
ORIGINAL RESEARCH
published: 20 September 2019
doi: 10.3389/fdata.2019.00033

Frontiers in Big Data | www.frontiersin.org 1 September 2019 | Volume 2 | Article 33

Edited by:

Ranga Raju Vatsavai,

North Carolina State University,

United States

Reviewed by:

Keith Austin Burghardt,

University of Southern California,

United States

Budhitama Subagdja,

Nanyang Technological University,

Singapore

*Correspondence:

Jiří Navrátil

jiri@us.ibm.com

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 10 May 2019

Accepted: 04 September 2019

Published: 20 September 2019

Citation:

Navrátil J, King A, Rios J, Kollias G,

Torrado R and Codas A (2019)

Accelerating Physics-Based

Simulations Using End-to-End Neural

Network Proxies: An Application in Oil

Reservoir Modeling.

Front. Big Data 2:33.

doi: 10.3389/fdata.2019.00033

Accelerating Physics-Based
Simulations Using End-to-End Neural
Network Proxies: An Application in
Oil Reservoir Modeling

Jiří Navrátil 1*, Alan King 1, Jesus Rios 1, Georgios Kollias 1, Ruben Torrado 2 and

Andrés Codas 3

1 IBM Research, Yorktown Heights, NY, United States, 2 Repsol S.A., Móstoles, Spain, 3 IBM Research, Rio de Janeiro, Brazil

We develop a proxy model based on deep learning methods to accelerate the

simulations of oil reservoirs–by three orders of magnitude–compared to industry-strength

physics-based PDE solvers. This paper describes a new architectural approach to this

task modeling a simulator as an end-to-end black box, accompanied by a thorough

experimental evaluation on a publicly available reservoir model. We demonstrate that

in a practical setting a speedup of more than 2000X can be achieved with an average

sequence error of about 10% relative to the simulator. The task involves varying well

locations and varying geological realizations. The end-to-end proxy model is contrasted

with several baselines, including upscaling, and is shown to outperform these by

two orders of magnitude. We believe the outcomes presented here are extremely

promising and offer a valuable benchmark for continuing research in oil field development

optimization. Due to its domain-agnostic architecture, the presented approach can be

extended to many applications beyond the field of oil and gas exploration.

Keywords: reservoir model, surrogate model, physics-based simulation, deep neural network, sequence-to-

sequence model, long short-term memory cell, reservoir simulation

1. INTRODUCTION

Reservoir modeling plays an essential role inmodern oil and gas exploration. After an acquisition of
a reservoir field, energy companies plan the field development based on a capital expense of billions
of dollars. A placement of even a single well in a bad spot can mean a significant economical loss
for the developer. A reservoir model (RM) is a computerized representation of the field drawing
from various data sources, such as geological expert analyses, seismic measurements, well logs,
etc., with added properties determining the dynamic reservoir behavior. Its primary purpose is to
allow optimization and better prediction of the field’s future output using mathematical simulators.
Given a set of input actions (well drilling), a simulator operates on an RM by solving large systems
of non-linear PDEs to predict future outcomes over long time horizons (up to tens of years).

RM simulators may require a considerable amount of computation (time) to produce
predictions (minutes, hours, or days, depending on the RM size). Current optimization techniques
in reservoir engineering are therefore able to simulate only a small number of cases. In our context,
the problem of field development is formulated as an optimization over a very high number
(millions) of candidate sequential well placements. As such, the solving time of a simulation quickly
becomes the bottleneck rendering methods such as Monte Carlo Planning and Reinforcement

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2019.00033
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2019.00033&domain=pdf&date_stamp=2019-09-20
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jiri@us.ibm.com
https://doi.org/10.3389/fdata.2019.00033
https://www.frontiersin.org/articles/10.3389/fdata.2019.00033/full
http://loop.frontiersin.org/people/735586/overview
http://loop.frontiersin.org/people/807387/overview
http://loop.frontiersin.org/people/807425/overview
http://loop.frontiersin.org/people/560840/overview
http://loop.frontiersin.org/people/768890/overview

Navrátil et al. Accelerating Simulations Using Neural Networks

Learning impractical. While the idea of creating an
approximating surrogate, or proxy, is not new, previous
approaches targeted accelerating steps inside the physics-
based simulator (see section 2). Instead, we pursue a deep
learning approach to learn approximating essential output
variables of a PDE-solver in an end-to-end1 fashion using
training data generated by that solver, and demonstrate its
performance and accuracy at predicting production rates on a
benchmark RM with complex geological properties, namely the
SPE9 (SPE9, 2018).

2. PREVIOUS WORK

Accelerating reservoir simulations has a wide literature. State of
the art techniques can be classified in two categories: (1) reducing
the complexity of the PDEs while providing an acceptable loss of
prediction accuracy [e.g., reduced order modeling (ROM) (He
and Durlofsky, 2015) can accelerate the simulations by factors
of 102 and has been found useful in optimization and control
(Jansen and Durlofsky, 2016), and upscaling which achieves
acceleration with coarser reservoir models (Durlofsky, 2005)],
and (2) simple polynomial interpolation techniques computing
the objective function (e.g., Net Present Value, or NPV) or to
characterize the uncertainty (Valladao et al., 2013). It is important
to note that ROM techniques typically target optimization of
certain variables, such as well controls, for fixed well locations
(in contrast, our task is to accelerate across different sequences
of well locations). Furthermore, it is noted that while techniques
listed under (2) are fast their accuracy tends to be poor.

