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The recently developed OPtical TRApezoid Model (OPTRAM) has been successfully

applied for watershed scale soil moisture (SM) estimation based on remotely sensed

shortwave infrared (SWIR) transformed reflectance (TRSWIR) and the normalized

difference vegetation index (NDVI). This study is aimed at the evaluation of OPTRAM

for field scale precision agriculture applications using ultrahigh spatial resolution optical

observations obtained with one of the world’s largest field robotic phenotyping scanners

located in Maricopa, Arizona. We replaced NDVI with the soil adjusted vegetation index

(SAVI), which has been shown to be more accurate for cropped agricultural fields that

transition from bare soil to dense vegetation cover. The OPTRAM was parameterized

based on the trapezoidal geometry of the pixel distribution within the TRSWIR-SAVI

space, from which wet- and dry-edge parameters were determined. The accuracy of

the resultant SM estimates is evaluated based on a comparison with ground reference

measurements obtained with Time Domain Reflectometry (TDR) sensors deployed to

monitor surface, near-surface and root zone SM. The obtained results indicate an SM

estimation error between 0.045 and 0.057 cm3 cm−3 for the near-surface and root zone,

respectively. The high resolution SM maps clearly capture the spatial SM variability at

the sensor locations. These findings and the presented framework can be applied in

conjunction with Unmanned Aerial System (UAS) observations to assist with farm scale

precision irrigation management to improve water use efficiency of cropping systems and

conserve water in water-limited regions of the world.

Keywords: remote sensing, high-resolution, soil moisture, OPTRAM, precision irrigation, TERRA-REF

INTRODUCTION AND MOTIVATION

Soil moisture is a key hydrologic state variable that links land surface and atmospheric processes
(Babaeian et al., 2019). Detailed knowledge about the state of SM and its spatial and temporal
dynamics is of crucial importance for crop production to avoid water stress, but also for the
mitigation of adverse environmental impacts due to over-irrigation as well as for the conservation
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of water resources, which is a pressing issue in water-limited
regions of the world (Tuller et al., 2019). For example, the
water scarcity projections are dire for much of the rapidly
growing southwestern United States, for which the Colorado
River is the major water source for over 36 million people
and for close to 6 million acres of irrigated farmland (Owen,
2017). This escalating water crises demands development
and adoption of transformative technologies for precision
irrigation management.

Today, airborne remote sensing (RS) techniques with
Unmanned Aerial Systems (UAS) provide an exceedingly
powerful means for high temporal and spatial resolution SM
observations (Stark et al., 2015). However, most of the currently
employed RS techniques for SM estimation have been developed
and evaluated for coarse-resolution (several tens of kilometers)
satellite observations in the optical (Sadeghi et al., 2017),
thermal (Shafian and Maas, 2015), and microwave (Kerr et al.,
2001; Entekhabi et al., 2010) electromagnetic domains. Despite
significant advances in large-scale SM estimation, for example,
methods based on microwave observations (e.g., SMAP, SMOS)
have limited applicability at smaller scales such as cropped fields,
which renders them unsuitable for farm-level precision irrigation
management. This advocates the need for the development and
implementation of high-resolution RS techniques amenable for
field scale SM monitoring and mapping.

Sadeghi et al. (2017) proposed the physically-based OPtical
TRApezoid Model (OPTRAM) for estimation of spatiotemporal
surface soil moisture dynamics based on the pixel distribution
within the Normalized Difference Vegetation Index (NDVI)
and shortwave infrared transformed reflectance (TRSWIR) space.
More specifically, the OPTRAM estimates surface soil moisture
based on the physical relationship between TRSWIR and the
vegetation cover (Effati et al., 2019). The OPTRAM has been
successfully validated with satellite data (i.e., Sentinel-2, Landsat-
8, and MODIS) for several watersheds in the U.S. with vastly
different climatic conditions, surface topologies, and vegetation
covers via comparison of the model’s surface soil moisture
estimates with ground reference measurements (Sadeghi et al.,
2017; Babaeian et al., 2018). Mananze et al. (2019) applied the
OPTRAM for agricultural drought monitoring in Mozambique.
The advantages of the OPTRAM are twofold—it does not require
thermal data such as traditional triangle or trapezoid models, and
it can be universally parameterized for a given location because
the TRSWIR-soil moisture relationship is not affected by ambient
environmental factors (e.g., air temperature and wind speed).

