
REVIEW
published: 03 December 2019
doi: 10.3389/fdata.2019.00044

Frontiers in Big Data | www.frontiersin.org 1 December 2019 | Volume 2 | Article 44

Edited by:

Amr Magdy,

University of California, Riverside,

United States

Reviewed by:

Guanfeng Liu,

Macquarie University, Australia

Fusheng Wang,

Stony Brook University, United States

Andreas Zuefle,

George Mason University,

United States

*Correspondence:

Martin Werner

martin.werner@unibw.de

Specialty section:

This article was submitted to

Data Mining and Management,

a section of the journal

Frontiers in Big Data

Received: 15 May 2019

Accepted: 18 November 2019

Published: 03 December 2019

Citation:

Werner M (2019) Parallel Processing

Strategies for Big Geospatial Data.

Front. Big Data 2:44.

doi: 10.3389/fdata.2019.00044

Parallel Processing Strategies for Big
Geospatial Data

Martin Werner*

Institute for Applied Computer Science, Forschungsinstitut CODE, Bundeswehr University Munich, Munich, Germany

This paper provides an abstract analysis of parallel processing strategies for spatial

and spatio-temporal data. It isolates aspects such as data locality and computational

locality as well as redundancy and locally sequential access as central elements of

parallel algorithm design for spatial data. Furthermore, the paper gives some examples

from simple and advanced GIS and spatial data analysis highlighting both that big data

systems have been around long before the current hype of big data and that they

follow some design principles which are inevitable for spatial data including distributed

data structures and messaging, which are, however, incompatible with the popular

MapReduce paradigm. Throughout this discussion, the need for a replacement or

extension of the MapReduce paradigm for spatial data is derived. This paradigm should

be able to deal with the imperfect data locality inherent to spatial data hindering full

independence of non-trivial computational tasks. We conclude that more research is

needed and that spatial big data systems should pick up more concepts like graphs,

shortest paths, raster data, events, and streams at the same time instead of solving

exactly the set of spatially separable problems such as line simplifications or range

queries in manydifferent ways.

Keywords: spatial computing models, cloud computing, spatial HPC, big data, MapReduce

INTRODUCTION

In the last decade, the term Big Data has been silently identified with web-scale cloud computing
systems for handling big data. This is reasonable, because the big data movement was mainly
initiated from Internet companies including Google, Facebook, and Twitter. For example, Google
has made the MapReduce programming paradigm their default parallel system (Dean and
Ghemawat, 2008, 2010) and has reached a wide audience with this. Facebook developed, for
example, Apache Cassandra (Lakshman and Malik, 2010), and the HBase distributed database
systems1 to solve their data management problem, most notably the inbox search problem
(Lakshman and Malik, 2010).

While these problems are very beautiful and the software proposed and implemented is
extraordinary powerful, the novelty and scalability of these systems is limited. The novelty of the
MapReduce paradigm is not the structure behind: applying a function over data in a distributed
system has been there long before. For example, Hudak mentions in his 1989 survey of functional
programming (Hudak, 1989) that lists have been introduced as the core of functional programming
by McCarthy to FLPL to be run on IBM 704 already in 1958 (Gelernter et al., 1960). In this survey,
you will very often find the “mapcar” higher order function, which is essentially the first version
of map. The name reduce is not very common in these early languages, as it stands for the central

1Apache HBase – Apache HBaseTM Home. [Online]. Verfügbar unter: https://hbase.apache.org/. [Zugegriffen: 23-Sep-2019].

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2019.00044
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2019.00044&domain=pdf&date_stamp=2019-12-03
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:martin.werner@unibw.de
https://doi.org/10.3389/fdata.2019.00044
https://www.frontiersin.org/articles/10.3389/fdata.2019.00044/full
http://loop.frontiersin.org/people/154005/overview
https://hbase.apache.org/

Werner Parallel Processing Strategies for Big Geodata

expression evaluation as well. However, folding is just the same
as reducing and is a simple and common expression [see section
2.1 in Hudaks survey Hudak, 1989]:

(fold f init) [] = init

(fold f init)(x:xs) = f x ((fold f init) xs)

However, the popularity of MapReduce lies in the smart
combination with block-based data locality and removing the
burden of sorting data from the user in the shuffle phase.