Artificial Neural Networks (ANN) have been proposed to
accelerate oil reservoir simulations and aim to achieve both
objectives: accuracy and acceleration. A special issue of Journal
of Petroleum Science and Engineering in 2014 was devoted to
this topic, and a good summary can be found in the editorial
(Aïfa, 2014). As outlined in this summary, ANN approaches
can be categorized as (1) physics-based models, and (2) data-
driven models. Physics-based models use the PDE structures
as features. Recent example from this category is application
of Convolutional Neural Networks (CNN) to modeling flow
around complex boundaries for the purpose of accelerating
animation (Tompson et al., 2016). A sequential neural network
approach using recurrent units, applied to modeling output
of oil fields was described in Sagheer and Kotb (2018). This
work is relevant in its application of the Long Short Term
Memory (LSTM) cell to modeling well outputs, however, the
task tackled in Sagheer and Kotb (2018) is considerably different:
the model consumes previous observations (or optionally own
predictions) to predict one time step of the same variable, i.e.,
it is a sequence task. In contrast, our task is to generate a series
of rates predictions with the input being the well placement
schedule, i.e., a sequence-to-sequence task, with input and output
sequences being diametrically different. The latter allows us to

1The term “end-to-end” refers to amodeling approach in which a proxy completely

replaces the original system, i.e., only accesses its inputs and outputs. This term has

been used previously with neural approaches in the context of speech recognition,

machine translation, and other applications.

completely replace the physics-based simulator: Given input and
output data, our proxy method is agnostic with respect to the
choice of the particular simulator at training time, and, at test
(run) time, the proxy model operates fully independently of
the simulator. The challenge to purely data-driven approaches
is the extreme nonlinearity of the reservoir dynamics. It seems
important to incorporate features of the reservoir. Examples of
basic, fully connected ANNs to predict reservoir production are
Wei et al. (2017) and Wang et al. (2018). In the context of pre-
existing literature, we believe our contribution is twofold: (1)
our architectural approach is unique as it deals with sequential
action input (i.e., varying timing and locations of wells) and
output of varying span, reservoir uncertainty, and optimized well
control, while modeling the simulator in an end-to-end manner,
and (2) we present a thorough experimental analysis on a publicly
available reservoir model thus creating a reference for future
comparison by the community.

3. RESERVOIR MODEL SIMULATION

The Reservoir Model (RM) simulation considered in this work
is based on a so-called Black Oil model (Trangenstein and Bell,
1989) that describes the flow of reservoir three fluids through
porous rock: oil, water, and gas.

3.1. Physics
The Black Oil model equates the time change of mass in a
region with the mass flux across the region boundary. The
flux is driven by pressure differences caused by well operations.
The system of equations is highly nonlinear due to the non-
stationary interactions between rock types and fluids. Rock
compressibility and relative permeability are altered by changes
in fluid pressure and saturation levels. In addition, petroleum
fluids will undergo phase changes, between gas and liquid form,
as they move through pressure and temperature gradients. An
accessible introduction into the model and inner-workings of
Black Oil Simulators (BOS) can be found in Lie (2014).

A BOS is a basic discrete-time finite-volume simulation. The
reservoir is partitioned into cells and the values of the primary
variables: oil pressure, water saturation, and gas saturation, which
are evaluated over a sequence of time steps out to a fixed
time horizon.

At each time step, the BOS solves the mass balance equations:

Mc,f (xt) −Mc,f (xt−1)

1t
= Fc,f (xt) + Qc,f (xt , ut) (1)

for each cell c and each fluid f , where

xt – Field properties [po, sw, sg]
M (xt) – Fluid mass in cell
F (xt) – Mass flow/to from neighbor cells
ut – Well controls
Q (xt , ut) – Well flows

(2)

In a real reservoir model there may be up to 106 cells and
103 time steps, so the number of nonlinear equations to be

Frontiers in Big Data | www.frontiersin.org 2 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

solved simultaneously can be on the order of 109, although some
practical problems are smaller. Depending on the degree of the
nonlinearity and the length of the time step, the set of equations
to be solved for each time step can require many iterations of a
nonlinear equation solver. A high-fidelity reservoir simulation
for industrial applications can take hours or days to complete
one simulation.

3.2. Reservoir Uncertainty
Each cell has a rock type, for example sandstone or shale,
which defines important properties, such as compressibility and
permeability. However, due to the depth of reservoirs and the
complex geology surrounding their formation, the attribution of
a rock type to any given cell is somewhat uncertain.

An important notion is one of a realization, representing
a particular spatial distribution of rock type across the grid
cells of the RM—a distribution that comes with a natural
uncertainty (Lie, 2014). This can be modeled by three-
dimensional probability density functions, called variograms,
that are calibrated from geological knowledge, seismic data,
and cores from test wells. In a typical application, analysts will
work with a few hundred samples (referred to as Realizations).
To take this uncertainty into account in our experimental
setup, we have used 500 realizations generated from the
original RM according to Caers and Zhang (2004) with
subsequent porosity and permeability calculation described in
Mariethoz and Caers (2014).

3.3. Wells
Another important element in BOS are wells. They have two
functions: (1) the production of commercially valuable fluids
(referred to as Producer wells), and (2) the management of
pressure differentials and fluid saturations in the reservoir. Some
wells are drilled specifically to inject water or gas (referred to
as Injectors).

The simulator predicts the impact of well operations which
consist of two types of decisions: (1) the location and time
sequence of well completions, and (2) the control of the
production or injection rate. The ultimate goal is to maximize
the expected NPV.

3.4. BOS Implementations
Our work relies on the following BOS packages: (1) Open
Porous Media (OPM)—an open source project supported by
a consortium of companies and academic institutions (OPM,
2018), and (2) Eclipse [Eclipse (Schlumberger Company),
2018]—a commercial software.

4. SPE BENCHMARKS

Our study draws data from one (of several) RM considered
reference within the oil and gas industry: the SPE9 model
(Killough, 1995; SPE9, 2018). Themodel consists of a 24×25×15
grid and we used a varying number of injector and producer wells
as will be described later. One particular realization of the SPE9
RM is shown in Figure 1 illustrating the shape (and incline),

FIGURE 1 | An example realization of the SPE9 RM (water pressure

distribution).

grid structure and property (water pressure in this example)
distribution within the RM.

5. LEARNING TO PREDICT PRODUCTION
RATES—THE PROXY APPROACH

5.1. Task
The main targets for the proxy model to predict are a set of
variables referred to as production rates, taking into account
interactions between wells, fluid, and rock. More specifically,
given a particular RM realization and a series of drilling actions, a
simulator predicts rates at which the wells produce or inject fluids
at future times (referred to as time steps). A major application
of such simulations is in Field Development Planning (Jahn
et al., 2008), where the total production rates constitute economic
metrics, such as the Net Present Value (NPV). Individual rates of
each well drilled may also be of importance and we will include
these in our investigations as well.

Considering the above, we define the task of proxy modeling
as follows:

Given:

1. Sequence of actions. An action encapsulates a drilling
decision, in our case one of {“Drill a Producer
Well (P),” “Drill an Injector Well (I),” “Do Nothing
(X)”}, accompanied by applicable coordinates on the
reservoir surface.