Motivated by the successful application of the OPTRAM
at the watershed scale, we hypothesize that the model is
also applicable to high spatial resolution visible near infrared
(Vis-NIR) and shortwave infrared (SWIR) observations as the
boundaries of the optical trapezoid are expected to be more
distinct for the rather homogeneous surface conditions of
agricultural fields when compared to the heterogeneous land
surfaces of watersheds. Here, we test this hypothesis with
ultrahigh spatial resolution Vis-NIR, and SWIR observations
obtained with the TERRAPHENOTYPING–REFERENCE (TERRA-
REF) platform, one of the world’s largest field phenotyping robots
located in Maricopa (AZ), and postulate that if the OPTRAM

FIGURE 1 | Conceptual sketch of the TRSWIR-SAVI feature space.

is applicable for SM mapping with ultrahigh spatial resolution
optical reflectance data, it is also amenable for parametrization
with high-resolution data captured with UAS’s, and thus can be
applied for farm scale precision irrigation management.

METHODOLOGY

Optical Trapezoid Model
The volumetric SM content (cm3 cm−3) is obtained from
the trapezoidal geometry of the transformed SWIR reflectance
(TRSWIR)—vegetation index feature space (Sadeghi et al., 2017)
as conceptually shown in Figure 1. For this study, we replaced
the previously applied NDVI with the SAVI because it is generally
more sensitive to sparse vegetation cover (i.e., the initial and
development stages of agricultural crops) as it corrects for the
influence of soil brightness when vegetation density is low. This
leads to independence of the OPTRAM parameters from soil
type. The volumetric SM is calculated as:

SM =
idry + sdrySAVI − TRSWIR

idry − iwet + (sdry − swet)SAVI
× n (1)

with

SAVI =
RNIR − RRe d

RNIR + RRe d + L
× (1+ L) (2)

and

TRSWIR =
(1− RSWIR)

2

2RSWIR
(3)

Where i and s are the intercept and slope of the dry- and wet-
edge, respectively (Figure 1), n is the soil porosity, L is the
soil brightness correction factor, and RRed, RNIR, and RSWIR

denote the reflectances within the Red (636–673 nm), NIR (760–
823 nm), and SWIR (2,110–2,290 nm) spectral bands captured
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FIGURE 2 | Aerial view of the TERRA-REF field with marked locations (black

squares) of the TDR sensor nests and the East-West swats (yellow rectangles)

captured by the Vis-NIR and SWIR cameras (a), the TERRA-REF steel gantry

with suspended instrument box (b), close up of the instrument box with various

imaging systems and sensors (c), and the True TDR-315 sensors installed in

duplicate in 2, 10, and 50 cm depths at the three sensor nest locations (d).

with the TERRA-REF Vis-NIR and SWIR imaging systems. The
average spectral frequencies of the applicable bands were used
to derive RRed, RNIR, and RSWIR. The value of L varies with the
extent of the green vegetation cover. For dense vegetation L = 0,
and for bare soil L= 1. Generally, L= 0.5 is applied as the default
value. When L= 0, then the SAVI equals the NDVI.

Ultrahigh Resolution Optical Observations
and Reference Moisture Measurements
The optical observations (i.e., Vis-NIR, and SWIR) for
calculation of the SAVI, TRSWIR, and SM (Equations 1–3)

TABLE 1 | Specifications of the TERRA-REF optical imaging systems.

