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Variable rate irrigation (VRI) may improve center pivot irrigation management, including

deficit irrigation. A remote-sensing-based evapotranspiration model was implemented

with Landsat imagery to manage irrigations for a VRI equipped center pivot irrigated

field located in West-Central Nebraska planted to maize in 2017 and soybean in

2018. In 2017, the study included VRI using the model, and uniform irrigation using

neutron attenuation for full irrigation with no intended water stress (VRI-Full and

Uniform-Full treatments, respectively). In 2018, two deficit irrigation treatments were

added (VRI-Deficit and Uniform-Deficit, respectively) and the model was modified in an

attempt to reduce water balance drift; model performance was promising, as it was

executed unaided by measurements of soil water content throughout the season. VRI

prescriptions did not correlate well with available water capacity (R2
< 0.4); however,

they correlated better with modeled ET in 2018 (R2 = 0. 69, VRI-Full; R2 = 0.55,

VRI-Deficit). No significant differences were observed in total intended gross irrigation

depth in 2017 (VRI-Full = 351mm, Uniform Full = 344). However, in 2018, VRI resulted

in lower mean prescribed gross irrigation than the corresponding uniform treatments

(VRI-Full = 265mm, Uniform Full = 282mm, VRI-Deficit = 234mm, and Uniform Deficit

= 267mm). Notwithstanding the differences in prescribed irrigation (in 2018), VRI did

not affect dry grain yield, with no statistically significant differences being found between

any treatments in either year (F = 0.03, p = 0.87 in 2017; F = 0.00, p = 0.96 for

VRI/Uniform and F = 0.01, p = 0.93 for Full/Deficit in 2018). Likewise, any reduction in

irrigation application apparently did not result in detectable reductions in deep percolation

potential or actual evapotranspiration. Additional research is needed to further vet the

model as a deficit irrigation management tool. Suggested model improvements include

a continuous function for water stress and an optimization routine in computing the basal

crop coefficient.
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INTRODUCTION

Traditionally, the smallest practical management scale for center
pivot irrigation has been the field scale. Thus, irrigation
applications are typically intended or assumed to be spatially
uniform throughout a field. Variable rate irrigation (VRI)
technology for center pivots allows for the management scale
to be much smaller and application rates to vary within a VRI
equipped field. Consequently, VRI has been the subject of recent
research (e.g., Stone et al., 2015; Sui and Yan, 2017). As remote
sensing techniques may provide opportunity to quantify spatial
variability of irrigation requirements, a number of studies have
investigated various remote-sensing-based technologies for VRI
management (infrared thermometers, O’Shaughnessy et al., 2015;
canopy reflectance, Stone et al., 2016; and Landsat thermal and
multispectral imagery, Barker et al., 2018b). In western Nebraska
and other areas of the High Plains, irrigation water withdrawal
may be limited in availability, or limited by regulation. In
some of these areas (and other areas globally), significant soil
variability exists, further complicating irrigation management.
VRI may be beneficial in such areas as the utility of VRI has
been demonstrated for fields with variable soil properties (Hedley
and Yule, 2009). The utility of VRI in improving efficiency of
irrigation (e.g., reducing the fraction of irrigation that runs off,
drains below the root zone or is otherwise not available for
extraction by plant roots), e.g., in situations of limited water
supply, has also been demonstrated including deficit irrigation
management (O’Shaughnessy et al., 2016). One reason that VRI
may be of interest in deficit irrigation management is that it may
allow for a more spatially uniform managed level of water stress,
by accounting for soil, and other variability.

While the benefits of VRI have been studied as cited
above, a common misunderstanding regarding new irrigation
technologies is that they “conserve” water, with reduced pumping
resulting in more water available to downstream users. In an
inefficient irrigation system, much of the “inefficiency” is water
that deep percolates past the root zone and recharges the aquifer.
Irrigation technology, if properly managed, may reduce aquifer
withdrawals, and reduce deep percolation, also reducing aquifer
recharge but potentially decreasing water quality issues. From a
watershed scale perspective, the only way to conserve water in
the aquifer is to reduce consumptive use or evapotranspiration
(Allen et al., 2003). Stakeholders are rightly concerned about
aquifer level declines and the subsequent impacts on streamflow.
However, the hypothesis of the current study is that, while
VRI can be used to reduce pumping or increase yield, it
does not significantly reduce consumptive use. In this study
this is explored using a spatial evapotranspiration model to
manage VRI.

The Spatial EvapoTranspiration Modeling Interface (SETMI)
described by Geli and Neale (2012) has been modified and
implemented in VRI research in maize and soybean (common
commodity crops in the High Plains) by Barker et al. (2018a)
and Barker et al. (2018b). This model includes a reflectance-
based crop coefficient evapotranspiration (ET) model, wherein
the basal crop coefficient is related to a multispectral vegetation
index (Neale et al., 1989). SETMI uses relationships developed for

maize and soybean in Nebraska by Campos et al. (2017). SETMI
also contains a version of the two-source energy balance (TSEB;
Norman et al., 1995) as detailed in Barker et al. (2018a). Notably,
SETMI contains what is referred to as a hybrid methodology,
wherein ET from an energy balance model is incorporated into
the water balance through statistical interpolation (Geli, 2012;
Neale et al., 2012; Barker et al., 2018a). This hybrid model is
intended to allow the model to compensate for model drift in the
soil water balance (Neale et al., 2012; Barker et al., 2018a,b).

While SETMI had been tested for VRImanagement in western
Nebraska (Barker et al., 2018b), it had only been tested on
maize and the soil water balance was found to drift compared
to neutron attenuation soil water measurements (Barker et al.,
2018b). Subsequently, modifications have been made to SETMI
discussed by Barker et al. (2018b), including dampening surface
soil evaporation and provisions for incorporating soil water
measurements into the model. These modifications had not
previously been tested, though such are included in concurrent
research by Bhatti (2018). Finally, no attempt has previously been
made to test SETMI for deficit irrigation in row crops in the
western High Plains, though others have studied deficit irrigation
in the area, for example, Payero et al. (2005) studied deficit
irrigation in soybean in West-Central Nebraska. However, they
did not include VRI in their study.

The objective of the present study was to determine whether
VRI management using SETMI, when compared to “uniform”
irrigation, resulted in reduced irrigation applications, reduced
consumptive use (ET), improvements in yield, and/or reduced
impact on local water resources as represented by reductions
in deep percolation (DP) potential. A secondary objective was
to determine whether SETMI would perform well as a deficit
irrigation management tool, which could be accomplished by
accurately simulating soil water content.

MATERIALS AND METHODS

SETMI was tested as an irrigation management tool in a 2-year
field experiment in maize in 2017 and soybean in 2018 in western
Nebraska. This experiment builds upon previous work by Barker
et al. (2018b), and is complimentary to research by Bhatti (2018).
Primary response variables were yield, change in soil water
storage over the measurement period (1SWS), estimated deep
percolation (DP) during the measurement period, the sum of
the latter two variables (1SWS+ DP), modeled ET (ETc), and
water balance measured ET (ETa). The 1SWS+DP represents
an approximation of the impact on deep drainage from the
treatments during the measurement periods (beginning prior
to imposing treatments and ending near harvest). It represents
potential differences in groundwater recharge, and nutrient
leaching capacity.