2. Realization ID. This ID maps to a known distribution of
rock properties in the reservoir.

Frontiers in Big Data | www.frontiersin.org 3 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

Predict:

1. Field rates, i.e., aggregate output of the entire field, typically
including oil, and water production as well as water
injection over a desired future horizon in (equidistant)
time steps.

2. (Optional) Individual well rates, i.e., individual output of
each producer well placed so far, typically oil production is
of interest.

An example of an action sequence suitably encoded could be as
follows:

x− P(0, 15)− I(2, 5)− x− x− P(23, 19)− ...− x

along with an integer identifying the realization. In this example,
P(x,y) and I(x,y) refer to a Producer and Injector wells being
placed at surface grid coordinates (x,y), and “x” represents a
“Do Nothing” action at the particular time. Thus, P(0, 15)
refers to drilling a Producer at surface location (0, 15), etc.
Continuing on the above example, an expected output could
be a series of rates predicted at increasing time steps, each
representing a 30-day interval. In our experiments we used action
sequences of length 20, and varying prediction spans (horizon) of
20–40 months.

5.2. Model
5.2.1. Encoder-Decoder Architecture
Given the above task definition, ourmethod adopts the sequence-
to-sequence approach based on recurrent neural networks
(RNNs), specifically a version of a gated RNN known as Long-
Short Term Memory (LTSM) cell (Hochreiter and Schmidhuber,
1997), arranged in a encoder-decoder architecture. This approach
has gained popularity across various application fields (Graves
and Jaitly, 2014; Sutskever et al., 2014; Vinyals et al., 2017) and
excels at modeling temporal sequences of (typically discrete)

variables. In our setting, however, the model performs a

continuous-variable regression, as will be explained more in

detail below. Figure 2 illustrates our solution. In this view,

the series of drilling actions, along with additional geological
information is the input sequence, X = {xi}0≤i<K , while

the series of production rates is the output sequence, Y =

{yt}0≤t<T , yt ∈ R
D, where D is the number of fluid phases.

Here, xt represents a union of potentially heterogeneous features,

such as discrete and multivariate continuous variables. Later
we will discuss how X is transformed into a common space

via embeddings.
While typical encoder-decoder applications deal with a

discrete output defined over a closed set (of classes), i.e., modeling
class probabilities with a training objective being a likelihood
function (cross-entropy), in our setting the model performs a

FIGURE 2 | An architecture overview of the model.

Frontiers in Big Data | www.frontiersin.org 4 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

regression in R
D and is trained with the objective of minimizing

the mean squared error (MSE).
The role of the Encoder is to capture the information about

the input X and pass it to the Decoder to generate an accurate
prediction Ŷ about Y . Both the encoder and the decoder involve
multiple layers of LSTMs in our architecture.

5.2.2. Neural Attention Mechanism
Our model adopts the attention mechanism introduced in
Bahdanau et al. (2014) to aid modeling the causal nature between
the actions and the output. In order to generate a prediction
ŷt , the attention mechanism applies a probability distribution
(a “mask”), {αt1, ...,αtK}, over the individual input actions to
emphasize actions particularly relevant to produce yt . As a result,
a new context variable, ct , is synthesized within the decoder at
time t as follows:

ct =

K∑

i=1

αtihi (3)

where {h1, ..., hK} are the internal states of the encoder
corresponding to the input X. The context ct is then appended
to the internal decoder state. The mask, α, itself is a softmax
function of a link (or “alignment”) function, lti:

αti =
elti

∑K
j=1 e

ltj
. (4)

lti models a relationship strength between the previous, (t − 1)-
st, decoder (output) state and the i-th encoder (input) state
(Bahdanau et al., 2014). The link function is modeled as a feed-
forward neural network and is trained jointly with the rest of the
encoder-decoder parameters. In contrast to a typical setup where
the attention is applied on the upper-most encoder layer, we
have found that concatenating encoder states from all M layers,

i.e., for the i-th position in the input X, hi : = [h
(1)
i , ..., h

(M)
i],

outperformed the former.

5.2.3. Decoding Variants
We investigate the following modes of operation with respect to
the decoder:

• Ground Truth (GT) Training, in which the decoder is
provided the GT, i.e., {yt}0≤t<T as input at each time step.

• Prediction Propagation Training (or Prop Training), where in
order to generate ŷt , the decoder uses its own prediction ŷt−1

as input (dotted decoder connections in Figure 2)
• GT Pre-Training, in which the model is first trained in GT

Training mode, followed by Prop Training. This relates to an
idea proposed in Bengio et al. (2015).

• Hybrid Propagation (or HybridProp), in which first k time
steps are performed in the GT mode, followed by decoding
the rest in Prop mode. Note that we utilize this mode in both
training as well as inference (test). This mode is a novel variant
with benefits demonstrated in section 5.6.6.

TABLE 1 | Datasets and their partitioning.

Partition size (simulations)

Name TRAIN VALID TEST

OPM-22k 17,600 2,200 2,200

ECL-32k 28,682 3,585 3,585

OPM-163k 130,778 16,347 16,347

5.3. Experimental Evaluation
5.3.1. Datasets
In order to develop various aspects of the neural network
architecture, we have used the two BOS mentioned in section 3,
namely, OPM and Eclipse. While the OPM was used in majority
of the tests, Eclipse was used to generate simulations with well
control optimization—a feature not yet available in OPM.

Two main datasets were created: (a) 22k simulations2 via
OPM (fixed well control), and (b) 32k simulations via Eclipse
(well control optimized). Each such set was partitioned into
training (TRAIN), validation (VALID), and test (TEST) sets, as
shown in Table 1, maintaining a proportion 80, 10, and 10%,
respectively. Additionally, a large dataset involving 163k OPM
simulations (OPM-163k) was collected to examine effects of
varying training set size on the resulting error metrics.

We want to emphasize that the OPM-163k only serves
exploratory purposes of this paper and, in its size, would unlikely
be a practical choice due to the considerable computational
burden required to generate the corresponding simulations. In
selected experiments (section 5.6.2), the OPM-22k was further
downsampled to investigate dependency on the training size.

Each simulation input consists of a uniform random choice
over 500 realizations (see section 3) and an action sequence
of length 20. For each of the 20 actions, a decision to drill
was made with 99% probability, with a ratio 5 : 1 in favor of
drilling a producer. The well location follows a uniform random
distribution with the constraint of not drilling within a 2-cell
neighborhood of pre-existing wells.

