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Genotoxicity testing is an essential component of the safety assessment paradigm

required by regulatory agencies world-wide for analysis of drug candidates, and

environmental and industrial chemicals. Current genotoxicity testing batteries feature

a high incidence of irrelevant positive findings—particularly for in vitro chromosomal

damage (CD) assays. The risk management of compounds with positive in vitro findings

is a major challenge and requires complex, time consuming, and costly follow-up

strategies including animal testing. Thus, regulators are urgently in need of new testing

approaches to meet legislated mandates. Using machine learning, we identified a

set of transcripts that responds predictably to DNA-damage in human cells that we

refer to as the TGx-DDI biomarker, which was originally referred to as TGx-28.65. We

proposed to use this biomarker in conjunction with current genotoxicity testing batteries

to differentiate compounds with irrelevant “false” positive findings in the in vitroCD assays

from true DNA damaging agents (i.e., for de-risking agents that are clastogenic in vitro

but not in vivo). We validated the performance of the TGx-DDI biomarker to identify

true DNA damaging agents, assessed intra- and inter- laboratory reproducibility, and

cross-platform performance. Recently, to augment the application of this biomarker,

we developed a high-throughput cell-based genotoxicity testing system using the

NanoString nCounter® technology. Here, we review the status of TGx-DDI development,

its integration in the genotoxicity testing paradigm, and progress to date in its qualification

at the US Food and Drug Administration (FDA) as a drug development tool. If successfully

validated and implemented, the TGx-DDI biomarker assay is expected to significantly

augment the current strategy for the assessment of genotoxic hazards for drugs

and chemicals.
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INTRODUCTION

Genetic alterations are an important hallmark of cancer,
and DNA damage (genotoxic stress) is a central driver
of carcinogenesis. Therefore, the assessment of a chemical’s
potential to induce gene mutations and/or chromosomal
damage has been formalized in various genotoxicity testing
batteries that are widely accepted and provide insight into
the carcinogenic potential of drug candidates, cosmetics, food
additives, environmental, and industrial chemicals. In general,
genotoxicity testing batteries consist of standardized in vitro and
in vivo assays, and have been successful in protecting human
health through identification of genotoxic and carcinogenic
exposures (Snyder and Green, 2001).

Although the mechanistic association between genetic
damage and cancer is well-understood, the correlation between
genotoxicity, the potential of chemicals to induce primary DNA
damage, and carcinogenic potential in animals or humans
is complicated by alternative non-genotoxic mechanisms
of carcinogenesis and the experimental limitations of in
vitro genotoxicity assays. In fact, many compounds testing
positive in genetic toxicology batteries, particularly with in
vitro chromosomal damage (CD) assays, do not represent an
appreciable carcinogenic risk to humans (Snyder and Green,
2001). In vitro CD assays are designed to detect structural
chromosomal abnormalities induced by the test compounds.
The widely used CD assays include the chromosomal aberration
assay, and micronucleus assay. All mammalian cell genotoxicity
tests have low specificity of below 45%, which become more
severe when two or three tests are combined. For example, it
was reported that 75–95% of non-carcinogens gave positive
(i.e., false positive) results in at least one standard in vitro
genotoxicity test (Kirkland et al., 2005). In drug development,
a larger percent of new lead molecules are expected to yield
potentially irrelevant positive in vitro genotoxicity findings.
Since assessing carcinogenicity in animal studies during the early
stages of drug development is often not feasible, potentially safe
drug candidates may be excluded from the development pipeline.
Therefore, the differentiation of true positives from irrelevant
positives in the in vitro tests, such as the in vitro CD assays, is
crucial for the initial assessment of human risk. This concept
is also reflected in the current Food and Drug Administration
(FDA) guidance for industry (https://www.fda.gov/downloads/
Drugs/GuidanceComplianceRegulatoryInformation/Guidances/
UCM079257.pdf).

Currently, there are two approaches used to address the risk
and relevance of positive in vitro CD assays. The first approach
relies on characterizing the risk and relevance of the positive
results by conducting additional in vitro and in vivo studies
that use similar DNA damage sensing endpoints to explore a
limited number of mechanisms, such as γH2AX, a marker for
DNA double strand breaks (Redon et al., 2011), phospho-Histone
H3 (a marker for mitotic cells) (Ando et al., 2014; Bryce et al.,
2014), and general apoptosis assays. These experimental follow-
up strategies often have uncertain outcomes, are costly, laborious,
and can lead to discontinuation of drug development and/or
significant delays in the introduction of new medications to

patients. The second approach, developed by the International
Conference on Harmonization (ICH), relies on two in vivo tests
as an alternative to the in vitro CD assays (https://www.fda.
gov/downloads/drugs/guidances/ucm074931.pdf). Although this
approach increases human relevance via in vivo testing, the DNA
damage endpoints in the in vivo studies are inherently difficult to
assess and do not increase our understanding of the genotoxic
mechanisms responsible for in vitro irrelevant positive results.
Furthermore, in most cases this requires additional animal
studies, unless the evaluation of in vivo endpoints is combined
with, or included in, other toxicity studies. Often an important
arbiter for conflicting in vitro results involves expensive and time-
consuming in vivo carcinogenesis studies. Therefore, there is an
urgent need for mechanistic tools that do not rely on animal
use to aid in the interpretation and risk assessment of isolated
positive findings from in vitro genotoxicity assays.