These developments have been driven by the search for a
scalable and cheap way of managing real-time data such as
in social networks. On a more abstract level, the idea driving
innovation was that faulty cheap computers can cooperate in
order to create a scalable system for handling data at very
low cost.

Interestingly, a significant number of researchers have
started adopting this paradigm for research ignoring any
alternatives (including, but not limited to functional languages
like LISP, Haskell and R). Sometimes, these researchers even
lock themselves into a single system and publish many papers
adapting these architectures to the specific needs instead of
architecting the ideal system for their needs. However, the
needs of researchers are either completely theoretical (computer
science, method development) or occasional (applied scientists).
The first group usually works with very small clusters of
sometimes even<10 nodes and the second class realizes that they
will never have space and funding for the computing system of
their need.

Most large universities and research bodies provide
exceptional computing abilities with thousands of processing
units to researchers for free in the framework of high
performance computing (HPC) (Bergman et al., 2008; Lippert
et al., 2011) and it has been shown that investment in HPC pays
off for research competitiveness in general (Apon et al., 2010)
and is likely to continue. As this technology has been around
for decades, it is, however, not so eye-catchy as claiming having
solved current problems with cloud-based software. While all
major universities across the world can provide access to decent
HPC systems, only very few of them provide significant cloud
computing infrastructures. This means that researchers have
to finance the hardware for their research on their own if they
stick to cloud computing. And this leads to two aspects: first,
papers about big data handle only a little bit of data and, second,
compute clusters of <16 nodes are common in evaluating “big”
data systems.

This paper discusses the challenges, opportunities, and pitfalls
of big data systems from a more general perspective without
going into individual systems or proposals. Instead, the author
wants to collect the variations that distributed systems imply
on the choice of indexing structures and on algorithm design.
This position paper shall help to raise attention to the fact that
all HPC systems are able to do big geospatial data as well and
that—in my experience—at levels of performance that cannot
be reached with cloud computing infrastructures at all and
practically without costs to the research group. In addition, their
nomadic and usually time-scheduled organizational structure

makes them financially more efficient than distributed systems
based on commodity hardware, because they contribute to results
of a large group of researchers.

For the remainder of this paper, we will mostly focus on
spatial and spatio-temporal data, which is significantly different
from traditional big data workloads in that a sensible ordering
of the data does not exist, which directly translates to a
comparably higher amount of intra-cluster communication in
distributed systems.

SELECTED ASPECTS OF SPATIAL

COMPUTING DESIGN

Today, many different computing models are being used in the
spatial domain, however, a discussion of their commonalities
and differences is widely missing. For example, most of the
traditional GIS and spatial computing research relies on some
assumptions of the database community including that memory
is organized into pages, algorithms are operating on these pages,
indices should be compatible with the concepts of Generalized
Search Trees (GiST) or Generalized Inverted Indices (GIN),
consequently most of them being trees. Parallel execution
and overheads implied by consistency demand of these data
structures are widely ignored or pushed to the user level: a current
database provides very fast access for many concurrent users and
queries. Hence, it is parallel in a certain sense. However, keeping
queries largely sequential objects operating on a snapshot of the
data limits the scalability for individual queries significantly.