Study Location
The study location for this experiment was a quarter of a ∼48-
ha center pivot irrigated field, which is part of the University
of Nebraska-Lincoln’s West Central Water Resources Field
Laboratory, near Brule, NE (41.027◦N, 101.973◦W; Google Earth
Pro, accessed 8 August 2018; Figure 1). The field is irrigated
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FIGURE 1 | Experimental study area. Letters in plots are treatments

(2017/2018). Treatments are: (A) VRI-Full, (B) VRI-Deficit, (C) Uniform-Full, and

(D) Uniform-Deficit. Image source: USDA (2016). Political Boundaries sources:

USDA (2009a,b).

with a Zimmatic (Lindsay Corporation, Omaha, NE) center
pivot equipped with Lindsay Precision VRI with individual
nozzle control. The pivot was new in 2015 and is equipped
with Senninger XiWobUP3 sprinklers (Senninger Irrigation Inc.,
Clermont, FL) on drops ∼2m above the ground surface (Barker
et al., 2018b).

Soils in the study area range from loam (Santana loam) to
loamy sand (Bankard loamy sand) and loam–gravel complex
(Santana-Dix complex) (Soil Survey Staff, 2018). The terrain is
undulating hills with soil texture varying with topography. The
Koppen-Gieger Climate class for the location is Bsk (cold arid,
dry summer; Kottek et al., 2006; Brugger, 2017).

Crops were planted following a circular pattern and the
center pivot wheel tracks. The field was under continuous maize
production for several years prior to rotating into soybean in the
2018 season. The field was managed as no-till, but was subject
to a residue removal study prior to 2017 (van Donk et al., 2012;
Barker et al., 2018b). In 2017, the study area was under a maize
crop Dekalb DKC55-20RIB planted at 78,740 seeds ha1 on 8
May 2017. A total of 231 kg ha−1 of N was applied with ∼25%
applied through fertigation. The maize was harvested for grain
between 4 and 16 November 2017. In 2018, the crop was soybean
Pioneer P24A99X, planted at 457,720 seeds ha1 on 8 May 2018.
The soybean crop was harvested for grain on 26 September 2018.

Treatments and Irrigation Management
In 2017, two irrigation treatments were applied: (1) VRI using
SETMI with Landsat imagery, and (2) uniform irrigation using
neutron attenuation based measurements of soil water content
to provide feedback for irrigation scheduling. Both treatments
were full irrigation, with no intentional water stress, thus they
are referred to as VRI-Full, and Uniform-Full, respectively.
In 2018, two additional treatments were added. These two
treatments were both deficit irrigation and corresponded to

the two full irrigation treatments in the modeling and neutron
probe feedback approaches (VRI-Deficit and Uniform-Deficit,
respectively). Thus in 2018, the experiment became a two-by-
two factorial layout. Deficit irrigation as defined here included
an irrigation management allowed soil water depletion that was
greater than would be used for minimal water stress management
during part of the growing season. Additionally, in 2017,
SETMI was executed using the hybrid method and incorporating
neutron-attenuation-measured soil water content. However in
2018, SETMI was executed without these twomethodologies (i.e.,
the reflectance-based crop coefficient ETmodel based on Landsat
satellite multispectral inputs and water balance were exclusively
used). This was because the hybrid methodology was found to
induce model drift necessitating the incorporation of neutron
probe measurements. By eliminating the hybrid model in 2018,
a SETMI-only approach could be tested. This was deemed more
beneficial than maintaining the 2017 modeling approach.

The irrigation was managed similarly to Barker et al. (2018b),
using the concept of a managed root zone water balance and
management allowed depletion (Woodruff et al., 1972; Martin
et al., 1990). This method, used by Barker et al. (2018b) provides
a convenient way to manage VRI and to apply treatments to VRI
equipped irrigated fields. The basics of the method are (Barker
et al., 2018b):

• Determine soil properties (e.g., available water capacity) for
each plot or management area.

• Determine a management allowed depletion fraction for the
treatment or field.

• Determine a target stored root zone soil water depth above
management allowed depletion after irrigation, to which the
root zone will be refilled during an irrigation event. A value of
∼20mm (0.8 in) was used in this study thus providing a soil
water storage buffer for rainfall capture.

• Compute the water balance, forecasting ET forward in
time (precipitation could also be forecasted; soil water
measurements could be incorporated). Similar to Barker et al.
(2018b), the VRI treatments received plot-specific irrigation
based on mean modeled soil water depletion within a ∼9m
buffer area in each plot. In this study, the water balance for the
VRI plots was computed using SETMI.

• Irrigation application depth is computed for any desired
date as the difference between the target water content
(the specified depth above management allowed depletion)
and the modeled water content at the end of the day in
question assuming nowater inputs after inputting the available
water record. This difference, if positive, is the net irrigation
requirement for the plot or management area to be applied by
the end of that day.

• Irrigation is triggered such to prevent any plot from exceeding
management allowed depletion (described in the following
paragraph). Thus, irrigation events occur at the same time
for all treatments, but application rates vary by treatment
and/or plot.

• Maximum and minimum gross application rates (accounting
for application efficiency) are applied as necessary for pivot
and pump management. In this study application efficiency
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(taken here to be the portion of applied irrigation that was
infiltrated) was assumed to be 85%.

• Irrigation prescriptions are set to a practical irrigation
application depth (optional). In this study, gross applied
irrigation was rounded to the nearest∼5mm (0.2 in).

For the full irrigation treatments, management allowed depletion
(MAD) was set to 50%. Late in the 2017 season, the MAD
was allowed to reach 60% as in Yonts et al. (2008), but it was
maintained at 50% throughout the season for soybean in 2018.
The management allowed depletion was set to 60% for the deficit
treatments in 2018; this was increased to 75% after reaching the
end pod-fill stage following the principles of Kranz and Specht
(2012) who suggest avoiding stress during pod-fill. This strategy
implicitly seeks to maximize yield with perhaps only modest
reductions in applied irrigation, since water stress may affect
soybean yield during pod-filling more than other crop stages
(Doss et al., 1974; Momen et al., 1979; Cox and Jolliff, 1986;
Kranz and Specht, 2012). The soybean crop was near beginning
pod-fill when the treatments effectively began to be applied in
2018; thus the deficit irrigated plots may have been insulated
from yield loss per Kranz and Specht (2012). However, Doss et al.
(1974), reported that stressing soybean in late pod-fill was more
consistent at causing a yield reduction than when stress was only
earlier in the season.

Irrigation prescriptions were computed about once per week
during the treatment periods. In 2017, the treatment period
began on 9August; prior to this time a total of 182mmof uniform
irrigation was applied. In 2018, the treatment period effectively
began on 13 August. Prior to that time, all treatments effectively
received 119mm of uniform irrigation.