Monitoring transcriptional changes as an indicator of the
DNA damage response has been explored as a tool for assessing
genotoxicity (Amundson et al., 2005; Li et al., 2007). DNA
damage responses initiate from damage sensing and signaling
mediated by sensor molecules such as the MRN complex,
Rad17, MDC1, 53BP1, and BRCA1 (Bakkenist and Kastan, 2004;
O’Driscoll and Jeggo, 2006), and signaling kinases including
ATM, ATR, DNA-PK, Chk1, and Chk2 (McGowan and Russell,
2004). Activation of this elaborate DNA damage response
network induces transcription of DNA-damage responsive genes
that are involved in DNA damage repair, cell cycle control,
apoptosis, and metabolic regulation. Many of these responses
are dependent on the p53 transcription factor, but additional
genotoxic-stress induced transcriptional responses exist even
in p53-deficient cells (Amundson et al., 2005). Despite the
complexity of biological responses to xenobiotics, the key
transcriptional factors activated in DNA damage response can
be distinguished from those induced by non-genotoxic stress
(Amundson et al., 2005; Jennings et al., 2013); the latter
fundamental feature enables the identification of genotoxicity-
induced transcriptomic modulations that can be distinguished
from those triggered by other stresses.

An approach applying transcriptomics to identify DNA
damage inducing agents offers the advantage of informing
whether an intact DNA damage response has been initiated
by a toxicant that is consistent with the transcript profiles of
known genotoxic carcinogens and distinct from non-genotoxic
mechanisms. These transcriptomic biomarkers detect DNA
damage as induction of a genotoxic stress response that is
measured as transcriptional activation of early immediate DNA
damage response genes, reflecting primary DNA damage. These
cellular responses happen before activation of apoptosis or
cell death, the latter of which might also occur following
prolonged compound treatment (Ellinger-Ziegelbauer et al.,
2009a). In contrast, mutations or chromosome damage occurring
as a consequence of repair of damaged DNA are what is
detected using the standard genetic toxicology assay battery.
Thus, cellular stressor not primarily attacking DNA can induce
chromosome damage that is detected using the conventional
in vitro test systems. In addition to providing insight into
the relevance and mechanisms associated with observed
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in vitro genotoxicity in conventional tests, it is envisioned
that transcriptomic approaches could provide a tool for high-
throughput genotoxicity screens for not only pharmaceutical
compounds but also environmental and occupational toxicants.
Below we describe the development, validation, and application
of the TGx-DDI transcriptomic biomarker for these purposes.

DEVELOPMENT OF THE TGx-DDI
TRANSCRIPTOMIC BIOMARKER

An in vitro transcriptome-based approach was used to develop
a biomarker to assess genotoxicity and provide insights into
mode of action (Li et al., 2015). The process involved in the
development of the biomarker, including identification, testing
and validation, as well as relevant case studies to explore context
of use, are reviewed below. A schematic chart summarizing these
stages is shown in Figure 1.

Identification of the TGx-DDI Biomarker
(1) Cell System and Model Agents
Transcriptome perturbations were determined using the TK6 cell
line as (a) it is a well-characterized cell line that is routinely
used in genotoxicity testing, (b) it has proficient p53 signaling
pathways, and (c) it responded in an expectedmanner in previous
stress response studies (Akerman et al., 2004; Dickinson et al.,
2004; Hu et al., 2004; Islaih et al., 2004; Amundson et al., 2005).
Unlike human cancer cell lines, the TK6 line was established
by spontaneous immortalization of primary human lymphoid
cells in culture, and probably doesn’t have the myriad of genetic

alterations typically seen in lines derived from human cancers
(Skopek et al., 1978; Liber and Thilly, 1982).

The TGx-DDI biomarker (TGx = toxicogenomic; DDI =

DNA damage inducing) was identified using a dataset comprised
of transcriptomic profiles of TK6 cells exposed to 28model agents
with well-characterized modes of action (Kirkland et al., 2005;
Bryce et al., 2014). The agents in this training set represent a
wide range of DDI mechanisms and include DNA alkylating
agents, DNA strand breaking agents, topoisomerase inhibitors,
and nucleotide antimetabolites, and non-DDI agents such as
endoplasmic reticulum (ER) stress agents, energy metabolism
inhibitors, HDAC inhibitors, heat shock, and oxidative agents
including heavy metals. The biomarker is specific to the
identification of DNA damage; thus, it is important to note that
aneugens are classified as non-DDI in this analysis as they operate
via interaction with the mitotic spindle.

(2) Study Design Considerations for Transcriptional

Profiling
Several study design parameters are critical for the development
and use of transcriptomic biomarkers of DNA damage stress
response. Complex cellular stress responses following treatment
with chemicals are time- and dose-dependent. However, an
experimental design that includes characterizing dose responses
over a time course is not technically feasible across a large set of
agents using conventional global transcriptomic approaches (i.e.,
DNA microarrays). Moreover, selection of single concentrations
and time points facilitates extraction of relevant gene sets. Thus,
the initial experimental design used a single dose and time point
post-exposure for transcriptomic profiling.

FIGURE 1 | Overview of the development phases of the transcriptomic genotoxicity biomarker TGx-DDI.
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A 4h post-exposure time point was selected for the
development of the biomarker (Fornace et al., 1988; Amundson
et al., 2005; Hyduke et al., 2011) as early gene expression
changes reflect initial damage rather than subsequent cellular
processes such as cell lethality events (Ellinger-Ziegelbauer
et al., 2009b). In addition, 4 h is sufficient time to allow
for accumulation of typical DNA damage response induced
transcripts (Fornace et al., 1988, 1989).

To identify an appropriate concentration for each model
agent and make sure that a sufficient cellular transcriptional
response was achieved, mRNA levels of three well-characterized
stress response genes (GADD45A, ATF3, and CDKN1A)
were assessed. The concentration of each agent employed
for transcriptomics was the one that produced a robust
increase of mRNA levels of one or more of these stress
genes in this preliminary experiment. When more than
one concentration met the criteria and behaved similarly,
the lower concentration was selected. For agents included in the
development of TGx-DDI biomarker (i.e., learning set), the
concentration ranges tested, and final concentrations chosen
for the microarray analyses are included in Table 1. The
concentrations selected showed no appreciable cytotoxicity at
4 h and the cell viability at 24 h post-treatment showed only
moderate effects on viability for most agents. It should also

be noted that the use of high-throughput approaches, such
as the Nanostring approach discussed in this review, obviates
the need for dose optimization, because a wide dose range is
now feasible.