This tradition of database research brings many very
interesting and very involved indexing techniques to life and
helps in everyday work with spatial data a lot. Most often, the
user itself is not working in parallel and the datasets that are
being used are actually not that large at all. Hence, proposing
GIS and even big data GIS people to start with a decent database
management system like PostgreSQL with PostGIS is a valid
position. However, these systems are usually tightly bound to the
assumption that it is possible to maintain a single transactional
scope for the whole data management process and, finally, this
implies waiting times and degrades performance when scaling or
with data that is quickly evolving or very huge. As the amounts
of spatial observations are increasing in terms of resolution,
frequency of observation, and accuracy, these traditional systems
are limited if and only if the spatial problems are not easily
separable into smaller independent pieces of data. If they are, we
can just instantiate as many instances of a traditional database
system as we need to solve our task. And this is actually
heavily done in mapping and cartography, where high-resolution
information is consumed only locally and never put into relation
with highly-detailed data from far away.

In contrast to this rather traditional line of research, people
have realized that some companies found themselves having
to compute at a significantly larger scale in some of the
following three dimensions: data volume, data velocity, and data
variety. Large Internet companies including Google, Facebook,
Twitter, and others, have then started to create their own highly
distributed infrastructure in order to account for their business

Frontiers in Big Data | www.frontiersin.org 2 December 2019 | Volume 2 | Article 44

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

need which is serving millions of users with millions of changes
everywhere in the world. From a systems perspective, these
companies are in a very special situation which most research
is not. They have millions of users essentially following some
statistical access pattern leading to interaction parallelism. They
have huge amounts of data and huge amounts of changes
coming in. And they have the business need of permanent, fast
and reliable service. In fact, the scale of these systems implied
that it will be impossible to guarantee a good user experience
with traditional techniques. The most specific limitation comes
from maintaining consistency in evolving databases. It is known
since about the year 2000, that a scalable system cannot be
consistent, available, and partition-tolerant at the same time
(Brewer, 2000; Gilbert and Lynch, 2002). What now basically
happened is that these companies stepped back and implemented
distributed systems holding such data dropping the ability to
flexibly query data, the advantages of a relational design (e.g.,
limited redundancy, data consistency, and others). Nearly all of
these big data systems are internally mapping to a key value store
in which a single integer key is being used to distribute data
across a cluster and to lookup data for requests. The main driver
in this area is, however, financial scalability and tightly bound
to concepts from cloud computing: The number of computers
involved in the service can change at any time in any direction.
Nodes may be added to increase performance, nodes may be
removed to reduce costs or because they have failures.

These cloud computing systems are able to handle failures
pretty well and, therefore, can exploit cheap hardware in a
systematic manner. However, they are only efficient if the system
utilization is sufficiently high. While this has led to nice pay-
as-you-go models for compute, the limitation and problem is
storage. If you want to store lots of data in the cloud, it gets
expensive and you cannot share this resource. Finally, this means
that if you don’t need permanent compute, big data collections
are very expensive to hold in a cloud computing data center. On
the other hand, holding them locally, e.g., on tapes, is non-trivial
and the initial population of the cloud computing system wastes
computational resources.

As a third island and currently significantly underrepresented
in the spatial domain, there is the area of HPC. In HPC,
vendors build sophisticated systems for high bandwidth parallel
computing optimizing for peak performance, usually without
dynamic financial constraints. That is, given a certain space
to set up a computer, a certain energy that can be made
available, and a certain fixed amount of money, the design
follows the rationale of building the fastest or most energy-
efficient general-purpose supercomputer possible. These systems
share many properties with cloud-computing based systems,
for example, that they are highly distributed and that dynamic
sub-clusters are usually assigned a certain task. However, there
are some significant practical differences: These computers are
usually time-scheduled and nomadic. That is, a researcher can
submit a job to the system and wait for its execution, but he
cannot run a long-running service or rely on any consistency
properties of the cluster between different runs. Processing spatial
data in such an environment is significantly different, because

background maintenance work is usually possible only to a very
limited extent.

Let us try to abstract from the specifics of these three worlds:
sequential computing, cloud-computing, and high-performance
computing. What are the common structures that could be used
to guide algorithm and platform design?

