
of the growing season in spring and substantially lower memory
effects during the remaining time of active vegetation. The topics,
finally, show no memory effects of monthly variations.

4. DISCUSSION

4.1. Memory Effects on Vegetation State
We found memory effects on global scale with a bigger impact
on the anomalies of vegetation state than on the seasonal cycle
and generally lower impact on boreal and temperate climates
and tropical rainforests. We detected large regional variations of
memory effects and linked them to hydro-climatic biomes and
climate gradients.

Our results shown in Figure 7 suggest that sub-monthly,
short-term memory effects play a dominant role while the
impact of mid-term memory is weaker. For temperature and
energy-driven ecosystems, lower memory effects on vegetation
anomalies were found, which aligns with findings by Wu et al.
(2015), Seddon et al. (2016), and Papagiannopoulou et al.
(2017b). In water-driven regions, except for the boreal climates,

we observe strong memory effects on vegetation anomalies,
which was also found by the aforementioned studies.

We found evidence that ecosystems in colder climates with a
mean temperature below 10–15◦C are less affected by memory
effects in general (Figure 8). Above this threshold, memory
effects on the median seasonal cycle of vegetation state do
not depend on mean annual precipitation, whereas effects on
the anomalies are stronger with an annual rainfall below 700
mm. The strongest memory effects are found in sub-tropical
and transitional ecosystems (Figure 5). The effect is similar for
the seasonal cycle between energy and water-driven subregions,
while the anomalies are much stronger affected by past climate in
respective water-driven regions.

Sub-tropical water-driven regions—containing the arid and
semiarid regions of the world (Papagiannopoulou et al., 2018)—
are mainly shaped through patterns of precipitation, events that
often occur in short pulses, followed by dry phases of varying
length (Snyder and Tartowski, 2006). Through the limited water
availability, vegetation dynamics in these regions largely depend
on water storage in soils. Anomalies in soil moisture can last
over several months (Koster et al., 2004), potentially leading to
strong memory effects. While small precipitation pulses often
cannot penetrate soil layers below 20–30 cm, clustered events in
interaction with lower temperatures can refill deeper soil water
storage. This resource can be accessed by deeper rooted plants,
some even specialize on extracting water from different soil
layers through the season (Schwinning and Ehleringer, 2001).
This buffering of precipitation events in soil combined with large
anomalies of precipitation can lead to strong memory effects,
which is reflected in our results.

Similar patterns occur in transitional water-driven
ecosystems, building the transition from arid and semiarid
regions to humid climates. These ecosystems are still largely
limited by water availability (Papagiannopoulou et al., 2018) and
exhibit a higher vegetation density than sub-tropical regions.
Arid and to a lower extent semiarid ecosystem are sparsely
vegetated and thus, a generally low vegetation signal is observed.
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FIGURE 9 | Monthly biome-specific memory effects for the Northern [N] and Southern [S] Hemisphere. The metric reflects how much better the full memory model

(Mfull ) explains the variance across years per month compared to the non-memory model (M0 ). Cases with less that 10 pixels are not shown. See Papagiannopoulou

et al. (2018) for biome definition.

The small variations in the NDVI and thus the low signal-to-
noise ratio may mask effects that we try to identify. In arid and
semiarid ecosystems of the Southern Hemisphere, the memory
effects are occurring during active vegetation phase in the rainy
season (Figure 9), which is also the case in the regional example
shown in Figure 6. In the Northern Hemisphere, however, the
link between precipitation and memory effect is less evident.

In the boreal and mid-latitude water-limited biomes, we see
patterns of strong memory effects in spring (Figure 9). This
is supposedly related to snowmelt and phenological effects of
temperature. To determine when the snow cover disappeared or
the top layer of the soil thawed, a certain amount of temporal
context is needed, leading to relatively strong memory effects.
Further, vegetation greenup timing in these ecosystems depends
on the history of temperatures during previous months, which
is often modeled as temperature sums in phenological models.
In addition, some plants require chilling before warming effects
can be effective (Migliavacca et al., 2012). Since the start of
the growing season itself has a lagged impact on productivity
after spring, e.g., as a consequence of more or less accumulated
biomass, we see an impact of memory effects related to the
spring vegetation dynamics lasting until around June. The length
of memory effects (Figure 7) is similar for all boreal biomes
with a maximum length of 15–30 days and stronger effects on
vegetation anomalies than on the median seasonal cycle. This is
counter-intuitive, as we would expect to see a strong dependency
of the phenology on antecedent weather patterns due to the
aforementioned cumulative temperature effects. However, the

seasonal variations are well-predicted by both models (R2 >

0.95), hence we see only small memory effects, even if a large
fraction of the non-explained variance of the non-memory
model is explained additionally by the full memory model.
Moderate memory effects are observed in the remaining growing
season, we expect that an increasing drought stress in boreal
regions could alter the temporal dependencies in the future
(Barichivich et al., 2014).