Modeling
Modeling for Irrigation Scheduling
Irrigation prescriptions for the uniform plots were based
upon neutron-attenuation-measured soil water content (see the
Measurements and Response Variables section) and a short-
term simple soil water balance including ET modeled using crop
coefficients based on (Allen and Wright, 2002) for maize in
2017 and using relationships reported by Irmak et al. (2013) for
soybean in 2018. Uniform treatments received irrigation based
on neutron-attenuation-measured soil water depletion and a
simple water balance for one plot of the treatment in 2017 and the
maximum irrigation requirement of two selected plots in each of
the 2018 uniform treatments.

Irrigation prescriptions for the VRI treatments were
computed using the SETMI application, withmodel formulations
similar to Barker et al. (2018a) and Barker et al. (2018b). The
SETMI water balance model was modified prior to use in 2018
to include other updates to the FAO56 (Allen et al., 1998)
methodology, which are described in Jensen and Allen (2016).
The model includes a daily water balance generally following
Allen et al. (1998), with ET computed using reflectance based
crop coefficients following Campos et al. (2017) and Barker
et al. (2018a). In 2017, the hybrid method within SETMI was
included using TSEB-computed ET (using the Priestly-Taylor
approximation for canopy latent heat flux; Norman et al., 1995;

Colaizzi et al., 2014) and a statistical interpolation weighting
factor from Barker et al. (2018a) equal to 0.56. To prevent model
drift, in 2017, measured soil water depletions from neutron
attenuation measurements were incorporated into the model as
the actual end-of-day root zone depletion on the measurement
date. In this, neutron attenuation measurements from four
plots in the VRI-Full treatment were compared to model
output depletion for the same plots. The four selected plots
had the maximum, minimum, 33 percentile, and 66 percentile
values of volumetric water content measurements, respectively,
for that treatment on 27 June 2017. The reasoning was to
include locations spread across the distribution of soil water
content. Modeled depletion for all computation pixels was then
updated based upon correlation between these measurements
and modeled soil water depletion if R2 ≥ 0.6, or the mean
difference between the measured and modeled values for those
four locations otherwise as in Bhatti (2018). This adjustment
was to reduce model drift. In 2018, this methodology was not
used because excluding the hybrid methodology was expected
to reduce model drift. For the 2018 simulations, the model was
initiated with soil water content assumed to be at field capacity.

Spatial Soil Properties
Prior to execution in 2018, the SETMI water balance model
was also modified to include a slow root zone drainage routine
using the drainage equations of Raes et al. (2017); soil below
the root zone was assumed to have instantaneous drainage
whenever water content exceeded field capacity. Furthermore,
the model was expanded to allow for the input of properties
for three soil layers. The properties for the root zone were
computed as depth-weighted averages of layers within the
root zone on a given day. Saturated hydraulic conductivity
(Ksat) for the root zone, a key parameter in the drainage
formulas (Raes et al., 2017), was computed throughout the
season (as root depth increased) based upon Equation 3.10 of
Radcliffe and Šimunek (2010):

Ksatr =
Zri

∑3
j=1

1Zrij
Ksatj

(1)

where the subscript Ksatr is Ksat in the root zone, Zr is
the root zone depth, 1Zr is the thickness of a soil layer
within the root zone, with subscripts i and j being time
and soil layer, respectively. This method is for steady-state,
saturated flow. However, it provided a practical means of
computing Ksat for the root zone and allowed the model
to stay within the framework of a simple water balance
(Allen et al., 1998; Jensen and Allen, 2016).

Soil properties for each plot were estimated from neutron
attenuation, lab measurements, and the gSSURGO (Soil Survey
Staff, 2015) database. Field capacity (FC) was computed using
the maximum neutron attenuation measurement from the 1
June and 27 June 2017 measurements for each depth and plot,
using the concept of observational FC (Lo et al., 2017). For 2017
irrigation management, plot FC was then computed by taking
the depth-weighted average of this maximumwater content from
the soil surface to 1m. For 2018 irrigation scheduling, the same
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FIGURE 2 | Linear regression fit of permanent wilting point (WP) as a function

of plot field capacity (FC) from 2017 observations.

data were used to compute FC; however FC was computed
for three soil layers (0–0.23, 0.23–0.61, and 0.61–1.22m) using
depth-weighted averages. For the final analysis, FCwas computed
as in 2018 irrigation scheduling with the lowest layer being
0.61–1.0m and the inclusion of an improved neutron probe
calibration for 27 June 2017, which changed some of final plot
FC values.

Permanent wilting point (WP) was determined from
laboratory measurements on soil samples from 16 plots. WP
was determined for each sample using a WP4-T Dewpoint
PotentiaMeter (Decagon Devices, Pullman, WA) assuming a
potential of −1.5 MPa for WP. The resulting WP values were
correlated with respective FC values for the same plot and depth
from the 1 June and 27 June 2017 data (R2 = 0.72; Figure 2). The
resulting relationship was applied depth-by-depth to compute
WP for all plots corresponding to the respective FC estimation
methods (i.e., 2017, 2018, and final analysis). The regression was
recalculated for final analysis using the updated neutron probe
calibration mentioned above. However, this made no difference
in the resulting WP for the final analysis when rounded to the
nearest 0.01 m3 m−3.

In 2018, the inclusion of the drainage equations from Raes
et al. (2017) required the input of both volumetric soil water
content at saturation (θsat) and saturated hydraulic conductivity
(Ksat). These values were obtained for each plot and soil layer
using values from gSSURGO and relationships with FC. The FC
for these relationships was computed based on volumetric water
content at −1.5 MPa and available water capacity (AWC) for
the soil horizons of the dominant components of the four soil
map units in the study area. This was done assuming this was
a better estimate of FC than was water content at −0.033 MPa.

A piecewise linear relationship was developed for θsat using linear
regression for values of FC < 0.25 m3 m−3 (R2 = 0.92), and
then the average of all θsat for FC > 0.25 m3 m−3 (Figure 3A). A
power regression fit well (R2 = 0.96) for Ksat as a function of FC
(Figure 3B). The relationships in Figure 3were used in irrigation
scheduling in 2018 and in final analysis, using the respective soil
layer FC values.

Model Input Data
Other spatial model inputs included Landsat 7 and Landsat
8 multispectral imagery obtained from U.S. Geological Survey
(https://earthexplorer.usgs.gov/). This imagery included Level 2
Surface Reflectance and Level 1 thermal infrared imagery (2017
only). Thermal infrared imagery were corrected for atmospheric
effects similar to Barker et al. (2018a) and Barker et al. (2018b),
whose method was based upon Brunsell and Gillies (2002).
The correction parameters fromNASA’s Atmospheric Correction
Parameter web app (https://atmcorr.gsfc.nasa.gov/, by J. Barsi)
were used. Local surface weather data described below were input
to the web application. Only Tier 1 and Real Time imagery
were used for irrigation scheduling (with the exception of 5
August 2017, which was a Tier 2 image, included as Real
Time quality). In the final analysis, only Tier 1 imagery were
included. Landsat 7 imagery were included if no pixels were
missing due to the scan line gap over the entire study plot
area. Thirteen images were included in 2017 and 14 images
in 2018. Not all images were included in irrigation scheduling
or final analysis (Table 1); for example, images were included
in the final analysis that were not available during irrigation
scheduling and some used in irrigation scheduling in 2017
were determined to not be of sufficient quality to use in final
analysis. The model was executed using a ground resolution of
1m in 2017 and 5m in 2018 and final analysis to account for
discrepancies between Landsat pixel size and position and the
plot geometry (Bhatti, 2018).