The first and most obvious aspect is data locality: In all
three cases, it is useful if data that is actually consumed together
stays together (Zhang et al., 2015). For a traditional paging-
oriented database, this means that accesses to the same database
page should happen near enough to each other that the cache
miss probability is kept low (DeWitt and Gray, 1992; Chung
et al., 1995). In distributed cloud-computing systems, the slowest
operation is to gather together some data that is stored on
different computers relying on a usual data center network speed.
Similar to paging in databases, one tries to avoid data transfer
between different hosts and if it happens, we try to make most
use out of any of these transmission before the temporary data
is evicted from the machine that had to download it via the
network. At first sight, HPC seems to be different: distributed file
systems are in place which can be used to perform coordinated
reads in excessive speeds and abstract away a lot of the hassle of
data distribution. In addition, their I/O performance is so high
that involved computations of spatial algorithms will actually
take more time. However, these systems can exploit data locality
one layer higher in the memory hierarchy: most of these systems
are able to remotely read the main memory of a few nearby
machines without interrupting the machine (e.g., remote direct
memory access, R-DMA) (Liang et al., 2014). If our system is now
able to keep related data near, then it could be that we can read
it from remote main memory instead from disk giving significant
performance gains.

In summary, data locality is a significant advantage in all
three streams of computing research. Unfortunately, perfect data
locality is impossible due to the scale and dimensionality of
the data and, therefore, we need to implement and design data
locality in a scalable way. In summary, we formulate the following
design question: if we have this dataset, this notion of locality,

and this number of transactional scopes, each with a certain

capacity, is it possible and how is it possible to distribute

the data across the transactional scopes such that the locality

notion is optimized?

The second slightly less obvious aspect is redundancy:
traditional relational database management systems avoid
redundancy as much as possible simplifying write operations
to the database and leading to clean data following a certain
relational model and transactional isolation. Cloud computing,
however, reaches numbers of computers in which the probability
that a single computer will fail is too high to be ignored or
managed (e.g., by carefully maintaining soft- and hardware in
order to avoid any outages). Instead, outages are a normal
behavior in such systems and the systems should self-heal
themselves. The key to this is actually to increase redundancy to a
level such that—starting from a healthy setup- a certain number
of faults called redundancy factor can be tolerated and repaired
(Wang et al., 1995; Shvachko et al., 2010).

Frontiers in Big Data | www.frontiersin.org 3 December 2019 | Volume 2 | Article 44

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

A very simple strategy is to store all data on k different
computers (or racks, data centers, . . .). Then, the outage of k-1
computers can always be tolerated, because it can make up to k-1
copies of the data inaccessible. The last copy of the data can be
redistributed across the remaining cluster such that the system
can actually heal itself toward the prescribed redundancy level (as
long as enough computers are in a healthy state).

In current HPC systems, fault tolerance is not yet a default
ingredient though the scale of these systems already suggests that
it would be better to be able to handle faults. The upcoming next
standard of the dominant Message Passing Interface (MPI) will
include mechanisms to handle this situation (Fagg et al., 2004;
Hursey et al., 2011). Until then, compute centers usually keep
scheduled run times for HPC jobs sufficiently short and invest
in hard- and software maintenance in order to avoid frequent
node or processor failures. In addition, best practice for software
development in HPC context is that interruptions should be
expected and that software should be structured to maximize the
effectivity of checkpoints that the system can store in order to
continue a job that failed due to a local cluster outage.

In summary, the discussion of the previous section can be
subsumed into the following design question: given a dataset

and a workload, what level of data and system redundancy is

ideal, how do we create this redundancy, and can we write

partial results (e.g., checkpoints) in order to alleviate otherwise

critical faults.

In this formulation, data redundancy is the question of how
many independent copies of a certain data item are maintained,
system redundancy is the question of how many nodes perform
the same operation or are at least ready to take over the operation.
It is worth noting that the ability to take over a certain operation
implies the need to detect a malfunction and implies intra-cluster
communication like heartbeats or other means of detecting a
malfunction which are complicated in themselves.