5.4. Features and Preprocessing
5.4.1. Actions and Realization
The primary information to be encoded in the input X =

{xk}0≤k<K are the drilling decisions (see section 5.1). Since the
SPE9 reservoir has dimensions 24 × 25 × 15 grid cells, initially,
a joint action-location encoding was defined on a discrete set
of 1201 (2 “drill” actions × 24 x-coordinate values × 25 y-
coordinate values + 1 “no drill” action) symbols. An alternative
separate encoding for the action (3 symbols), the x-coordinate
(24 symbols), and the y-coordinate (25 symbols), however,
outperformed the joint encoding in our experiments, as will be
shown below.

A realization ID associated with an input sequence is attached
to each xk as a discrete variable.

2The unit of “simulation” encompasses the series of outputs (time steps), given a

well schedule.

Frontiers in Big Data | www.frontiersin.org 5 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

In order to provide the neural network with the above input,
the discrete variables are “embedded” in a continuous space of
certain dimensionality (a hyperparameter), similar to a method
of embedding words in Natural Language Processing (Mikolov
et al., 2013). The embedding vectors for each discrete variable
are initialized to random values and are trained jointly with the
rest of the network. Negligible sensitivity was observed due to
the dimensionality hyperparameter. Values we used are listed
in Table 2.

5.4.2. Geological Features
Hypothesizing that local geological properties influence the
flow through the wells the most, we added features related to
the neighborhood of the well locations. More specifically, the
following local (per-cell) features were considered: (a) rock type
(shale, sandstone), (b) porosity, (c) permeability in horizontal
and vertical direction. In our case, 5 cells at the bottom (for
injectors) and 5 at the top (for producers) are affected by drilling,
resulting in 20 real-valued features concatenated to form the final
feature vector (see Table 2).

5.4.3. Standardization
Standardization was applied to the output variables before
modeling, via a linear transform y′

(k)
= (y(k) − µk)/σk with

y(k) being the k-th dimension of the output vector and µk, σk
denoting the mean and standard deviation estimates obtained
from the corresponding dimension over the TRAIN partition.
The variables y′ are transformed back to their physical range
using the inverse transform. All experimental evaluation is then
performed on unnormed output.

5.4.4. Error Metric
The core metric in our experimentation is the prediction error
relative to target (GT) generated by the simulator. We base this
metric on an L2 norm. Let Yk = {ykt}0≤t<T and Ŷkt = {ŷkt}0≤t<T

denote target and predicted values for a simulation k of length
T. Let K denote the total number of simulations in the test set.
While the reservoir simulator produces rates at each time step, for
practical use we are interested in the cumulative output. Hence,
the cumulative value zkt =

∑t
τ=0 ykτ is calculated forming a

vector zk = [zk0, ..., zkT−1] (and similarly for ẑkt). The (relative)
error of a simulation k is then defined as follows

ek =
||ẑk − zk||2

||z||2
(5)

TABLE 2 | Input features with their type and dimensionality.

Input Type (cardinality) Dim

Well type Discrete (3) 3

Location X Discrete (24) 10

Location Y Discrete (25) 10

Realization Discrete (500) 20

Geology Continuous 20

Note that the denominator, z, is calculated as an average over the
entire test set. This mitigates issues with near-zero targets that
occur in some valid cases. The final error rate used for reporting
in this paper is the average of e from Equation (5) over the entire
test set.

5.4.5. Training Procedure
The system was implemented in Tensorflow (Abadi et al., 2016).
Each model was trained using the TRAIN partition (see Table 1)
to minimize the sequence MSE via the Adam optimizer (Kingma
and Ba, 2014), performed in batches of 100 simulations and an
initial learning rate of 0.001. Parameters with the best loss on the
VALID partition were then chosen. In case of GT Pre-Training
(see section 5.2.3), the resulting parameters served as starting
point for the next training round with a slower learning rate of
0.0002. Trained models were evaluated using the TEST partition.

We experimented with varying model size in terms of the
number of LSTM layers (ranging between 1 and 5), and hidden
units (ranging between 32 and 2,048). In the experimental
sections below we report results on three representative
configurations by memory footprint (“#units × #layers”):
1024×2 (large), 128×5 (medium), and 64×1 (small).

5.5. Baselines
We consider several traditional techniques as references for
comparison, e.g., upscaling (Durlofsky, 2005) offers itself as
a suitable baseline to achieve acceleration due to reduced
refinement and complexity (see below). We also describe two
additional simple machine learning baselines as references.

5.5.1. Upscaling
While oil reservoir fluids flow through microscopic pores,
practical reservoir models, such as SPE9 in Figure 1, have
homogeneous properties over tens of meters. These coarser
models are constructed attempting to approximate and analyze
reservoir flow performance ofmultiscale nature with the available
computational power. To this end, upscaling consists of a
set of procedures to obtain coarser reservoir models for flow
performance prediction from geological characterizations which
typically contain 107 − 108 cells (Durlofsky, 2005). Extrapolating
from this idea, a reasonable question to ask is how the proxy
models based on Neural Networks perform compared to even
coarser versions of the base case reservoir model obtained with
simple upscaling procedures.

We apply single-phase upscaling based on averaging reservoir
properties aiming at a comparison of accuracy and performance
with the proxies. Given the base grid of 24 × 25 × 15 grid-
blocks we constructed two coarser grids of 12 × 13 × 15
and 8 × 9 × 15 grid-blocks, referred to as “UP2” and “UP3,”
respectively. The coarser grids average four (2 × 2 × 1) and
nine (3 × 3 × 1) horizontal neighbor blocks in the “UP2”
and “UP3” case, respectively. All the relevant spatial reservoir
properties, namely pressure, saturation, absolute permeability
and porosity, are averaged on the pore-volume of the union of
cells. These averaging computations are performed in negligible

Frontiers in Big Data | www.frontiersin.org 6 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

computational time when compared to the solution of non-
linear equations for simulation. Finally, the coarser reservoir
description is simulated with the BOS as usual.

While an increased error relative to the refined base model is
anticipated, it should be pointed out that the upscaling procedure
does not require any data to train or tune its parameters. In this
respect, upscaling offers an advantage over learning proxies in use
cases where there is an absolute lack of such training data.

5.5.2. Fixed Predictors
Two simple baselines using fixed predictors are created
as follows:

• A predictor that at all times outputs the mean value for
each variable as seen in the training data (referred to as
“Mean Baseline”);

• A predictor outputting the mean vector of all observations at
the corresponding time step in the training data (referred to as
“Time-Step Mean,” or “TSM”). In other words, this predictor
generates average flow curves for each component, as observed
in the corresponding TRAIN partition.