Weather data for modeling were obtained from three
Nebraska Mesonet (https://mesonet.unl.edu/) weather stations:
Big Springs 8NE, Brule 6SW, and Keystone 3W Beta. The
Brule 6SW data were used for near real-time data for irrigation
management in 2017 and for the final analysis. The Big Springs
8NE data were used for near real-time data in 2018. This
weather station was nearby and was used thinking it was the
Brule 6SW station, which was adjacent to the research field.
The difference was expected to be small; however the Brule
6SW station was still determined to be the best suited for
the final analysis. The nearby Keystone 3W Beta data were
used to compute 20-year historic average reference ET (ETr)
and temperatures for growing degree-day computation, both
used for ET forecasting similar to Barker et al. (2018b). This
station was used because the records for the Brule 6SW and
Big Springs 8NE stations were not sufficiently long. ETr was
computed using the ASCE Standardized Reference ET equation
(ASCE, 2005). Barometric pressure was obtained from a nearby
cosmic-ray neutron probe station and was provided by T. E.
Franz (University of Nebraska-Lincoln). Precipitation from the
Brule 6SW weather station was verified in 2017 using a lab-
calibrated, Texas Electronics, Inc. (Dallas, TX) TR-525USW
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FIGURE 3 | Regression relationships of volumetric soil water content at saturation (θsat ) (A) and saturated hydraulic conductivity (Ksat ) (B) as functions of field

capacity (FC). All values here were obtained or derived from the gSSURGO database. The piecewise function in (A) is a linear regression fit to all data with

FC < 0.25 m3 m−3. Fit statistics were computed using the calibration dataset.

TABLE 1 | Landsat images used in the study.

2017 Maize 2018 Soybean

Landsat no. Path, Row* Date Use† Landsat no. Path, Row* Date Use†

7 31, 32 26 May Iw Fw 7 32, 32 5 Jun Iw Fw

8 32, 32 10 Jun Iw Fw 8 31, 32 6 Jun Iw Fw

8 32, 32 26 Jun Iwe Fw 8 32, 32 13 Jun Iw Fw

7 32, 32 4 Jul Iwe Fw 7 32, 32 21 Jun Iw Fw

8 31, 32 5 Jul Iwe Fw 8 32, 32 29 Jun Iw Fw

8 31, 32 21 Jul Iwe Fw 8 31, 32 8 Jul Iw Fw

7 32, 32 5 Aug Iwe 8 31, 32 24 Jul Iw Fw

8 32, 32 13 Aug Iwe 8 32, 32 31 Jul Iw Fw

8 31, 32 22 Aug Iwe Fw 8 31, 32 9 Aug Iw Fw

8 32, 32 29 Aug Iwe Fw 8 32,32 17 Sep Fw

7 32, 32 6 Sep Iwe 7 31,32 18 Sep Fw

8 31, 32 25 Oct Fw 7 32,32 25 Sep Fw

8 32, 32 1 Nov Fw 8 31,32 26 Sep Fw

8 32,32 3 Oct Fw

*Landsat path and row of the image.
†
I, used for real-time irrigation scheduling; F, used in final analysis; w, water balance; e, Two-Source Energy Balance.

rain gauge coupled with a H07-002-04 HOBO Event Data
Logger (Onset Computer Corporation, Bourne, MA) installed
near the northwest corner of the field. These latter data were
also used from 1 to 8 November 2017, because the Brule
6SW dataset did not cover this period. Data from the National
Weather Service Global Historic Climate Network Ogallala NE
station were used for 9–13 November 2017 because neither
the lab-calibrated rain gauge nor the Brule 6SE data were
available. Weather data for the Mesonet and National Weather

Service stations were obtained from the High Plains Regional
Climate Center.

Besides precipitation, the other major water balance input for
modeling was applied irrigation. The prescribed irrigation was
assumed to be applied (with an application efficiency of 85%—
used throughout the study) on the day that the pivot passed over
the plots. In the case that the pivot passed over the plots during
the night (covering two dates), the irrigation was attributed to
plots on the date it was estimated to pass over them in the 2017
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irrigation scheduling. The average pivot travel speed from start-
stop times and travel angle were used to determine the overpass
time for plots. Irrigation depth was assigned typically the latter of
the two dates in 2018 scheduling, for simplicity. In final analysis,
the earlier of the two dates was used in all cases, because this
would make the water available sooner to alleviate any modeled
water stress (see the formulations of Jensen and Allen, 2016).

Soil Water Content Model Validation
Since the value of SETMI in this research was in modeling
soil water content, the model performance was validated using
neutron attenuation measurements after the first measurement.
Missing measurements in both years and for the 2018 plots that
were affected by the irrigation system malfunction during this
season were excluded. The model was executed using only the
reflectance-based crop coefficient ET and water balance. The first
neutron attenuation measurements each year were incorporated
into the model as described in the Measurement and Response
Variables section.

Measurements and Response Variables
The total prescribed irrigation depth (the total gross irrigation
depth for each plot that was used in the executed irrigation
prescriptions) was analyzed as a primary treatment comparison.
This was assumed to be equivalent to the actual gross applied
irrigation for each plot. The final irrigation in both years (applied
19 September 2017 and 14 September 2018, respectively) were
not applied and/or computed as intended. In the case of 19
September 2017, the prescription for the previous irrigation (14
September 2017) was applied in what was probably a logistically
practical situation. In the case of 14 September 2018, the applied
prescription from 8 September 2018 was not converted from
inches to mm before input into SETMI, thus the prescribed
irrigation was erroneously high for some plots. In both cases,
both total applied prescribed (total prescribed irrigation as
defined above) and the total intended prescribed gross irrigation
(or the total gross irrigation if correcting for the errors described
above in the paragraph) were analyzed. The pivot had some low
pressure problems in 2017. However, these may have been related
to a pressure sensor (not actual pressure) and were assumed
not to have affected sprinkler application and uniformity. To
assess the ability of the VRI methodology on accounting for
spatially varying irrigation requirements, intended prescribed
irrigation was compared to available water capacity (AWC) and
plot modeled ET (ETc; described later in this section).

Primary measurements included grain yield and soil water
content. Plot yield was computed from production yield
monitor data, which was cleaned and processed using the U.S.
Department of Agriculture Agricultural Research Service’s Yield
Editor 2.0.7 software (Sudduth et al., 2012) similar to Barker
et al. (2018b). Yield points were only included if they were
within a ∼12m buffer within each plot boundary (Barker et al.,
2018b). Plots included in the final statistics had 22–47 yield
points within the buffer in 2017 and 26–45 points in 2018. Dry
grain yield was computed using the yield monitor’s moisture
content measurements.

TABLE 2 | Neutron attenuation measurement dates.