4.2. Time-Series Permutation Approach
An evaluation of the presented approach is challenging because
there is no ground-truth of memory effects. However, we
can assess the plausibility of the results in consideration
of our understanding of ecosystem processes. We looked
at biome-specific monthly memory effects and showed a
regional example, where the full memory model performs
best and a model with shorter memory length still performs
better than the non-memory model. The differences in
model performance were associated with periods of active
vegetation, where predictions were better and more robust
when including more memory. In contrast, dry seasons with
barely any vegetation activity or winter periods in boreal
regions are captured equally by all models. This suggests
that the found memory effects are not just an artifact
but are indeed linked to vegetation dynamics. Furthermore,
we looked at the length of memory effects and found
that models accounting for longer temporal context perform
better. The found relationships between climate gradients

Frontiers in Big Data | www.frontiersin.org 10 October 2019 | Volume 2 | Article 31

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kraft et al. Identifying Memory Effects Using RNNs

and memory effects align well with prior knowledge about
ecosystem functioning.

Another way to evaluate the time-series permutation
approach is a comparison with other studies. This turns out to be
challenging as these studies (e.g., De Keersmaecker et al., 2015;
Wu et al., 2015; Seddon et al., 2016; Papagiannopoulou et al.,
2017b; Liu et al., 2018) use other predictor variables with different
spatial and temporal resolution and different approaches (e.g.,
global vs. pixel-wise optimized). Due to some similarities in the
study design and presentation of results, we can conduct a direct
comparison to Wu et al. (2015): They employed a linear model
with the lagged predictor variables temperature, precipitation
and solar radiation to model monthly global NDVI on pixel
basis. The authors used the regression coefficients to interpret
drivers of and memory effect on vegetation state. Based on a
visual inspection of the spatial model performance, our model
(Figure 4) seems to perform better in terms of R2, even if trained
globally and spatio-temporal cross-validation was applied (see
section 4.3.2 for further discussion). The found patterns of
memory effects align in general, the same major hotspots are
detected, yet our results indicate more wide-spread memory
effects. It is possible that the regions we detected in addition
are characterized by strong non-linear climate-vegetation
interactions (Foley et al., 1998; Bonan, 2015; Papagiannopoulou
et al., 2017a) and cannot be represented by a linear model
as a consequence.

Papagiannopoulou et al. (2017a) (and the follow-up study
Papagiannopoulou et al., 2017b) take a different approach based
on a non-linear Granger causality framework: They quantified
the model improvement from a model that uses past NDVI
anomalies only compared to a model that uses climate variables
in addition. The 4,571 (3,197 in the follow-up) climate variables
include lagged and cumulative features and extreme indices. In
a comparison, we must keep in mind that the reported “Granger
causality on vegetation” may not be directly comparable to our
memory effects metrics and that the temporal resolution of
the time-series differ. While—based on a visual inspection—
the main patterns of memory effects on the NDVI anomalies
(Papagiannopoulou et al., 2017a) seem widely congruent with
our findings (Figure 4, anomalies), the most striking difference
are the significantly lower effects we found in the Sahel.
Interestingly, this is also the region where the LSTM model
performs worse than the pixel-wise trained random forest model.
These discrepancies may attribute to the different resolutions of
the time-series, or to the global vs. pixel-wise modeling approach
(further discussed in section 4.3.2).

A drawback of the presented permutation approach is that we
cannot attribute memory effects to single variables. Yet, we linked
the strongest memory effects to water-limited ecosystems, which
was also found by previous studies. We can conclude that, even
though results are similar, we see regional differences, and that
further development and discussion of the different approaches
is needed.

Another way of identifying memory effects may be to apply
the permutation approach after the training. In other words, the
LSTM which has learned the dynamic effects in the data will be
given a permuted time-series in the prediction. This resembles

the permutation approach for studying variable importance with
other machine learning approaches like random forests.

4.3. Advantages and Limitations
4.3.1. Data Limitations
Remote sensing data is inherently affected by errors related
to data processing, the sensor, atmospheric effects and scene
properties (Friedl et al., 2001). As a consequence, some regions—
for example such with a complex topography—exhibit larger
measurement errors, which affects the reliability of the results.
Alike, the climatic reanalysis datasets used as predictor variables
are affected by uncertainties linked to the underlying datasets
and the modeling approach. A further limitation is the spatial
and temporal resolution of the data. It is possible—yet not
well-understood—that the temporal resolution (15 days) masks
important short-term ecological processes that may propagate
to longer temporal scales. Similarly, the spatial resolution of
0.5◦ integrates finer-grained local variations, leaving us with a
smoothed signal.

Furthermore, the NDVI’s dynamic range is limited since
the signal saturates with dense vegetation. This poses an issue
especially in dense forest areas like rainforests, where the
NDVI shows little to no seasonality (Huete et al., 2006) and
the anomalies mainly reflect noise. Thus, the results regarding
rainforest areas should be taken with a grain of salt.