(3) Data Analysis Pipeline Used to Identify the

TGx-DDI Biomarker
The global transcriptomic responses to treatment with the 28
model agents at the selected concentrations were measured
using Agilent human whole genome oligonucleotide arrays.
The individual gene expression profiles were then compiled
in a database for further analysis. To limit noise in the data
and enable interrogation of the database of gene expression
profiles for gene signatures, genes that were significantly
perturbed in three or more of the treatment conditions were
selected. Although the gene expression profiles of the individual
agents in the reference database displayed significant diversity,
subsets of genes often formed clusters that were consistent
with their mode of action. Visualization of the expression
profiles highlighted the pleiotropic nature of these agents (i.e.,
gene expression profiles consisting of more than one defined
gene cluster) (Figure 2). Further analysis using the nearest
shrunken centroids (NSC) method led to the identification
of a biomarker capable of identifying DDI agents. In brief,

TABLE 1 | Agents used in the development of the TGx-DDI transcriptomic biomarker (See also Li et al., 2015).

Categories Compound names Solvent Dose range Conc. for array

Alkylating agents Cisplatin

Methyl methane sulfonate (MMS)

0.9% NaCl

H2O

10 ∼ 80µM

20 ∼ 200 µg/ml

80µM

100µg/ml

Topoisomerase I inhibitors Camptothecin DMSO 62.5 ∼ 500 nM 125 nM

Topoisomerase II inhibitors Etoposide DMSO 50 ∼ 400 nM 200 nM

RNA/DNA antimetabolites 5-fluorouracil (5-FU)

Methotrexate

DMSO

DMSO

6.25 ∼ 50µg/ml

0.05 ∼ 1 mM

25µg/ml

100µM

DNA antimetabolites Arabinofuranosyl cytidine (AraC)

Hydroxyurea

H2O

H2O

12.5∼ 50µM

0.25 ∼ 1 mM

50µM

0.5mM

Causing DNA strand break

by other mechanisms

γ-rays

Bleomycin

Hydrogen peroxide

N/A*

H2O

N/A*

4Gy

5 ∼ 40µg/ml

20 ∼ 80 µM

4Gy

10µg/ml

80µM

Antimitotic agents Colchicine

Docetaxel

Paclitaxel

Vinblastin

Ethanol

DMSO

DMSO

DMSO

62.5 ∼ 1000 ng/ml

25 ∼ 100 nM

12.5 ∼ 200 nM

50 ∼ 800 ng/ml

250 ng/ml

50 nM

50nM

200 ng/ml

Histone modification

inhibitors

Trichostatin A (TSA)

Apicidin

HC toxin

Oxamflatin

DMSO

DMSO

Methanol

DMSO

5 ∼ 80 ng/ml

0.25 ∼ 4µg/ml

5 ∼ 80 ng/ml

0.25 ∼ 4 µM

20ng/ml

1µg/ml

20 ng/ml

1µM

Endoplasmic reticulum

modulator

Tunicamysin

Thapsigargin

Methanol

Ethanol

1.25 ∼ 10µg/ml

62.5 ∼ 500 nM

2.5µg/ml

250 nM

Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) H2O 0.16 ∼ 20µM 20 µM

Energy metabolism inhibitor

(uncoupling agent)

Antimycin A Ethanol 25 ∼ 200µM 100 µM

Heavy metals Cadmium chloride

Potassium chromate (VI)

Sodium arsenite

H2O

H2O

H2O

50 ∼ 800µM

25 ∼ 400µM

10 ∼ 90 µM

50µM

100µM

30µM

Other stresses Heat shock

ethanol

N/A*

N/A*

47◦C

2%, 4%

47◦C

2%, 4%

The first column indicates the mechanisms of action as described in the text. The last three columns list the solvent used, the dose range tested, and the final dose selected for

transcriptomic analyses. *N/A, not applicable.
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FIGURE 2 | Heatmap of transcriptome profiling data illustrating co-expressed sets of genes associated with various toxicants, such as genotoxic agents (red side

bars). Some agents also exhibit obvious pleiotropy; e.g., chromate induced expression of genes associated with genotoxic agents (red side bars) and genes

associated with cadmium and heat shock (blue side bars). This heatmap contains 1,628 genes that were significantly (P < 0.01; t-test) perturbed at least 1.7-fold,

relative to the control, by at least one stress agent. The genes in the heatmap were organized by hierarchical clustering with complete linkage based on their

error-weighted Pearson distances. The genotoxic (red side bars) and cadmium and heat shock (blue side bars) signatures were identified using coupled two-way

clustering. The arrow highlights a cluster of genes responding to ER stress agents thapsigargin and tunicamycin as well as certain other agents.

the standardized centroid for each class was computed, where
the standardized centroid was the mean expression level for
each gene in a class divided by its within-class standard
deviation. The standard centroid for each class was shrunken
toward the overall centroid to produce the NSC. The method
employed a shrinkage parameter to control the number of
features used to construct the classifier. With a shrinkage
threshold of 2.2, a 65-transcript panel was identified. The
prediction for DDI probability reached 100% accuracy as assessed
by 10-fold cross validation for the agents in this reference
database. This transcriptomic biomarker was initially referred

to as TGx-28.65 (reflecting 28 model agents in the training
set, and 65 probes used in the signature). The 65 transcripts
on the microarray probe design were later aligned to 64
genes as two of the transcripts were annotated to a single
gene. To avoid confusion relating to the number of genes
included in this biomarker, the biomarker was later renamed
TGx-DDI. For a complete list of the genes in the TGx-
DDI biomarker refer to Table 2 in Li et al. (2015). Pathway
analysis of the biomarker genes revealed that p53 signaling
and cell cycle regulation are the top two enriched pathways in
this gene set.
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TABLE 2 | Summary of the TGx-DDI validation results on 48 external test agents.