Maize Soybean

1 Jun 2017* 10 Jul 2018†

27 Jun 2017*† 31 Jul, 1 Aug 2018‡

20 Jul 2017 6 Aug 2018†

3 Aug 2017 14 Aug 2018†

30 Aug 2017 20 Aug 2018

13 Nov 2017 27 Aug 2018†

19 Sep 2018

25 Sep 2018

*Used to compute field capacity.
†
Attributed to previous day during final analysis.

‡
All data were used as if collected on 31 July. For irrigation scheduling, only standard

neutron counts from 31 July were used.

Soil water content measurements were used in computing
the other response variables. Soil volumetric water content
was measured in each plot using neutron probes (503 Elite
Hydroprobe, CPN, Concord, CA). Access tubes were installed
in the approximate center of each plot. The neutron probe
instruments used were either locally calibrated or cross-
calibrated with a locally-calibrated probe. The local calibration
was conducted in a field immediately east of the study site. Local
calibration of a gauge used in the study resulted in a slope of
0.2068 and an offset of −0.0607. Calibrations were applied at a
4 decimal accuracy in 2017 and final analysis; they were applied
at a higher numerical precision in 2018 irrigation, though this
was of little consequence. Neutron attenuation measurements
were taken at the following soil depths with measurements
assumed to represent the range in parentheses: 0.15 (0–0.23m),
0.30 (0.23–0.38m), 0.46 (0.38–0.61m), 0.76 (0.61–0.91m), 1.07
(0.91–1.22m), and 1.37m (1.22–1.52m). Neutron attenuation
measurements were limited in temporal frequency in 2017 and
in seasonal coverage in 2018 (Table 2). However, the coverage
in both years began before the treatment period had effectively
started and finished near harvest. For modeling purposes in
irrigation scheduling, neutron attenuation measurements were
treated as the actual root zone water content at the end of
the measurement date for the VRI-Full treatment in 2017 and
the uniform treatments in both years. However, some neutron
attenuation data were shifted to represent the ending conditions
on the previous day for final analysis depending on rainfall
and irrigation on the measurement day (Table 2). The neutron
attenuation data for the 0.91–1.22m depth for two plots for all
2018 dates except 10 July 2018 were gap filled for final analysis.
These were filled using the respective measurement value from
the 0.61–0.91 m reading.

The response variables relating to the impact of treatments
on DP and ET were all derived from the neutron attenuation
data. The first was 1SWS in mm in the top 1.0m of the
soil profile (using the 1.07-m reading to represent 0.91–1.0m)
between the first and last neutron attenuation measurement each
year (Table 2). Modeled DP and ETc were computed using the
SETMI water balance with soil properties described for final
analysis. In modeling DP and ETc, the depth-weighted neutron
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attenuation measurements were incorporated as the actual root
zone depletions and the average water contents of the soil
below the root zone (down to 1.0m below ground surface) at
the end of the first date each year (Table 2). This is similar
to the method used by Djaman and Irmak (2013). A similar
method, but using repeated soil water content measurements
as model input was used by Barker et al. (2018b). ET was also
computed using the residual of the water balance (ETa). Both
ETc and ETa were included as response variables. The final
variable considered was the sum 1SWS and DP (1SWS+DP).
For all of these variables, the neutron-attenuation-measured
values were assumed to represent the entire plot area. The plot-
average modeled root depth (based upon time to reach peak
basal crop coefficient for each pixel) was used to compute root
zone depletion and average volumetric water content below
the root zone from the neutron attenuation data. The average
root depth was computed as a spatial mean for each plot and
neutron attenuation date excluding a ∼9m buffer within each
plot boundary (Barker et al., 2018b). The model was executed at a
5-m pixel resolution in the final analysis. The response variables
were also computed as spatial means excluding the same ∼9m
buffer within each plot boundary.

Experimental Design and Statistical
Analysis
The experiment was a generalized randomized complete block
design, with multiple replicates of at least some treatments in
each block. The study area was broken into plots ∼0.2 ha in
size accommodating the precision of the sprinkler system and
the commercial combine yield monitor similar to Barker et al.
(2018b). Plots were arranged radially with plot boundaries falling
on pivot wheel tracks (Figure 1). The plots were designed with
criteria of a minimum of ∼37m in width and length (Barker
et al., 2018b). Plots were grouped into six blocks using computed
AWC for the top 1m of soil (as computed for the 2017 irrigation
scheduling) as the blocking criterion. Plots were not blocked by
radial distance from the center based on results of Barker et al.
(2018b). Treatments were randomly assigned to plots afresh in
both years (Figure 1).

Responses for each treatment and variable were compared
using ANOVAs computed using PROC GLIMMIX in SAS 9.4
(SAS Institute Inc., Cary, NC). The ANOVAs were computed
separately for the 2 crop years and for each variable (i.e.,
no MANOVAs were included). Total prescribed irrigation was
compared using 95% confidence intervals computed using SAS
PROC MEANS to compare with the uniform treatments as in
Barker et al. (2018b). ANOVA was used to compare irrigation for
the two VRI treatments in 2018.

A number of plots were discarded from the final analysis based
upon missing data or misapplication of irrigation. In 2017, a
total of six plots received an erroneous application depth during
one of the irrigation events. These plots were all Uniform-Full,
the misapplication affected some VRI-Full plots also, but that
would have automatically been compensated for in the following
irrigation prescription. Another plot had water in the neutron
access tube on the 13 November 2017 measurement and was

also excluded. All seven plots were excluded from final analysis
for 2017. An additional two plots in 2017 did not have neutron
attenuation data for 20 July 2017. For 2017, only data for plots
and measurement dates that had missing data were excluded
from validating the modeled water content. In 2018, two banks
of four sprinklers did not function properly during much, if
not all, of the irrigation season. Based upon the pivot dealer’s
sprinkler chart (provided by Holzfaster’s Equipment, Ogallala,
NE, and computed using software by Senninger Irrigation Inc.,
Clemont, FL, 6 February 2015), the affected areas were near the
center of the second and sixth radial rows of plots from the
pivot center (Figure 1). Thus, a total of 14 plots were affected,
one of which was also missing neutron attenuation data. All 14
plots were eliminated from the final analysis for 2018. One of
the affected plots in 2018 was used to schedule irrigation for the
Uniform-Full treatment. However, this treatment always received
the maximum irrigation depth during a given irrigation cycle.
Given that the affected sprinklers were likely always on (a default
conditions of the system; personal communication, Lindsay
Corporation personnel), this plot would not have adversely
affected that treatment.

RESULTS AND DISCUSSION

Study Conditions
The May–September total ETr was 1,020mm in 2017 and
910mm in 2018 for the Brule 6SW station, comparable to a 20-
years average of 1,080mm for 1998–2017 for the Keystone 3W
Beta station. This is also similar to the 950–1,050mm reported
by Sharma and Irmak (2012) for 1986–2009 for this part of
Nebraska. Total May–September precipitation was 280mm in
2017 and 400mm in 2018, compared to 290mm for the 1998–
2017 20-year average for Keystone 3W Beta. This is also similar
to the 280–320mm reported by Sharma and Irmak (2012) for
1986–2009 for the area.