The two baselines above use the same training data as the proxy
model and thus offer helpful calibration points. Obviously, the
two fixed predictors above incur only negligible latency.

5.6. Experimental Results
5.6.1. Results on OPM-22k
Calculated according to Equation (5), Table 3 summarizes error
rates for the essential techniques described in previous sections,
using the 1,024×2 model. For comparison, we also compute
the simple baselines proposed in section 5.5. “Mean Baseline” and
“TSM Baseline” have an error of 43.1% and 39.3%, respectively,
whereas the upscaling cases “UP2” and “UP3” have an error
of 19.1% and 32.3%, respectively. Then, starting with the basic
encoder-decoder at 21.5%, pre-training a model in GT mode,
followed by Prop training at a slower learning rate results in a
significant decrease of error rate—by 6.2% absolute to 15.3%.
Replacing jointly encoded action-location input (see section
5.4.1) by factored action-location information and by adding
geological features (see section 5.4.2) decreases the error rate
further to 12.2%. Finally, the attention mechanism attending to
all encoder layers achieves an error rate of 10.3%. For comparison
we also give results for the more standard attention setup using
the top layer which is inferior at 11.2%. All differences are
statistically significant with p < 0.001 on a Wilcoxon signed
rank test.Later on, we refer to the multi-layer attentive, GT-
pretrained models using a prefix M, e.g., as M1024×2.

In order to gain insight into how the attentive decoder
focuses with respect to the input, Figure 3 shows two example
attention masks, i.e., the weighting distributions {αkt}0≤k<K

at each decoder time step t over the input action space. In
each panel, the horizontal axis corresponds to decoder time
and the vertical axis to well drilling sequence (abbreviated
as {I,P}#(x,y)). It is interesting to note that while there
is a fairly linear alignment between the decoder focus (light
areas) and the input actions in the Prop mode (a), the bulk of
attention is dispersed over an initial third of the input sequence

TABLE 3 | Sequence error rates of various configurations of the 1024x2 model on

the OPM-22k TEST partition.

Configuration Sequence error (%)

Mean baseline 43.1

TSM baseline 39.3

Upscaling UP3 32.3

Upscaling UP2 19.1

Encoder-decoder (1,024 × 2) 21.5

+ GT Pre-training 15.3

+ Factored geol. features 12.2

(+ Single-layer attention) 11.2

+ Multi-layer attention 10.3

when the decoder is given the GT at every time step (b). We
hypothesize that the sharper action alignment emerges as the
decoder obtains strong signal from the action sequence, while
consuming its own, error-prone prediction as input. In contrast,
the GT decoding mode supplies the decoder with accurate input
making the decoder mostly rely on that, rendering the attention
less important.

Figure 4 compares target (GT) and predicted production rates
in three randomly selected simulations drawn from the TEST
partition (sim: 0, 10, and 100). The first column in Figure 4 shows
direct output of the model, i.e., rates (in barrels) for a given
time period (30 days), while the second column compares the
corresponding cumulative curves. The latter eventually serves the
NPV calculation of the field as mentioned in section 5.1.

Figure 5 compares predicted oil production rates curves
across the various baselines on an example of the first (“sim0”)
simulation, namely the “Mean,” “Time-Slot-Mean (TSM),”
upscaled “UP2,” and “UP3” baselines as well as the proxy. As
can be seen, the proxy tends to approximate the ground-truth
(GT) flow most accurately, followed by the UP2 baseline. The
UP3, Mean, and TSM baselines tend to be considerably further
off the target.

5.6.2. Varying Training Size
To assess the dependency of the prediction error on training
data amount we conducted an experiment with subsampling the
TRAIN partition to smaller amounts. Figure 6 shows the results:
starting from the main OPM-22k result (see above) with 17.6k
simulations, the training amount was halved repeatedly to 1.1k
simulations—an amount extremely small considering that there
are 500 different reservoir realizations to be covered. On the
other extreme, the training set was augmented by the remaining
simulations from OPM-163k yielding a TRAIN partition with
about 130k simulations. In Figure 6, two trends are evident: (1)
models with higher parameter complexity tend to outperform
lower-complexity ones for larger training amounts, with trend
reversal at the lower end of the x-axis, and (2) there is a roughly
linear relationship between the error rate and the log-scaled
training amount. The accuracy of the rel. small 64×1 model is
remarkably competitive across the conditions.

Frontiers in Big Data | www.frontiersin.org 7 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

FIGURE 3 | Attention masks visualized on first simulation from the TEST partition (sim = 0): (A) propagation decoding mode, (B) ground Truth (GT) decoding mode.

FIGURE 4 | Production rates: Ground truth (“GT,” solid), and prediction (“Pred,” dashed) curves obtained from a M1024×2 model with attention, on three randomly

selected simulations. The model has an overall error rate of 10.3%.

Frontiers in Big Data | www.frontiersin.org 8 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

FIGURE 5 | Predictions produced by the various baselines and the proxy in comparison with the simulator ground truth (“GT”). Shown are the field oil rates of a single

simulation (“sim0”).

FIGURE 6 | Prediction error as a function of training data amount. The dashed

vertical line indicates training size of the OPM-22k dataset.

5.6.3. Timing Comparison
The main goal of the proxy is achieving significant acceleration
compared to the physics-based simulation. Having established
accuracy figures in the experiments above, we now turn to the
question of performance (timing). We want to compare the
average time needed to generate a simulation with 20 actions
and 20 outputs, as above, between the OPM simulator and a
selected set of proxy models. For the timing experiments we
use OPM (2107.10 release) ebos_2p which we found to be the
fastest implementation with an executable optimized for speed.
Benchmarking was conducted on a server equipped with 4× E7-
4850 v2 CPUs @ 2.30 GHz (48/96 physical/virtual cores), 256 GB
RAM, Open MPI implementation of MPI (for mpirun; version:
1.2.10) and standard multiprocessing.Pool objects (from
Python, version: 2.7.14). A comparison is somewhat complicated

by the fact that (1) the OPM simulator is used as a black box and
timing includes its initialization, and (2) the OPM code does not
support the use of a GPU thus leaving only CPU comparison.
(1) has a relatively minor effect as, judging from logging, the
initialization stage of OPM takes a negligible fraction of the
total time.