Class& Agents TGx-DDI Genotoxicity test

PA* 2DC# PCA@ Overall CD% AMES

Class 1 N-Ethyl-N-Nitrosourea (ENU) + + + + + +

Mitomycin (MMC) + + + + + +

Ethyl methanesulfonate (EMS) + + + + + +

Belomycin + + + + + +

Nitrogen mustard + + + + + +

Chlorambucil + + + + + +

Busulfan – + – + + +

Isopropyl methanesulfonate + + + + + +

Hydroquinone – + +/– + + +

Class 2 2A: Topoisomerase inhibitors

Doxorubicin + + + + + +

Genistein + + + + + –

Topotecan + + + + + +

Norfloxacin – – – – + –

Ciprofloxacin +/– + + + + –

2B: Antimetabolites

5-Fluorouracil (5-FU) + + + + + +

Thioguanine (6-TG) + + + + + –

Thiopurine (6-MP) – – – – + –

Azidothymidine (AZT) – – – – + –

5-azacytidine (5-AzaC) – – – – + +

Class 3 3A: Kinase inhibitors

Dasatinib + + + + + –

Imatinib mesylate – – – – + –

Sorafenib – – – – + –

3B: Additional compounds

Benomyl – – – – + –

Diethylstilbestrol – + + + + –

Nocodazole – – – – + –

Class 4 4A: Kinase inhibitors

Sunitinib maleate – – – – – –

Gefinitib – – – – – –

Progesterone – – – – – –

Diethanolamine – – – – – –

Melamine – – – – – –

4C: Antibiotics

Ampicillin – – – – – –

Erythromycin Stearate – – – – – –

4D: Others

D-Mannitol – – – – – –

n-Butyl Chloride – – – – – –

3-Nitropropionic acid – – – – – –

Methyl Carbamate + +/– + + – –

Class 5 Phenobarbital – – – – + –

Esomeprazole – – – – + –

Donepezil – – – – + –

Cyclohexamide – – – – + –

2,4 Dinitrophenol (2,4 DNP) – – – – + –

(Continued)
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TABLE 2 | Continued

Class& Agents TGx-DDI Genotoxicity test

PA* 2DC# PCA@ Overall CD% AMES

Olmesartan – – – – + –

Exemastan + + + + + –

Rabeprazole-NA – – – – + –

Rotigotin – – – – + –

Dexamethasone – – – – + –

Caffeine – – – – + –

Staurosporine – – – – + –

&Chemical classes: Class 1, DDI agents that interact directly with DNA; Class 2, DDI agents that interact indirectly with DNA; Class 3, Kinase inhibitors and other compounds that may

interact indirectly with DNA, with positive CD findings; Class 4, Non-genotoxic agents; Class 5, Agents with irrelevant positives for in vitro assays.
*PA, Probability Analysis.
#2DC, 2-Dimensional Clustering.
@PCA, Principle Component Analysis.
%CD, Chromosomal Damage Assay.

Validated chemicals are listed by classes. The column “TGx-DDI” shows results from the three analysis methods and the “Overall” prediction (positive in any one = +; negative in all

three = –). The column “Genotoxicity tests” includes the results of CD and the Ames assay documented elsewhere.

Validation of TGx-DDI—A Robust
Biomarker for Genotoxicity
To evaluate the sensitivity and specificity of the TGx-DDI
biomarker for the assessment of genotoxic hazard associated
with DNA damage, 45 chemicals were tested, which covered
five classes of distinct genotoxic mechanisms and phenotypes
(Kirkland et al., 2005; Li et al., 2017) (Table 2). These compounds
were selected based on adjudication of published data that
included expert input from members of the FDA biomarker
qualification team, and information from databases including
the carcinogenicity potency database (https://toxnet.nlm.nih.
gov/newtoxnet/cpdb.htm) and genotox databases also available
via TOXNET (https://toxnet.nlm.nih.gov/). For chemicals in
the validation study, initial cell viability assessment guided the
selection of concentrations analyzed in dose setting experiments
using the three gene stress response panel described above.
Transcriptomic profiling using DNAmicroarrays was performed
on the single concentration selected for each chemical following
the described selection process above.

(1) Data Analysis for Test Compound Classification
A paradigm consisting of three data analysis methods, (a)
two-dimensional hierarchical clustering (2DC), (b) principal
component analysis (PCA), and (c) NSC-posterior probability
analysis (PA), was applied to the profiling data of the 45 test
agents to classify each chemical as DDI or non-DDI. A chemical
was classified as DDI if it gave a positive call in any one
of these three prediction analyses. Non-DDI classification was
assigned only to chemicals that did not meet any of these criteria
(Li et al., 2017). This three-pronged classification paradigm
decreases the number of false negatives, which is important for
safety assessment. In general, when analyzing transcriptomic
data, it has been recommended to use more than one analysis
(Alvo et al., 2010).

When the three-pronged analysis was applied to our training
set, the 2DC analysis that relies on the Euclidian distance and

average linkage clearly differentiated the DDI and non-DDI
agents into two main clusters. In the PCA, the first principal
component separated all DDI and non-DDI agents (Williams
et al., 2015; Li et al., 2017). Finally, the NSC-PA that relies on
centroids with probability cutoff (P > 0.9) differentiated the DDI
class from the non-DDI class.

To make this TGx-DDI analytical pipeline conveniently
accessible to the public, a user-friendly online software tool
has been developed (https://manticore.niehs.nih.gov/tgxddi/
tool) (Jackson et al., 2017).