In addition to weather, the soil properties at the site may
greatly affect an irrigation experiment. Using the final analysis
values, FC in the top 1m of the soil profile ranged from 0.11
to 0.30 m3 m−3. The range of WP values was smaller, 0.05–0.16
m3 m−3. Calculated AWC for the plots ranged from 0.06 to 0.14
m3 m−3. This translates into 60–140mm over a 1-m managed
root zone.

Modeling and Treatment Execution
The incorporation of TSEB-ET in 2017 had a general effect of
increasing modeled soil water depletion (decreasing soil water
content). This was in part because of the nature of the piecewise
water stress coefficient used (Ks; Allen et al., 1998; Figure 4).
That is, Ks is equal to unity when the modeled root zone water
content is above the water stress threshold (Allen et al., 1998;
Figure 4). In the hybrid methodology, the ET modeled by the
reflectance-based crop coefficient method in the water balance
(WB-ET) is updated based upon TSEB-ET. If TSEB-ET 6= WB-
ET, then the water balance is updated by back-calculating for Ks

and then back calculating for start-of-day root zone depletion
(Geli, 2012). For example, assume that the TSEB-ET had little
mean bias as compared with the WB-ET. At times, it would
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FIGURE 4 | Generalized depiction of the piecewise water stress coefficient

(Ks) function based on average root zone soil water content, as used in Allen

et al. (1998) and Jensen and Allen (2016).

be expected that TSEB-ET < WB-ET, even under non-stressed
conditions, due solely to model variation. This condition would
result in a decrease of Ks after TSEB-ET incorporation, whether
such represented reality or not. However, at times when TSEB-
ET > WB-ET, and the water balance already indicates a Ks < 1;
mathematically, the soil water depletion can only be decreased
(soil water content increased) as far as the water stress threshold
(Figure 4). It is noted that in cases where Ks = 1 and TSEB-
ET > WB-ET, no adjustment is made (Barker et al., 2018a).
These challenges led to exclusion of the TSEB-ET in 2018. One
possible solution for these challenges may be the inclusion of a
continuous Ks function. For example the relationship of Jensen
(1970) has been used for similar purposes (Colaizzi et al., 2003,
Zhang et al., 2017). Another non-linear relationship presented by
Boonyantharokul and Walker (1979) is also promising because
the shape could be modified to account for different sensitivity
to stress in different crops as is done in the piecewise method
used by Allen et al. (1998). A final solution may be incorporation
of ET in parts (evaporation and transpiration) using canopy and
soil components from the TSEB. This may help better identify
what ET differences are truly related toKs. The PenmanMonteith
formulation of the TSEB has been reported to provide more
accurate partitioning of ET than original formulations (Colaizzi
et al., 2014).

Possible modifications to the hybrid model aside, the
discrepancies in scale of the Landsat thermal infrared imagery
(60–100m; Bhatti, 2018; USGS, 2019) and our plot size was
also a reason for dropping the TSEB-ET in 2018. It was evident
that incorporating the soil water content measurements into the
SETMI water balance in 2017 prevented what seemed to be a
likely bias toward a dry modeled root zone. Thus, it was expected
that without the TSEB-ET, the neutron attenuation data was
less necessary. Furthermore, the water balance model had not
previously been tested in this climate for soybean without soil
water content measurement incorporation, as it has been for
maize (Barker et al., 2018b).

One final challenge encountered with using the SETMI model
was the division of Landsat images as being either early or

late in the season with regards to computing the basal crop
coefficient time series (see Barker et al., 2018a). In this, images
either contribute to the increasing portion of the crop coefficient,
before and up-to peak value, or they contribute to the decreasing
portion of the crop coefficient after peak. In the case of 2017, the
best cutoff was not the same for all pixels. For example, if only
imagery before 21 July 2017 was included in the development
portion of the season, then crop coefficients were poorly fit for
∼13 plots. However, if the cutoff was set to include 21 July 2017 in
the development portion of the season, all performed reasonably
well, but some not as well as if 21 July 2017 was forced to be
late in the season. Ultimately, 21 July 2017 was allowed to be
a development period image for all plots. The effect was small
in terms of modeled root zone depletion. Ultimately, the model
would be improved by adding an optimization routine based on
goodness of fit to determine the best cutoff date for each pixel.

Model Performance
The modeled 1-m average profile soil volumetric water content
(θp) had a negative mean bias error (MBE) of ∼-0.03 m3 m−3,
with a root mean squared error (RMSE) of ∼0.04 m3 m−3, in
2017 (Figure 5). These results may be improved with model
calibration, including reducing soil evaporation. Assuming a 1.5-
m root zone did not appreciably improve results for 2017. Model
performance was improved in 2018 soybean with modeled θp

for the top 1-m having a MBE < 0.01 m3 m−3 and an RMSE
≈ 0.02 m3 m−3. These results represent an improvement over
results in the same field in 2017. Furthermore, these results
indicate that the water balance model in SETMI is suitable
for irrigation management under these conditions without the
periodic incorporation of secondary datasets as was done in
2017. Assessing the uncertainty associated with using SETMI
for irrigation management was beyond the scope of this study.
However, such is acknowledged as a possible source of variability
and error presented in Figure 5.

Prescribed Irrigation
For the 2017 season, the VRI-Full treatment had a range (across
plots) of 314–375mm for prescribed gross irrigation depth
and a range of 304–375mm for intended prescriptions. When
comparing treatment means, the total prescribed irrigation
was essentially the same for the VRI-Full and Uniform-
Full treatments (353 and 355mm, respectively; Table 3). The
mean total intended prescribed irrigation was also similar (351
and 344mm for the VRI-Full and Uniform-Full, respectively,
Table 3). With a 95% confidence interval of the mean of ±

9mm for the applied VRI-Full and ± 10mm for the intended
VRI-Full, the two treatments were not statistically different and
practically the same. This is logical as both treatments included
incorporation of neutron attenuation measurements.

In 2018, total intended gross prescribed irrigation application
depth ranged from 236 to 277mm for VRI-Full and 216 to
241mm for VRI-Deficit. The range was 246–282mm for applied
prescribed gross irrigation for VRI-Full and 221–246mm for
VRI-Deficit. In that year total applied prescribed irrigation
was statistically significantly different (t = 17.7) for both VRI
treatments. Both were also different from the two uniform

Frontiers in Big Data | www.frontiersin.org 9 September 2019 | Volume 2 | Article 34

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Barker et al. VRI Full and Deficit Irrigation

FIGURE 5 | Modeled vs. measured 1-m profile average soil volumetric water content (θp) for dates after the first measurement date in 2017 and 2018.

TABLE 3 | Mean total prescribed irrigation*.