Imaging System Vis-NIR SWIR

Imager Headwall inspector Headwall inspector

Linear Field of

View (FOV) (cm)

100 76

Wavelength (nm) 380–1,000 900–2,500

Pixel Size (mm) 0.6 × 0.6 1.4 × 1.0

Acquisition dates Sept. 15, Sept. 28, Oct. 9,

Oct. 18, Oct. 28, 2018

Sept. 15, Sept. 28, Oct. 9,

Oct. 18, Oct. 28, 2018

FIGURE 3 | Reference panels exhibiting various spectral reflectances used for

radiometric calibration of Vis-NIR and SWIR observations.

were acquired at ultrahigh spatial resolution with the TERRA-
REF platform (Figure 2a). This state-of-the-art instrument
located in Maricopa, Arizona consists of a 30-ton steel gantry
with suspended instrument box that contains various imaging
systems and sensors, including hyperspectral Vis-NIR and SWIR
cameras (Figure 2b) with their specifications listed in Table 1.
The robot autonomously moves along two 200-meter steel rails
and continuously images the soil and crop below, providing
reflectance measurements while the land surface transitions from
bare soil to full plant canopy (Burnette et al., 2018).

The hyperspectral imagers (Headwall Photonics, Bolton, MA,
USA) are push-broom sensors that acquire 939 (Vis-NIR)
and 275 (SWIR) spectral bands within the 380–1,000 nm and
900–2,500 nm electromagnetic frequency ranges, respectively
(Figure 2c). The distance between the soil surface and the
hyperspectral cameras was 2-m. The Vis-NIR hyperspectral
images for calculation of the SAVI were radiometrically
calibrated using real-time down-welling irradiance captured with
a spectral irradiance meter (Ocean Optics, Largo, FL, USA)
mounted on top of the gantry, which covers the range from
337 to 823 nm. The SWIR images were calibrated with white
and gray reference panels with known spectral reflectance values
placed at the 2-m distance below the imaging system (Figure 3).
Prior to irradiance-based calibration, the dark current was
subtracted from the raw image to correct for detector artifacts.
Hyperspectral bands over each domain were averaged and used
for analysis.
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FIGURE 4 | Pixel distribution within the integrated TRSWIR-SAVI trapezoidal

space for the 2018 sorghum experiment. The blue and red solid lines

represent the manually fitted wet- and dry-edges, respectively. The black,

green, red, yellow, and blue point clouds correspond to the observations from

Sept. 15, Sept. 28, Oct. 9, Oct. 18, and Oct. 28, respectively.

The OPTRAM-estimated SM values were then evaluated
based on soil moisture reference measurements with state-
of-the-art time domain reflectometry (TDR) sensors (True
TDR-315, Acclima, Inc., Meridian, ID, USA) installed at three
locations within the scanner field at 2, 10, and 50 cm depths
(Figure 2d). The TDR-315 sensor houses the entire measurement
circuitry, including a microprocessor, within the sensor head and
communicates with a datalogger for transfer of processed data via
the SDI-12 protocol. The TDR-measured soil moisture data were
recorded at 15-min intervals with CR1000 dataloggers (Campbell
Scientific, Inc., Logan, UT, USA). The data used for this study
are from an energy sorghum phenotyping experiment conducted
from September 1 to October 28, 2018.

RESULTS AND DISCUSSION

TRSWIR-SAVI Feature Space for Soil
Moisture Estimation With OPTRAM
The TRSWIR-SAVI trapezoidal space was generated via
integration of five scenes collected at the initial stage (i.e.,
bare soil), during sorghum development, and at the final growth
stage (i.e., before harvest) from the beginning of September to the
end of October, 2018. The advantages of the integrated trapezoid
are increased computational efficiency and independence of
dry- and wet-edge parameters from the growth stage. The
dry- and wet-edges and their associated parameters (Figures 1
and 4) were determined via manual fitting. This is justifiable
because of the very distinct geometry exhibited by the measured

FIGURE 5 | OPTRAM SM estimates compared with the reference TDR

measurements at the three sensor nest locations.

TRSWIR-SAVI relationship during the sorghum experiment
(Figure 4). Furthermore, Babaeian et al. (2018) demonstrated
with a thorough sensitivity analysis that the selection of the dry-
and wet-edge locations does not need to be overly precise for
the OPTRAM to accurately estimate surface soil moisture. It
should be noted that the more homogeneous soil and vegetation
cover conditions in agricultural fields in conjunction with
ultrahigh spatial resolution observations alleviate problems
with OPTRAM parameterization occasionally experienced for
large scale, coarse-resolution satellite observations, such as
oversaturation of the wet-edge or uncertainty associated with
image pixels that neither belong to the soil nor to vegetation (e.g.,
surface water bodies, roads, or buildings) (Sadeghi et al., 2017).