(2) Conclusions From Validation Studies
Table 2 and Figure 3 summarize the results of the TGx-DDI
validation set of 45 chemicals that represented five mechanistic
classes. Overall, the three-pronged analytical approach yielded
the expected classifications, with few exceptions. All agents
in class 1, consisting of alkylating agents, were classified as
DDI. With the exception of one agent (methyl carbamate),
all chemicals in class 4 were classified as non-DDI. All but
one agent (exemastan) in class 5 were classified as non-DDI.
Since class 5 consisted of agents with known irrelevant positive
findings in the in vitro CD assays, these results indicate that
TGx-DDI has a potential to de-risk these findings. Agents in
class 3, kinase inhibitors and other compounds with positive
CD results, which may interact indirectly with DNA, were
classified as non-DDI with two exceptions: dasatinib and
diethylstilbestrol. Class 2A agents, all mammalian topoisomerase
inhibitors, were classified as DDI. In contrast, norfloxacin, an
antimicrobial targeting bacterial DNA gyrase and topoisomerase
IV, was classified as non-DDI. This reflects the specificity of
norfloxacin to cause DNA damage only in bacterial cells. In
Class 2B, three out of five antimetabolites, 6-mercaptopurine (6-
MP), azidothymidine (AZT), and 5-azacytidine (5-AzaC), were
classified as non-DDI. Unlike 5-Fluorouracil and Thioguanine,
which incorporates into DNA and blocks DNA synthesis,
AZT, an antiretroviral medication, interferes with reverse
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FIGURE 3 | Performance of TGx-DDI with nCounter® analysis system. (A) Heatmap of Nanostring expression analysis using previously tested chemicals; all

chemicals were classified as DDI or non-DDI using the same approach used in the DNA microarray analysis. IR designates ionizing radiation. (B) Thirty-eight

chemicals were grouped based on mechanistic properties (Table 1); four chemicals that require metabolic activation were evaluated at different concentrations;

heatmaps are shown for nCounter® results for each class and prediction results are displayed above. Three methods were used to predict DDI positive (yellow), and

the overall prediction (bottom row) is based on positive results with any of these three methods. Published results with CD and Ames assays are shown in the top 2

rows. Yellow and blue indicate positive and negative findings, respectively.

transcriptase; 5-AzaC inhibits DNA methylation; and 6-MP
competes with the purine derivatives for the enzyme HGPRT and
affects purine nucleotide synthesis by inhibiting phosphoribosyl
pyrophosphate amidotransferase. The inhibition of reverse
transcription and epigenetic changes do not cause typical
genotoxic damage. 6-MPmay eventually lead to genotoxicity, but
the effects may not be evident until later time points.

Taken together, this validation study demonstrates that the
TGx-DDI biomarker has utility for distinguishing DDI from

non-DDI agents (Figure 3). Importantly, the biomarker is

capable of differentiating compounds with irrelevant findings

in CD assays from true DNA damaging agents; i.e., de-risking
agents that are clastogenic in vitro but not in vivo. While

all 12 agents in class 5 have been reported to be positive

for CD assays, only one was positive using the TGx-DDI

approach. Amongst the class 5 compounds, 90% were negative
in the TGx-DDI.

Technology and Cell System Compatibility
of the TGx-DDI Biomarker
(1) Robustness of TGx-DDI on Various Technical

Platforms
At the biomarker identification stage, global (i.e., genome-wide)
transcriptomic profiling approaches such as gene expression
microarrays and RNA-Seq are preferable technologies to
comprehensively evaluate responsive genes. However, now that
the TGx-DDI biomarker has been defined and validated, other
methods that specifically query a targeted set of transcripts
may be more desirable gene expression technologies for
implementation, since they provide a simplified and higher
throughput format (e.g., qRT-PCR, nCounter, and TempO-Seq
platforms). Comparison of TGx-DDI biomarker performance
across these technologies is shown in Table 3. These technologies
are necessary for future expansion of the use of the TGx-
DDI biomarker, or for its use in high throughput screening.
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TABLE 3 | Comparison of the multiplex gene expression measurement

technologies.

Features Profiling Targeted

Microarray RNA-Seq qRT-PCR TempO-seq nCounter®

Sensitivity Medium Medium/

High

High High High

Need amplification

and/or library

Yes Yes Yes No No

High-throughput No No No Yes Yes

Automate No No No Yes Yes

Cost of reagents High High Medium Medium Medium

Cost of labor High High Medium Medium Low

Readout Analog Digital Analog Digital Digital

Therefore, in subsequent studies the performance of TGx-DDI
to differentiate DDI and non-DDI chemicals was evaluated using
these methods (Li et al., 2017; Cho et al., 2019).

An alternative and widely used analytical platform in most
molecular biology laboratories today is qRT-PCR. qRT-PCR is
practical for TGx-DDI analysis and is a standard method for
validation of transcriptional changes. Cho et al. developed a
Taqman qRT-PCR version of TGx-DDI biomarker and showed
comparable results withmicroarray data (Cho et al., 2019). In this
study, 27 of the 28 model agents used in learning set, and 21 of
the 24 external validation chemicals were accurately classified.