Treatment 2017 Maize 2018 Soybean

n Applied† Intended† n Applied† Intended†

(mm) (mm) (mm) (mm)

VRI-Full 18 353 [±9]‡ 351 [±10] ‡ 6 270 [±3] 265 [±5]§

VRI-Deficit – – – 4 239 [±4] 234 [±7]

Uniform-Full 11 355‡ 344‡ 6 282 282

Uniform-Deficit – – – 6 267 267§

*Arithmetic means are presented for 2017 and all uniform treatments, least-squares estimated means are presented for the VRI treatments in 2018. Brackets contain 95% confidence

intervals. No treatments were significantly different at the α = 0.05 level for either year.
†
Applied was actually prescribed and executed, Intended includes corrections to the final applied irrigation in each years.

‡
,§Pairings not significantly different at the α = 0.05 level as tested with ANOVA (in the case of VRI-Full vs. VRI-Deficit) or 95% confidence intervals of the mean (in comparisons with

uniform treatments).

treatments. Total intended prescribed irrigation was likewise
different for the two VRI treatments (t = 10.2) with only the
VRI-Full and Uniform-Deficit not being different. The greatest
total intended irrigation depth was 282mm for Uniform-Full,
followed by 267mm for Uniform-Deficit, 265mm for VRI-Full,
and 234mm for VRI-Deficit. Since the uniform treatments had
no variability in prescribed irrigation, a factorial analysis was
not performed. However, in both cases intended full irrigation
was greater than deficit (31mm greater in the case of VRI
and 15mm greater in the case of Uniform). Likewise, intended
VRI was less than Uniform with Full being 17mm less and
Deficit being 33mm less. It is possible that model bias (Figure 5;
which was from the final analysis, but is still illustrative) may
have biased the VRI treatments. This could potentially have the
impact of increasing prescribed irrigation for the VRI treatments.
It is evident that under our study conditions, adoption of
VRI based upon reduced water withdrawal alone may not be
justifiable, agreeing with the findings of Lo et al. (2016), and

Barker et al. (2018b). Justification for VRI would need to include
other benefits, e.g., changes in yield, lower cost of production
or reduced nutrient leaching (Lo, 2015; Lo et al., 2016). The
late imposition of treatments (i.e., the VRI treatments were
irrigated similar to the Uniform during the first portion of
both years) may also have reduced potential differences. This
may particularly be the case for the deficit irrigated soybean
treatments in 2019, which may have responded differently had
the different treatments been imposed from the beginning of the
irrigation season. Furthermore, the Landsat shortwave imagery
resolution (30m; USGS, 2019) may limit the ability to address
the soil and other variability within the study field. This may
have a smoothing effect thatmay reduce potential benefits of VRI.
Concurrent research is investigating unmanned aircraft systems
as a source of high-resolution imagery for VRI management
with SETMI (Bhatti, 2018). However, the practical management
scale of VRI may be similar in scale to Landsat as discussed by
Barker et al. (2018a).
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FIGURE 6 | Total gross intended irrigation vs. AWC and ETc for VRI-Full plots included in the final analysis for 2017 maize VRI-Full treatment.

Irrigation Variability
The intent of VRI is to manage irrigation at a sub-field scale
to account for sub-field scale heterogeneity. In the framework
of the procedure and modeling used in this study, VRI would
be anticipated to respond to conditions when spatial variability
exists for root zone AWC and/or ETc. The total intended
prescribed irrigation was compared for these two variables for
each VRI plot included in the final analysis. In 2017, the
correlation between total intended gross irrigation depth and
AWC was negative, as expected, but it was poor (R2 = 0.26, n
= 18; Figure 6). The poor correlation is likely a result of the
hybrid model adjustments to the water balance, which were also
responsible for much of the model drift. In 2018, the correlation
between total intended gross irrigation depth and AWC was
similarly poor (R2 = 0.37, n = 6, for VRI-Full; R2 = 0.10, n
= 4, for VRI-Deficit). The prescribed irrigation depth would be
expected to be highly correlated with AWC under conditions of
large AWC variability in situations where differences in rainfall
storage capacity across soils may be mined (e.g., Lo et al., 2016),
as may have been expected for 2018, but this was not observed.
Scale discrepancies between the SETMI modeled scale, which
was dependent upon Landsat imagery resolution (30m; USGS,
2019) and Landsat pixel positioning, and soil variability may have
also contributed. There was a poor positive correlation between
intended gross irrigation and ETc (R2 = 0.12; Figure 6) in 2017.
In 2018 there was a stronger correlation between total intended
gross irrigation and ETc for both VRI treatments (R2 = 0.69, n
= 6, for VRI-Full; R2 = 0.55, n = 4, for VRI-Deficit), suggesting
that variability in ETc was a major driver in 2018. Despite the
small dataset, the results of the ETc correlations for 2018 may be
better than 2017 because the final ETc values are close to those
used in irrigation scheduling for 2018, but in 2017 irrigation
management, the model was updated with other data sources,
whichmay have reduced correlation. Attempts to find correlation
between intended gross irrigation and the product and quotient
of ETc and AWC generally yielded poor results. The field has
variability in ETc even in the VRI-Full treatment, which is a
response derived from the Landsat imagery and soil properties.

Yield and Soil Water Storage Response
In both years, dry grain yield was similar between all included
treatments (F = 0.03, p = 0.87 in 2017; F = 0.00, p = 0.96 for
VRI/Uniform and F = 0.01, p = 0.93 for Full/Deficit in 2018).
Estimated mean maize grain yield was both statistically and
practically similar between treatments with 8.91Mg ha−1 for the
VRI-Full in 2017 and 8.98Mg ha−1 for Uniform-Full (Table 4).
Variability was, however, notable with 95% confidence intervals
of the estimated means being ± 6 and ±8% of the estimated
mean for the VRI-Full and Uniform-Full, respectively. In 2018,
the dry grain yield was statistically similar between all treatments
ranging from 3.33Mg ha−1 for Uniform-Full to 3.10Mg ha−1

for Uniform-Deficit. However, the variability was substantial,
ranging from 19% of the estimatedmean for Uniform-Full to 24%
for the VRI-Deficit. This is also notable in the apparent reversal
of expected response for the VRI-Full and VRI-Deficit treatments
(3.11Mg ha-1 and 3.29Mg ha-1, respectively; Table 4). However,
it must be remembered that because of the variance of the data,
these values are statistically the same; thus any conjecture about
apparent differences is not valid. It is possible that response
variance is being induced by the soil variability beyond what is
captured in the AWC blocking and modeling scale.

Not only did the irrigation treatments not have a significant
impact on yield, there were also no significant differences
between treatments for the DP-related variables (1SWS, DP,
and 1SWS+DP; Table 4). In 2017, 1SWS was similar for both
treatments (−23 and −20mm for the VRI-Full and Uniform-
Full, respectively). 1SWS is presented as a depth-weighted
average down to 1m for the last neutron attenuation reading
minus first neutron attenuation reading (Table 2). When deeper
neutron attenuation values were included, down to 1.52m, the
magnitudes increased, but were similar (VRI-Full = −35mm,
Uniform-Full = −36mm; in these deep estimates, three
additional plots were eliminated because of missing deep neutron
attenuation readings as compared with the data in Table 4). In
2017, estimated DP was likewise similar between treatments and
was practically negligible< 1mm for both treatments, though the
difference was determined to be statistically significant.
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TABLE 4 | Estimated least-squares means of the response variables*.