In addition, the model is limited by the choice of predictor
variables: Ecosystem processes are highly complex and vegetation
state depends on a vast number of factors, like nutrient
availability (Fisher et al., 2012), human and natural disturbances
(Reichstein et al., 2013; Trumbore et al., 2015), surface and sub-
surface water flow (Koirala et al., 2017) and many others that are
not included in the model. As a consequence, the interactions of
the climate with those variables are neglected.

4.3.2. Global Modeling Approach
While previous studies looking into memory effects or related
topics (e.g., De Keersmaecker et al., 2015; Wu et al., 2015; Seddon
et al., 2016; Papagiannopoulou et al., 2017a,b; Liu et al., 2018)
trained a model per pixel, we used a global modeling approach:
A main objective of this study was to test the applicability of
LSTMs to represent global vegetation dynamics. This choice was
motivated by the great success of LSTMs in many other domains:
LSTMs are dynamic models that are able to capture dependencies
on multiple scales and—in theory—of unlimited length. LSTMs
can be applied to raw time-series opposed to approaches that
work on lagged and aggregated features (Lipton et al., 2015).
This renders the approach fully data-driven, as no feature design
choices are necessary. Furthermore, such a model can be easily
extended in a modular fashion to include spatial context using
Convolutional Neural Networks, for example. In this sense, the
presented approach is generic. As such models can easily have
thousands of parameters, they require large amounts of data to
be trained. The length of satellite observation time-series (in our
case ∼800 time-steps) is far away from being sufficient. With a
global modeling approach, the dataset is much bigger and more
adequate for a deep learning approach. Moreover, this approach
achieves a unified global predictive model.
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The global modeling approach was further motivated by
the fact that the datasets are autocorrelated in space. We
follow Roberts et al. (2017), who suggest that spatial cross-
validation should be performed in all cases when dealing with
environmental datasets. Especially for machine learning methods
with high flexibility, overfitting is a problem that needs to
be addressed. This choice, however, has a negative side-effect:
The model’s ability to adapt to local characteristics is limited
and thus, some specificities cannot be learned. Rather, the
model learns generalizable memory effects and therefore, the
estimates of memory effects are conservative. In an effort to
counter this issue, we included static variables that should help
the model to implicitly link local differences to environmental
conditions. In section 1 of the Supplementary Material, we
showed that adding static variables improvedmodel performance
and made the predictions more robust. Furthermore, including
these variables leads to a finer-grained picture of memory effects.
This indicates that the global model learns specific local system
behavior by linking it to actual local conditions rather than
by “memorizing.”

A further drawback of the global modeling scope is that
the model—with the objective to reduce global loss—trades off
different regions: To reduce the loss, the model may invest
more of its capacity in better represented areas while neglecting
under-represented regions. We expect that this is also the reason
for the “negative” memory effects; from a theoretical point
of view, knowing more about past environmental conditions
cannot result in inferior predictions. We investigated this
issue in section 2 in the Supplementary Material, where the
globally trained model was compared to a model optimized
for a single biome only. The memory effects and length were
qualitatively similar. However, the geographic distribution of
the memory effects on the median seasonal cycle showed
substantial differences, while the patterns for the anomalies
were more congruent. Thus, we recommend interpreting the
memory effects regarding the median seasonal cycle with
caution. This problem could be reduced by using higher
resolution data and adding covariates that reflect these
local variabilities better, e.g., human factors and additional
soil properties.

4.4. Applications
RNNs are still rarely used to model Earth observation time-
series. As shown here, RNNs are well-suited to model such
data, as they are able to extract complex features from raw
data with the benefit of rendering feature design unnecessary.
Other than for diagnostic modeling, RNNs can also be used
for upscaling of fluxes, gap-filling or benchmarking of physical
models, for example. The time-series permutation approach
presented here can easily be applied to other fields where
a profound understanding of memory effects is pivotal, such
as hydrology.

4.5. Conclusion
In this study, we have tested the applicability of an LSTMnetwork
to model Earth system variables using multivariate predictors.

We used 33 years of climate variables together with static soil
and land cover features to model 15 daily satellite based NDVI
observations. The model was able to learn the global spatial and
temporal variability of vegetation dynamics to a satisfying degree.
This demonstrates the great capabilities of LSTMs, which are still
rarely used in Earth system sciences, yet their potential is known
from other disciplines.

Furthermore, we used a time-series permutation approach
to identify memory effects of climate on vegetation state. Our
results confirm findings from previous studies and highlight
some new aspects of memory effects: While the geographic
distribution widely agrees with other studies, we linked memory
effects to climate gradients and took a closer look at their
biome-specific temporal occurrence and length. The presented
approach requires minimal prior knowledge of the domain
and can be combined with powerful machine learning models.
These properties render the approach into a useful tool that
expands existing methods, possibly serving as a benchmark for
approaches being able to do a more detailed analysis of variable
contributions to memory effects.
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