As the TGx-DDI biomarker consists of multiple genes,
methods compatible for multiplex gene expression measurement
are required. As shown in Table 3, most of these methods,
such as microarrays, RNA-Seq, and multiplex qRT-PCR, are
not high throughput, therefore, not feasible for the large-scaled
genotoxicity screening. Low throughput is also one of the
limitations of the standard genotoxicity assays. To meet the
need for high-throughput methods for genotoxicity assessment,
bridging studies of TGx-DDI on nCounter R©, a direct digital
counting technology that measures expression of up to 800
genes simultaneously was carried out. The technical robustness
and reproducibility of TGx-DDI on nCounter R© system was
evaluated (Li et al., 2017). Results derived from nCounter R©

system were highly consistent with previous microarray data. A
correlation of the log2-fold-changes of the transcripts in TGx-
DDI as measured by nCounter R© system vs. microarrays yielded
linear fits with correlation coefficients of 0.91 (Li et al., 2017). All
28 model agents used in the learning set were correctly classified.
Classification results of chemicals in the five classes of the
validation study by nCounter R© showed the equivalent accuracy
to microarrays in terms of derisking the agents with irrelevant
positive CD results, and higher sensitivity than microarray for
detecting weaker DDI chemicals (Li et al., 2017). The throughput
of each TGx-DDI nCounter R© assay reaches 96 samples and
can be used for direct cell lysate hybridization, which facilitates
the incorporation of an automated assay procedure. Thus, this
method provides a high-throughput approach that is compatible
with automation, and promises to enable large-scale genotoxicity
screening if needed.

In addition to the standalone TGx-DDI assays, this biomarker
has also been integrated into the S1500-plus gene set for the high-
throughput transcriptomics project that is part of the NIEHS’
Tox21 consortium (Mav et al., 2018). It is expected that with these
rapidly accumulating data, the specificity and sensitivity of this
transcriptomic biomarker and its value in de-risking irrelevant
positive CD results will be fully validated.

(2) Compatibility With Different Cell Systems
Despite the fact that most TGx-DDI studies thus far have used
cultured TK6 cells, it is expected that transcriptional regulation in
response to DDI agents should be similar in various human cells
with intact DNA damage response pathways. This theoretical
understanding supports the idea that the uses of the TGx-
DDI biomarker are not limited to one cell system. TK6, a
lymphoblastoid cell line, is not metabolically competent. Using
TK6 in the presence of rat liver S9 microsomal fraction enabled
robust DDI classification for those chemicals requiring metabolic
activation by TGx-DDI (Buick et al., 2015; Corton et al., 2018).
In addition, studies showed that TGx-DDI successfully classified
DDI and non-DDI compounds in a gene expression data set
from cultured HepaRG cells treated with a variety of compounds
(Buick et al., 2015). Since HepaRG cells are derived from human
hepatocytes and maintain drug metabolizing activity, the use of
these cells for TGx-DDI testing might eliminate the need for
metabolic activation using S9 microsomal fraction that is needed
in case of TK6 cells.

(3) Bridging Studies for New Analytical Platforms and

Cell Systems
With rapid innovation of transcriptomic technologies, the
compatibility of the biomarker with new platforms and/or cell
system is critical in broadening its long-term uses. To test
whether a new platform or system is adaptable, bridging studies
are needed to first compare its performance in DDI classification
against the established methods. When incorporating a new
method or cell system in the TGx-DDI assay, a bridging study
on 28 agents used in the learning set is recommended. Optimal
filtering, normalization and analysis parameters/approaches
should be established. QA/QC metrics of the platform along
with the recommended positive and negative controls should be
applied. Performance should be tested against the published data
using the SOP developed for the new system.

Utility of TGx-DDI in Risk Assessment
The potential to use TGx-DDI to inform hazard identification
and risk assessment depends on the regulatory question or
“context of use.” In this respect, the contexts of use for
pharmaceuticals in drug development differ slightly from
assessment of environmental and agricultural chemicals (Li
et al., 2017) (Figure 4). To facilitate the application of
this panel in decision-making, a consortium of scientists
established within the Health and Environmental Sciences
Institute (HESI) submitted the TGx-DDI biomarker to the US
FDA’s formal regulatory “qualification” program. HESI is a
non-profit organization with the mission to engage scientists
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FIGURE 4 | Proposed workflow for applying the TGx-DDI biomarker for genotoxicity assessment of (A) candidates in pharmaceutical drug development or of (B)

industrial and environmental chemicals.

from academia, government, industry, research, and non-
governmental organizations to identify and resolve global health
and environmental issues. The HESI eSTAR (Emerging Systems

Toxicology for Assessment of Risk) Committee is dedicated to
developing innovative systems toxicology approaches for risk
assessment. TGx-DDI biomarker development benefited from
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continuous feedback from regulators at the FDA. Initially the
biomarker was reviewed by the agency within the Voluntary
Genomic Data Submission program (Goodsaid et al., 2010).
The comprehensive validation study, including selection of the
45 test chemicals (discussed in “Validation of the biomarker”),
was designed based on feedback and guidance from the
FDA. Following completion of this experiment, the TGx-
DDI biomarker formally entered the Biomarker Qualification
Program at the FDA. The biomarker qualification process
requires periodical review of qualification plans and feedback
from the agency. For example, the team recently reached an
agreement with the FDA on the “context of use” statement for
pharmaceutical applications. As of publication, the biomarker
is still under regulatory review although a letter of support
for the biomarker was issued by the FDA in October 2017.
Meanwhile, HESI eSTAR Committee is expanding the reach to
other regions by initiating interactions with European EMA and
Japanese PMDA.

In addition to formal regulatory qualification, a
complementary approach to facilitate and accelerate the
implementation of new methods is through the conduct of case
studies to demonstrate application. Below we describe different
contexts of use for pharmaceuticals and chemicals assessment,
and provide case study examples of application, including both
qualitative and quantitative applications.

APPLICATION 1: USE OF TGx-DDI AS A
DE-RISKING TOOL IN DRUG
DEVELOPMENT

The TGx-DDI biomarker has been proposed as a tool for
assessing the relevance of positive findings in the in vitro CD
assays (Goodsaid et al., 2010; Li et al., 2017; Cho et al., 2019).
As described above, the high incidence of positive findings for
in vitro CD assays that is irrelevant to human health provides a
challenge to pharmaceutical industry and regulatory agencies.