Soil Moisture Estimation With OPTRAM
To evaluate the accuracy of the OPTRAM SM estimates, they
were compared with the TDR reference measurements at the
three sensor nest locations. The SM contents measured with the
TDR sensors throughout the growth period ranged from 0.029 to
0.465 cm3 cm−3. The OPTRAM SM was obtained by averaging
the pixels directly covering the TDR sensor locations (i.e., an
area of 30 times 50 cm). It is interesting to note that because
of the ultrahigh resolution, the data volume generated for such
a small area with the TERRA-REF Vis-NIR and SWIR imaging
systems exceeds several gigabytes for a single scene. Figure 5
depicts the correlation between OPTRAM-determined SM and
the TDR reference measurements at 2, 10, and 50 cm depths,
with correlation coefficients (R) ranging from 0.66 to 0.83 and
root mean square errors (RMSE) from 0.045 to 0.057 cm3 cm−3,
which is considered reasonably accurate for remote sensing of SM
(Entekhabi et al., 2014). Because of the limited penetration depth
of Vis-NIR and SWIR electromagnetic radiation it was expected
that the OPTRAM SM estimates better match the near-surface
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FIGURE 6 | An example for the applicability of the OPTRAM to estimate moisture variations when parameterized with ultrahigh resolution Vis-NIR and SWIR

observations. Scenarios for wet and dry conditions are shown.

(2-cm) TDR reference measurements. However, there is also an
obvious correlation between the OPTRAM estimates and root-
zone SM (Figure 5), which contradicts the common presumption
that surface soil moisture is decoupled from the root-zone (Qiu
et al., 2014, 2016; Tayfur et al., 2014). Our results support findings
in Sadeghi et al. (2019) and Koster et al. (2018), who established
links between near-surface SM and the SM in deeper depths,
and are in line with results shown in Wu and Dickinson (2004)
and Ford et al. (2014), who demonstrate that root-zone SM can
be accurately inferred from SWIR remote sensing observations.
It is interesting to note that the OPTRAM SM estimates can
be applied to directly calculate crop water consumption with
a new analytical approach based on inversion of the linearized
Richard’s equation (Sadeghi et al., 2019). Furthermore, OPTRAM
SM time series could be coupled with numerical water flow
models to simulate root-zone moisture dynamics considering
plant water uptake.

Figure 6 depicts the OPTRAM soil moisture distributions
across sensor nest location 1 at ultrahigh spatial resolution (i.e.,
2-mm pixel size) for the early stage of sorghum development
(September 28), close to maturity (October 9), and short
before harvest (October 18). The maps clearly indicate the
OPTRAM’s capability to capture soil moisture variations when
parameterized with ultrahigh resolution Vis-NIR and SWIR
observations, not only for single scenes, but also for various
soil moisture states related to irrigation and plant development
stage. This instills confidence that the proposed method
is amenable for parameterization with high-resolution UAS
observations, which opens new avenues for farm scale precision
irrigation management to increase crop water use efficiency
while alleviating the risk of environmental contamination and
contributing to conservation of strained water resources in water-
limited regions of the world.

CONCLUSIONS

This contribution should be viewed as a proof of concept for
the applicability of the OPtical TRApezoid Model (OPTRAM)

for estimation of SM when parameterized with remotely-sensed
ultrahigh resolution Vis-NIR and SWIR reflectance data. A
comparison of the OPTRAM SM estimates with reference
moisture data obtained with state-of-the-art TDR sensors reveals
the promising potential of the model to be applied in conjunction
with rapidly evolving UAS imaging capabilities. This opens
new avenues for UAS-based farm-level precision irrigation
management. Such technological advances are much- needed
to combat the water crisis in the arid and semiarid regions
of the world that is expected to further escalate in view
of the rapidly growing human population and a changing
global climate. The next step is to test OPTRAM with UAS
observations and apply the obtained SM information for farm-
level irrigation management.
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