Table 4 summarizes the benchmarking results.We distinguish
three devices of practical interest: (a) CPU 1-core, (b) CPU 8-
core, and (c) single GPU (NVIDIA Tesla K80). All values in
Table 4 are durations (in milliseconds) of a simulation averaged
over 100 measurements using different realizations. The first row
shows the OPM time on a single core as well as an 8-core CPU
(employing MPI), resulting in an average runtime of about 10
and 4.3 s/sim, respectively. The next three rows give the timing
for the three model sizes benchmarked across the three devices.
A clear advantage of the small-footprint M64×1model emerges,
in particular in the 1-Core case achieving a speedup factor of
2343X over the OPM simulator. The GPU seems to provide an
advantage only in case of the largest model.

The last block of three rows shows simulation time in a case
where 100 input sequences (simulation requests) can be batched
up at once, thus allowing for the respective device to better utilize
matrix operations. This sort of batching is of practical use in
certain applications (e.g., Field Development Optimization using
Monte Carlo methods). A significant speedup (0.1 ms/sim) can
be seen now on the GPU side taking full advantage of its internal
memory and architecture.

In a separate experiment, performance gains due to upscaling
are assessed on a single core of an Intel Xeon CPU E5-2680 v2 @
2.80GHz contrasted with Eclipse 2011.1 [Eclipse (Schlumberger
Company), 2018] (we experienced difficulties getting the desired
upscaling setup working using OPM). In this setting, the average
running times of the OPM-22k TEST partition are 5,125 (ms)
when performing no upscaling, 1,489 (ms) when performing the

Frontiers in Big Data | www.frontiersin.org 9 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

TABLE 4 | Timing results.

CPU device GPU device

Test 1-Core 8-Core 1-GPU

Simulation time (ms)

OPM ebos_2p 10,310 4,340 n/a

M64×1 4.4 4.9 12.1

M128×5 34.1 18.9 27.4

M1024×2 299 330 31.6

M64×1 Batch 100 2.9 0.6 0.1

M128×5 Batch 100 32.2 5.1 0.6

M1024×2 Batch 100 170 25.2 1.8

All values are averages over 100 measurements using same random set of simulations.

UP2, and 1,155 (ms) the UP3 upscaling. Thus, the speed-up with
upscaling ranges from 3X to 4X.

Another important (and advantageous) aspect of the proxy
benchmarking results is their consistency. For instance, the
M64×1 single-core result is 4.4 ± 0.1 ms/sim which is a
range of ±3% relative to the mean. The corresponding OPM
measurement of 10, 310 ± 4, 030 ms/sim exhibits a considerably
larger range of ±39%, which is typically caused by convergence
issues for certain action sequences and realizations. This large
variability is also observed when running the upscaled cases.

Overall, considering the error patterns associated with each
model size (see Figure 6), the small proxy model M64×1 offers
an acceptable error rate while achieving the highest speedups.

5.6.4. Extrapolating to a Longer Simulation Horizon
An interesting question arises regarding the proxy model’s
extrapolation capability. Suppose we are given a model trained
with 20 input actions and 20 months worth of output. We
now want to run the model for an extended period, say, 40
months. How well does such a model generalize in comparison
to a model trained on 40 months worth of ground truth? To
investigate, we generated simulations identical to those in OPM-
22k but with output extended to 40 time steps, i.e., 1,200 days,
(labeled OPM-22k-E) allowing a direct comparison of such two
models. Table 5 summarizes the results in terms of average error
rates, with M128×5-E denoting a model trained on OPM-22k-
E and M128×5 one trained on OPM-22k, as before. The first
row in Table 5 shows that both models perform comparably
on OPM-22k, with M128×5-E having no troubles to predict a
shortened horizon of 20 time steps. The more interesting case of
M128×5 extrapolating to 40 time steps is shown in the second
row, where it achieves an error rate of 13.0%—a moderately
elevated error over the matched M128×5-E at 10.6%.While
this increase is statistically significant, it seems to be sufficiently
limited for us to conclude that the model has a reasonable
capability to extrapolate to longer horizons not seen during its
training. Furthermore, it is reassuring to observe the error rates of
both models tested on the shorter time horizon perform equally
well. This suggests that training on data with longer horizon is
beneficial, whenever possible.

TABLE 5 | Error rates of two models on the extended-time horizon (OPM-22k-E)

and regular-horizon (OPM-22k) data with the corresponding models, M128×5-E

and M128×5.

Testset M128 × 5 M128 × 5-E

OPM-22k 10.8% 11.1%

OPM-22k-E 13.0% 10.6%

TABLE 6 | Error rates comparison between the wells model predicting 20 wells +

3 field rates and the best field-rates-only model on OPM-22k.

Error rate (OPM-22k)

Model Total Field rates Well rates

TSM baseline 51.1% 39.3% 53.0%

UP3 baseline 24.9% 32.3% 23.8%

UP2 baseline 16.9% 19.1% 16.6%

M64×5+W 18.3% 14.0% 19.0%

M1024×2 10.3% 10.3% n/a

5.6.5. Modeling Individual Wells
All experiments so far involved predicting field rates, i.e.,
total production and injection rates over all wells. In some
applications, however, more detail may be needed. In one of
our use cases (an optimization of a Field Development Plan)
predictions of all producer wells were required. This corresponds
to adding 20 new output variables each mapped to wells in the
order of drilling (as there may be up to 20 producers). We then
train the model using OPM-22k via same steps as before resulting
in a model with 23-dimensional output.

A comparison between the best wells model (using suffix
“W,” i.e., M64x5+W) and the best field-rates-only counterpart
(M1024×2) is given in Table 6. Clearly, the task has become
considerably more challenging as the wells model must maintain
accuracy across 23 variables. Compared on the field rates only,
the wells model is at 14%, while the dedicated model is around
10%, and at this error rate it still outperforms all other baselines.
The error over the 20 well rates is at 19% for the proxy compared
to 16.6% and 23.8% for the UP2 and UP3 baselines, respectively.
Figure 7 shows a small sample of individual well predictions
along with their ground truth. The output variables map to
each producer in the order of drilling which corresponds to the
timed onset of production visible in the cumulative curves. We
observed that the model tends to overestimate wells that remain
non-productive (zero output for entire simulation), albeit by
relatively small amounts.