To de-risk positive findings, the TGx-DDI biomarker should
be applied as a follow-up to a positive result in an in vitro CD
assay in mammalian cells (ICH S2(R1) option 1 battery) for
a compound otherwise negative in mutation assays. A positive
TGx-DDI result provides mechanistic information to indicate
that the compound causes DNA damage that is potentially
relevant to the manifestation of in vivo mutagenicity and
carcinogenicity. For compounds classified as irrelevant using the
TGx-DDI approach, this mechanistic information can be used
as a rationale to reduce or eliminate the need for additional
animal testing for genotoxicity beyond the required rodent in
vivomicronucleus tests.

Case Example
A case study on the use of the TGx-DDI biomarker in de-risking
positive CD results for this context of use is provided in Li
et al. (2015). In this example, three compounds were selected for
analysis: isopropyl methanesulfonate (iPMS), 3-nitropropionic
acid (3-NP), and tri-methylxanthine (caffeine). iPMS is a potent
alkylating agent and a positive control DDI agent. 3-NP is

a non-DDI agent that is toxic because it irreversibly inhibits
succinate dehydrogenase, a critical enzyme involved in the citric
acid cycle and electric transport chain, and thus causes severe
energy impairment. 3-NP has previously yielded positive Ames
assay data that were thought to be the result of compound
contamination (Zeiger et al., 1988). Caffeine is negative in the
Ames bacterial mutagenicity assay but gives positive in vitro CD
test results that are not reproducible in vivo (Goodsaid et al.,
2010). Analysis using the TGx-DDI biomarker in TK6 cells by
DNAmicroarrays led to a positive call for iPMS and negative calls
for 3-NP and caffeine as predicted based on their mechanisms of
action. A Salmonella mutation assay was conducted to confirm
the lack of genotoxicity of 3-NP, further supporting that this
chemical does not cause genotoxicity. Caffeine is well-known to
cause in vitro CD (Weinstein et al., 1975) through confounding
cytotoxicity. The negative TGx-DDI call, in an example like this,
indicates that caffeine’s positive CD findings are not relevant to
human cancer risk.

APPLICATION 2: USE OF TGx-DDI FOR
COMPOUND SCREENING AND
PRIORITIZATION IN DRUG DEVELOPMENT
AND CHEMICALS ASSESSMENT

(1) With the availability and ease of use of high-throughput
transcriptomic technologies (e.g., NanoString and BioSpyder
technologies), the TGx-DDI biomarker can readily be
applied for genetic toxicology hazard identification of lead
compounds in drug development and of industrial and
environmental chemicals.

A promising application of the TGx-DDI biomarker in
the drug development pipeline is in the identification and
prioritization of compounds that do not cause DNA damage.
Here, the TGx-DDI could be used as a high-throughput approach
for genotoxicity assessment in early compound screening,
together with other novel high-throughput genotoxicity testing
tools (e.g., the high-throughput comet assay).

The primary area of interest in chemicals assessment is
in rapid genotoxicity hazard identification for data-poor
chemicals that are present in the environment and/or commerce.
International regulatory agencies are currently faced with
the challenge of evaluating thousands of chemicals that
lack conventional toxicity testing data. High-throughput
transcriptomics has been evaluated by a variety of scientists as a
tool to evaluate a very broad array of biological endpoints in a
single experiment. Thus, the use of predictive biomarkers, such as
TGx-DDI, to efficiently extract meaningful hazard information
from transcriptomic signatures is a clear need in this area. As
described above for pharmaceuticals, a DDI classification by
TGx-DDI from an in vitro assessment of relevant human cells
(i.e., possessing an intact p53-signaling response) could be used
to identify agents as genotoxic and prioritize these chemicals
for further testing. In fact, TGx-DDI might also have utility in
retrospective application to existing gene expression data sets for
this purpose.
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Case Example
Corton et al. demonstrated how the TGx-DDI biomarker could
be used to rapidly screen large compendia of transcriptional
profiles to identify toxicants that are potentially DDI (Corton
et al., 2018). In this example, expression profiles from a
commercially available gene expression database called
BaseSpace Correlation Engine (BSCE) (https://www.illumina.
com/products/by-type/informatics-products/basespace-
correlation-engine.html) were analyzed. The correlation of
the transcriptional profiles of human cells in culture (ratios
of controls vs. chemically exposed) and the average fold
changes of the genes in the TGx-DDI biomarker were evaluated
using the Running Fisher algorithm (Kupershmidt et al.,
2010). This method examines the overlap in the alteration
of genes between the biomarker and each transcriptional
profile in BSCE to identify significant positive (or negative)
correlations. The approach accurately identified TK6 cells
exposed to DDI and non-DDI agents from the original
studies (Buick et al., 2015; Li et al., 2015, 2017; Yauk et al.,
2016) with balanced accuracies of 87–97%, depending on
the threshold for determining DDI positives. In addition,
DDI agents in the metabolically competent hepatocyte cell
line HepaRG (15 chemicals: five true positives and 10 true
negatives) were also accurately identified [accuracy = 90%;
there was one false negative (2-nitrofluorene) and no false
positives]. Overall, these results demonstrate the utility of
the biomarker to rapidly and accurately screen expression
profiles from large numbers of chemicals to identify potential
DDI agents.

(2) Weight of evidence analysis: The TGx-DDI biomarker can
also be used in parallel with conventional in vitro genotoxicity
tests to provide weight of evidence in hazard assessment. A
DDI classification by TGx-DDI supports that the agent under
study has the ability to cause DNA damage that is relevant to
humans and in vivo genotoxicity.