Treatment 2017 Maize

Dry Yield ∆SWS† DP† ∆SWS+DP† ETa
† ETc

†

(Mg ha−1) (mm) (mm) (mm) (mm) (mm)

VRI-Full 8.91 [±0.56] −23 [±8] 0.5 [±0.3]‡ −23 [±8] 548 [±9] 567 [±6]

VRI-Deficit – – – – – –

Uniform-Full 8.98 [±0.73] −20 [±11] 0.1 [±0.3]‡ −20 [±11] 544 [±11] 572 [±8]

Uniform-Deficit – – – – – –

Treatment 2018 Soybean

Dry Yield ∆SWS DP ∆SWS+DP ETa ETc

(Mg ha−1) (mm) (mm) (mm) (mm) (mm)

VRI-Full 3.11 [±0.63] 17 [±6] 12 [±11] 29 [±10]§ 291 [±11] 302 [±5]

VRI-Deficit 3.29 [±0.78] 8 [±8] 5 [±14] 13 [±12]§ 279 [±14] 300 [±6]

Uniform-Full 3.33 [±0.64] 12 [±7] 22 [±12] 34 [±10]§ 299 [±11] 303 [±5]

Uniform-Deficit 3.10 [±0.68] 8 [±7] 18 [±12] 26 [±11]§ 296 [±12] 305 [±5]

*Means are presented with 95% confidence intervals in brackets. Except as noted, no treatments were significantly different at the α = 0.05 level for either year.
†
1SWS = change in soil water storage in the assumed 1m root zone; DP = estimated deep percolation from the assumed 1m root zone. ETa is ET computed from as the residual of

the water balance; ETc is SETMI modeled ET. Differences are between November 13 and June 1, 2017 and September 25 and July 9, 2018.
‡
Pairings significantly different at the α = 0.05 level.

§Full/Deficit factor main effects different at the α = 0.05 level with Full = 31mm [±8mm] and Deficit = 20mm [±7 mm].

We acknowledge that the estimates for the DP-related
variables are dependent upon the water balance; during the
period of 2 June−13 November 2017 the total precipitation was
241mm with an estimated 4mm of runoff using the NRCS
Runoff Equation (NRCS, 2004) with a curve number of 80.
In computing DP, the SETMI water balance was executed
for each plot with the initial soil water content condition on
1 June 2017 taken from neutron attenuation readings. The
mean total modeled ETc between 2 June and 13 November
2017 ranged from 567 to 572mm for the two treatments. The
corresponding ETa determined from the water balance was
548mm (VRI-Full) and 544mm (Uniform-Full), a 19–28mm
difference. This difference could have been reduced by further
dampening the surface soil evaporation rate in SETMI or by
reducing the water stress threshold or modifying soil properties;
however the apparent error was ∼5% or less and we deemed
these adjustments not justifiable. Interestingly, the differences in
applied irrigation did not translate into meaningful differences in
ET, DP, or 1SWS.

Results for 2018 were similar to 2017, despite the differences
in crops, SETMI methodologies, and the inclusion of the deficit
treatments. The 1SWS ranged from 8mm (deficit treatments) to
17mm for the VRI-Full. 1SWS is presented as a depth weighted
average down to 1m. When deeper neutron attenuation values
were included, down to 1.22m (many measurement tubes were
not sufficiently deep for the 1.52m readings), the magnitudes
were practically and statistically similar (5mm for the deficit
treatments, 10mm for Uniform-Full, and 15mm for VRI-Full).
In 2018, estimated DP ranged from 5mm for VRI-Deficit to
22mm for Uniform-Full. Significant full/deficit factor main
effects were found (F = 5.91, p = 0.03) for 1SWS+DP, with full

treatments being 31mm and deficit being 20mm (Table 4). Thus,
deficit irrigation had a small impact on DP potential.

With respect to water balance, the 2018 DP estimates were
computed for the period of 10 July−25 September 2018. The
total precipitation was 125mm during this period with an
estimated 16mm of runoff (computed as in 2017). In 2018,
the ETa computed as a residual of the water balance ranged
from 279mm (VRI-Deficit) to 299mm (Uniform-Full), with
no significant differences. The SETMI modeled ETc had less
treatment variability ranging from 300mm (VRI-Deficit) to
305mm (Uniform-Deficit), again with no significant differences.
The net difference between ETa and ETc ranged from 5mm
(Uniform-Full) to 21mm (VRI-Deficit), differences < 8% of
ETa. Again, we feel that SETMI performed adequately and
that the results did not justify further model adjustments in
computing DP.

While there was some difference in irrigation in 2018,
there was no significant difference in dry grain yield or ET.
Interestingly, even the deficit-irrigated treatments where such
an effect might be expected, did not result in a significant yield
difference. Part of the cause may be that the deficit treatments
were effectively not implemented until mid-August (see the
Treatments section). However, Doss et al. (1974) found that
stressing soybean in late pod-fill was more consistent at causing
a yield reduction than when stress occurred only earlier in
the season. Moreover, the deficit treatment experienced the
greatest managed stress around the end pod-fill stage and later.
One final observation is that yield and ET in this field may
both be highly governed by nutrient availability in consequence
of the light soils (T.H. Lo, UNL, personal communication).
Future work should seek to quantify possible nutrient stress.
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Even though the treatments did not have different ET, there
was the 12mm difference in DP potential as represented by
1SWS+DP between the full and deficit irrigated treatments.
This difference corresponds closely to the difference in applied
irrigation between the full and deficit irrigated treatments
(12mm for VRI and 28mm for uniform). This supports the
hypothesis that VRI is unlikely to reduce consumptive use;
however it may reduce deep percolation. In stating this, it should
be remembered that all treatments were treated similarly in the
first portion of both seasons. This may have dampened some of
the potential responses.

CONCLUSIONS

Ultimately, the results support the conclusion that, under our
study conditions, VRI managed with SETMI resulted in a
relatively small, nominal reduction in water withdrawn in 2018
as compared to uniform treatments; however no difference was
observed in 2017. These results are subject tomodel performance,
scale, and treatment implementation. Furthermore, irrigation
treatments did not result in differences in grain yield. It is
evident that any variability accounted for in the VRImanagement
did not result in corresponding detectable changes in yield.
Likewise, few statistically significant differences were found in
estimated deep percolation, modeled or water balance measured
evapotranspiration, change in soil water storage in the top 1m
of the profile, or the sum of these latter two variables between
any treatments in either year. More testing should be performed
to demonstrate the utility of SETMI for deficit irrigation
management. The performance of the SETMI water balance
model in 2018 was promising, as it was executed unaided by on-
site measurements beyond weather data, FC, and WP. Testing
over longer periods and varied conditions is necessary to fully
test that utility. The temporal and spatial scale of Landsat data
was a concern (especially thermal imagery); alternate satellite
data products and/or unmanned aircraft imagery may address
this problem. The proposed modifications to SETMI, including
optimization of the basal crop coefficient development, inclusion
of a non-linear Ks function, and partitioning TSEB-ET, may also
improve model performance.
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