5.6.6. Well Control Optimization
Optimizing the well controls is an enhancement currently only
available in the commercial Eclipse simulator (see section 3). The
simulator runtime is typically increased by a factor of 5-10 due
to the optimization step. We want to assess the ability of the
proxy model to capture the optimization implicitly from control-
optimized simulations. The dataset Ecl-32k (see Table 1) serves
this purpose.

Frontiers in Big Data | www.frontiersin.org 10 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

FIGURE 7 | A sample of individual well (oil producer) predictions (blue) along with their ground truth (red).

TABLE 7 | Error rates on Ecl-32k using a model without and with additional

simulator input at prediction time.

Error rate (Ecl-32k)

Model Total Field rates Well rates

TSM Baseline 51.0% 41.5% 52.4%

M128×5+W 27.1% 34.7% 29.9%

+ HybridDec-1 22.8% 27.5% 22.1%

+ HybridProp-1 15.8% 21.3% 14.9%

+ HybridProp-2 15.4% 21.0% 14.6%

+ HybridProp-4 15.1% 21.5% 14.2%

We start with a model M128×5+W trained on Ecl-32k. In
comparison to levels seen with OPM-22k, the resulting error
rates in the first row of Table 7 lie considerably higher, at 27.1%.
An inspection of the model output (see Figure 8, dashed curve)
reveals a rel. high prediction error at time step 1 propagating
further during decoding. An in-depth variance analysis, which
is omitted here due to space constraints, also reveals a high
variability of the GT at time step 1 when (and only when) the
optimization is present. This first step appears to be challenging
for the decoder to predict accurately. This observation motivated
the idea behind HybridProp described in section 5.2.3. In
HybridProp, the decoder is given 1 or several GT frames as
input both at training and test time to generate the rest of the
sequence using regular propagation. An experimental assessment
of this method is shown in Table 7. With M128×5+W at 27.1%
error, giving the same model a single frame of GT during
decoding only (referred to here as HybridDec) improves the error
rate by 4.3%. However, when the model is retrained with the
samemodification (HybridProp), the error declines dramatically,
to 15.8%. Providing more than one GT frame seems to yield
diminishing returns. Despite the added requirement of having a
simulator available at test time, this a remarkable and a practical

result. Returning to Figure 8, after applying HybridProp1 the
original (dashed red) curve moves down (solid red) to a trend
comparable to one seen on non-optimized data (OPM-22k).
The HybridProp method was also tested on models trained on
OPM-22k and observed only negligible improvements further
confirming our hypothesis regarding the high variance observed
at first time step being unique to the well control optimization
process. While the impact of the HybridProp1 method on
error reduction is significant, it should be pointed out that the
added requirement of generating one (or several) frames per
simulation has a negative impact on the expected acceleration
rate. Assuming the overall simulator runtime is proportional to
the number of output frames, the need to generate 1 frame per
simulation will reduce the original acceleration rate (α) to a value

α
1+α/T , where T is the number of output frames. In our case,

considering an acceleration rate of α = 20, 000 for simulations
with T = 20 output frames with well-control optimization, the
final acceleration will become 40X. Obviously, this figure will
improve with longer horizons.

6. CONCLUSION

The series of experimental results presented in this paper
demonstrates the effectiveness of the described end-to-end proxy
approach at accelerating reservoir model simulations, including
variability due to well locations and geological uncertainty.
We have observed a significant acceleration capability of more
than 2000X compared to an industry-strength physics-based
simulator OPM. Furthermore, we demonstrated it is possible
to approximate the simulations with well control optimization
thus offering an additional relative speedup. For practical
amounts of training data, the accuracy of the neural network
proxies presented here ranges between 10% and 15% error
over 20–40 months horizons, relative to the simulator. The
model shows a good extrapolation capability. Our proxy model

Frontiers in Big Data | www.frontiersin.org 11 September 2019 | Volume 2 | Article 33

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

FIGURE 8 | Effect of the HybridProp method on time step specific error rates, with the first time step being crucial.

captures non-linear interactions between wells, fluid, and rock,
giving it a great advantage over state-of-the-art commercial
techniques. When compared to simple upscaling procedures,
we observe that the proxy models are capable to run about
500X faster and provide higher accuracy. We believe these
outcomes, generated on a publicly available reservoir, are
extremely promising and represent a valuable benchmark for
future research in oil field development optimization. Moreover,
we anticipate that, due to its application-agnostic nature, the
approach is suitable for solving tasks in related fields of energy
and environment modeling.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

JN: lead researcher, explored DNN architectures, generated the
proxy experimental results and analysis. AK: performed early-
stage architecture exploration and analysis. JR: involved in design

of the sequence-to-sequence architecture. GK: contributed to
SPE9 data generation as well as performance measurement and
analysis. RT: involved in early-stage planning of the project
leading to the work and results being presented. AC: created the
upscaled simulator setup and generated results serving as the
main baseline in our analysis.

FUNDING

The authors declare that this study received funding from a
Joint Research Agreement No. W1361729 between Repsol and
IBM. The funder, represented by author Ruben Torrado, had
the following involvement with the study: project management
duties, domain expertise consulting.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Cristina Ibáñez of Repsol
for her help generating well-control optimized simulations
used in the Ecl-32k dataset. We furthermore thank
the reviewers for their valuable feedback to improve
this manuscript.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“Tensorflow: a system for large-scale machine learning,” in 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16)

(Savannah, GA), 265–283.

Aïfa, T. (2014). Neural network applications to reservoirs: physics-based models

and data models. J. Petrol. Sci. Eng. 123, 1–6. doi: 10.1016/j.petrol.2014.10.015

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine

translation by jointly learning to align and translate. CoRR abs/14

09.0473.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). “Scheduled sampling for

sequence prediction with recurrent neural networks,” in Proceedings of the 28th

International Conference on Neural Information Processing Systems - Volume 1,

NIPS’15, eds C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett

(Cambridge, MA: MIT Press), 1171–1179.

Caers, J., and Zhang, T. (2004). Multiple-point geostatistics: a quantitative vehicle

for integrating geologic analogs into multiple reservoir models. AAPG Memoir

80, 383–394.

Durlofsky, L. J. (2005). “Upscaling and gridding of fine scale geological models for

flow simulation,” in 8th International Forum on Reservoir Simulation (Stresa),

1–59.