Case Example
In 2015, Moffat et al. undertook a case study to evaluate the
use of toxicogenomics in the risk assessment of benzo[a]pyrene
(BaP), a well-studied carcinogen (Moffat et al., 2015). The work
aimed to explore the concordance of risk assessment outcomes
for BaP using conventional vs. toxicogenomic approaches.
Within their case study, the team of investigators used data
from TGx-DDI TK6 cell analyses done in conjunction with
micronucleus testing (in the presence of rat liver S9) to
demonstrate a concentration-dependent increase in cytotoxicity,
micronucleus formation, upregulation of known BaP-induced
response genes, and induction of TGx-DDI biomarker genes.
The author concluded that this analysis supported that DNA
damage is a human-relevant key event in BaP’s mode of
action for carcinogenicity. Indeed, evidence demonstrating that
expression profiles of BaP-treated TK6 cells clustered with those
of other DNA-reactive genotoxic agents in the TGx-DDI database
provided compelling evidence of its genotoxic potential. Overall,
TGx-DDI results in human cell cultures were used in parallel with
in vivo rodent studies to demonstrate how such data can be used

as weight of evidence that an agent is a genotoxic carcinogen in
Health Canada’s risk assessments.

(3) Potency assessment: Finally, the response of the biomarker
genes can also be used to determine a chemical or drug’s
genotoxic potency for quantifying potential hazard and
for further prioritization. The field of genotoxicity testing
is currently transitioning from purely qualitative (yes/no)
classifications to quantitative approaches to assess the dose at
which adverse genotoxic effects occur (White and Johnson,
2016; Wills et al., 2016a,b). The most frequently used
approach involves benchmark dose (BMD) modeling of
the transcriptional response of individual genes to identify
the concentration/dose at which a predefined increase
above background occurs (e.g., 10% increase is a standard
benchmark response). Median BMDs are then generated
for gene sets. Such quantitative approaches have been
proposed by the US National Toxicology Program (NTP)
to establish the dose at which biological effects begin to
occur (National Toxicology Program, 2018). An obvious
use of genomic BMDs is in the derivation of in vitro
potency rankings of chemical agents. In this application, TGx-
DDI biomarker genes for chemicals identified as genotoxic
hazards based on the classification approach are subject to
BMD modeling. The median gene BMD is then used as a
potency estimate. This potency estimate can be compared
to prototype toxicant BMDs for chemical prioritization
for further in vivo genotoxicity or cancer testing. Such
an approach could be further paired with in vitro-in
vivo extrapolation to compare the human administered
daily equivalent of the gene set BMD and the known
human exposure.

Case Example
Buick et al. used the TGx-DDI biomarker in parallel with
the in vitro micronucleus test to evaluate two chemicals
of regulatory interest at Health Canada: disperse orange
(DO: an orange azo dye 3-[[4-[(4-Nitrophenyl)azo]phenyl]
benzylamino]propanenitrile) and 1,2,4-benzenetriol (BT) (Buick
et al., 2017). BT caused a robust increase in micronucleus
frequency and concordant declines in relative survival. In
contrast, DO exhibited weak induction of micronuclei that
was <2-fold above controls at the highest concentration.
The TGx-DDI biomarker was concordant with these results,
providing supporting weight of evidence that both chemicals
are DDI, despite the weak response for DO. BMD modeling
was then applied to explore the concentration at which TGx-
DDI genes were altered and BMDs were compared to those
derived from similar experiments on the prototype genotoxic
carcinogen BaP. Potency rankings of the chemicals were
identical for the micronucleus test and TGx-DDI biomarker,
supporting the use of the TGx-DDI gene set in this application.
The results indicated that BaP was the most potent chemical,
followed by BT and DO. In addition, the results revealed
comparable BMDs for the micronucleus frequency and
TGx-DDI gene responses with a 10% benchmark response
(potencies within 10x). Overall, the work demonstrates how

Frontiers in Big Data | www.frontiersin.org 12 October 2019 | Volume 2 | Article 36

https://www.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html
https://www.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html
https://www.illumina.com/products/by-type/informatics-products/basespace-correlation-engine.html
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Li et al. TGx-DDI, a Genotoxicity Biomarker

BMD modeling of the TGx-DDI biomarker can be used
to evaluate and compare the potency of pharmaceuticals
and chemicals.

SUMMARY

Use of the TGx-DDI transcriptomic biomarker is intended to
provide high specificity and additional mechanistic information
to augment current genotoxicity hazard assessment. This
information can be useful for de-risking compounds with
isolated in vitro positive CD findings. For this application,
it should be applied following positive in vitro mammalian
cell CD assays such as the in vitro MN assay, with negative
CREST (antikinetochore) staining. In addition, application of
the biomarker as a high-throughput transcriptomic screening
approach for genotoxic hazard identification (Li et al., 2017) may
lower expense in new drug/compound development and reduce
animal use in safety testing. Such an approach also has clear value
for application in screening of data poor chemicals to identify
potential hazards, wherebymode of action-specific signatures can
be applied in parallel to identify a variety of different potential
hazards. TGx-DDI is the first transcriptomic biomarker that has
been extensively validated using different cell systems and on
various technical platforms.

Although surmountable, the development and application
of any biomarker can have challenges. For example, as
platforms and technologies change approaches to their validation

must be similarly fluid and responsive. Such approaches
will ideally optimize prior experience and data by focusing
on performance-based outcomes that can be applied across
different technical platforms rather than focusing on literal
1:1 correlation. The use of well-designed bridging studies—as
described here—can provide a ready mechanism for achieving
this objective. Other variables, such as temporal differences in the
biological response to different chemical agents, can confound
interpretation if not appropriately assessed. The use of time-
series studies are recommended to optimize study design and
interpretation of the biomarker results.

Overall, the strategies and methods that were used in
identifying this biomarker can serve as a prototype in
toxicogenomics for developing transcriptomic biomarkers for
other types of toxicity.
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