Frontiers in Big Data | www.frontiersin.org 12 September 2019 | Volume 2 | Article 33

https://doi.org/10.1016/j.petrol.2014.10.015
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Navrátil et al. Accelerating Simulations Using Neural Networks

Eclipse (Schlumberger Company) (2018). ECLIPSE Reservoir Simulator. Available

online at: https://www.software.slb.com/products/eclipse (Accessed August 29,

2018).

Graves, A., and Jaitly, N. (2014). “Towards end-to-end speech recognition with

recurrent neural networks,” in Proceedings of the 31st International Conference

on International Conference on Machine Learning - Volume 32, ICML’14,

II–1764–II–1772. Available online at: https://JMLR.org

He, J., and Durlofsky, L. J. (2015). Constraint reduction procedures for reduced-

order subsurface flow models based on POD-TPWL. Int. J. Numer. Methods

Eng. 103, 1–30. doi: 10.1002/nme.4874

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Jahn, F., Cook, M., and Graham, M. (2008). Hydrocarbon Exploration and

Production. Developments in Petroleum Science. Amsterdam: Elsevier Science.

Jansen, J. D., and Durlofsky, L. J. (2016). Use of reduced-order

models in well control optimization. Optim. Eng. 18, 105–132.

doi: 10.1007/s11081-016-9313-6

Killough, J. (1995). “Ninth SPE comparative solution project: a reexamination

of black-oil simulation,” in SPE Reservoir Simulation Symposium

(San Antonio, TX: Society of Petroleum Engineers).

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.

CoRR abs/1412.6980.

Lie, K.-A. (2014). An Introduction to Reservoir Simulation Using MATLAB - User

Guide for the Matlab Reservoir Simulation Toolbox (MRST). Oslo: Sintef ICT,

Department of Applied Mathematics.

Mariethoz, G., and Caers, J. (2014). Multiple-Point Geostatistics: Stochastic

Modeling With Training Images. Chichester, UK: John Wiley & Sons, Ltd.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).

“Distributed representations of words and phrases and their compositionality,”

in Advances in Neural Information Processing Systems 26, eds C. J. C. Burges, L.

Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Lake Tahoe, NV:

Curran Associates, Inc.), 3111–3119.

OPM (Open Porous Media Project) (2018). Available online at: https://opm-

project.org/ (Accessed August 20, 2018).

Sagheer, A., and Kotb, M. (2018). Time series forecasting of petroleum

production using deep lstm recurrent networks.Neurocomputing 323, 203–213.

doi: 10.1016/j.neucom.2018.09.082

SPE9 (Open PorousMedia Project) (2018). Available online at: https://github.com/

OPM/opm-data/blob/master/spe9/SPE9.DATA (Accessed August 20, 2018).

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning with

neural networks,” in Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2, NIPS’14, eds Z. Ghahramani, M.

Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Cambridge, MA:

MIT Press), 3104–3112.

Tompson, J., Schlachter, K., Sprechmann, P., and Perlin, K. (2016). Accelerating

eulerian fluid simulation with convolutional networks. CoRR abs/1607.

03597.

Trangenstein, J. A., and Bell, J. B. (1989). Mathematical structure of the black-oil

model for petroleum reservoir simulation. SIAM J. Appl. Math. 49, 749–783.

doi: 10.1137/0149044

Valladao, D. M., Torrado, R. R., Flach, B., and Embid, S. (2013). “On the stochastic

response surface methodology for the determination of the development plan

of an oil & gas field,” in SPE Middle East Intelligent Energy Conference and

Exhibition (Manama: Society of Petroleum Engineers).

Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2017). Show and tell:

lessons learned from the 2015 mscoco image captioning challenge. IEEE

Trans. Patt. Anal. Mach. Intell. 39, 652–663. doi: 10.1109/TPAMI.2016.25

87640

Wang, C., Ma, Z., Leung, J. Y., and Zanon, S. D. (2018). Correlating stochastically

distributed reservoir heterogeneities with steam-assisted gravity drainage

production. Oil Gas Sci. Technol. Revue d’IFP Energies Nouvelles 73:9.

doi: 10.2516/ogst/2017042

Wei, C., Wang, Y., Ding, Y., Li, Y., Shi, J., Liu, S., et al. (2017). “Uncertainty

assessment in production forecasting and optimization for a giant multi-

layered sandstone reservoir using optimized artificial neural network

technology,” in SPE Reservoir Characterisation and Simulation Conference and

Exhibition (Abu Dhabi: Society of Petroleum Engineers).

Conflict of Interest: RT was employed by company Repsol. Remaining authors

were employed by company IBM.

Copyright © 2019 Navrátil, King, Rios, Kollias, Torrado and Codas. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Big Data | www.frontiersin.org 13 September 2019 | Volume 2 | Article 33

https://doi.org/10.1002/nme.4874
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s11081-016-9313-6
https://opm-project.org/
https://opm-project.org/
https://doi.org/10.1016/j.neucom.2018.09.082
https://github.com/OPM/opm-data/blob/master/spe9/SPE9.DATA
https://github.com/OPM/opm-data/blob/master/spe9/SPE9.DATA
https://doi.org/10.1137/0149044
https://doi.org/10.1109/TPAMI.2016.2587640
https://doi.org/10.2516/ogst/2017042
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Accelerating Physics-Based Simulations Using End-to-End Neural Network Proxies: An Application in Oil Reservoir Modeling
	1. Introduction
	2. Previous Work
	3. Reservoir Model Simulation
	3.1. Physics
	3.2. Reservoir Uncertainty
	3.3. Wells
	3.4. BOS Implementations

	4. SPE Benchmarks
	5. Learning to Predict Production Rates—The Proxy Approach
	5.1. Task
	5.2. Model
	5.2.1. Encoder-Decoder Architecture
	5.2.2. Neural Attention Mechanism
	5.2.3. Decoding Variants

	5.3. Experimental Evaluation
	5.3.1. Datasets

	5.4. Features and Preprocessing
	5.4.1. Actions and Realization
	5.4.2. Geological Features
	5.4.3. Standardization
	5.4.4. Error Metric
	5.4.5. Training Procedure

	5.5. Baselines
	5.5.1. Upscaling
	5.5.2. Fixed Predictors

	5.6. Experimental Results
	5.6.1. Results on OPM-22k
	5.6.2. Varying Training Size
	5.6.3. Timing Comparison
	5.6.4. Extrapolating to a Longer Simulation Horizon
	5.6.5. Modeling Individual Wells
	5.6.6. Well Control Optimization

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