In sequential systems, it is known that sequential access to
data is usually faster than random access patterns. For spinning
disks, this is related to the time needed to seek to a specific
location, but even for modern SSD-based systems, the individual
read operations usually read larger blocks of consecutive data.
This is most often organized in the operating system and can be
influenced through operating system APIs. Similarly, in database
management systems, pages are read as an entire piece of
information and can have a size of a few kilobytes to megabytes.
In distributed file systems, files are as well split into larger
pieces that can individually be managed (e.g., knowing which
file they belong to). In summary, we can conclude that at least
locally sequential access is a good I/O pattern for an algorithm
implementation across all architectures. Many traditional disk-
resident data structures imply a locally sequential access pattern.
As they usually imply some sort of ordering of the data which
is used to linearize the data on the disk, near data in the index
will reside in neighboring pages or blocks. In a similar vein,
algorithms can obey comparable access patterns. We call this
aspect computational locality. While data locality and locally
sequential access just means that near data is near in the index
and physical data organization, computational locality means
that the computation is organized in a way such that only near

data needs to be related with each other. This means that a
computation with data items A and B is only allowed if the
distance of A and B is sufficiently small. If algorithms can be
designed in this way, their execution can be significantly sped up.
Furthermore, if problems can be formulated such that algorithms
with this property exist, a lot of performance has been gained.

In summary, in this section we selected and formulated
questions for designing big geospatial or spatio-temporal data
processing systems, which can be used to classify many existing
approaches and which can be helpful in designing and discussing
algorithms in this field.

- Data Distribution and Locality: How to minimize data
movement cost in distributed systems

- Redundancy: How to improve fault tolerance, resilience, and
performance by data replication

- Locally Sequential Access: How do we exploit the fact that all
read operations are reading blocks of data

- Computational Locality: How can we design problems and
algorithms that they minimize the number of non-local data
items needed?

These four aspects of the overall system are determining the
reachable performance and provide room for tradeoffs and,
therefore, for a certain variability in successful strategies.

MORPHOLOGY OF SPATIAL DATA

Traditionally, spatial data is only discussed in terms of its
memory organization and representation in a single computer.
In addition, a pure vector or pure raster representation model are
used with few approaches actually being able to manage mixed
data in high performance and quality (Maffini, 1987; Couclelis,
1992).

For the vector-oriented world, Simple Feature Geometry
vector representations (points, polylines, polygons, polyeder,
etc.), their topological predicates (within, overlaps, identical,
intersects, etc.), and their core operators (Buffer, Transform,
Extract, Envelope, . . .) are defined, implemented and used to
express arbitrary cartographic and spatial data processes (Open
Geospatial Consortium, 2007; Strobl, 2008).

In contrast, the raster-oriented world represents the spatial
domain by first fitting and defining a grid to the world and
processing features in terms of rank 3 tensors: Two dimensions
of this tensor are being used for two main coordinates (latitude,
longitude or X and Y) and the third rank is being used to model
auxiliary data including a Z coordinate or other measurements.
The study of these objects is usually done through local matrix
operators like filtering and morphology, and through extraction
of information on three levels: local, that is per pixel, focal, that
is, in typically rectangular surroundings of pixels, and global, that
is, across the whole raster (Tomlin, 1994).

This dominance of a purely algorithmic taxonomy of
geometry has been challenged in the last decade mainly due
to the rise of many more highly diverse data sources that do
not really fit well into the pattern of either geometry or raster.
Back in the past, the main data source for point data was actual

Frontiers in Big Data | www.frontiersin.org 4 December 2019 | Volume 2 | Article 44

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

geodetic measurements. People were walking around measuring
points in relation to other points adding up to a database of
measurements. Nowadays, however, many more data comes
up naturally due advanced remote sensing, satellite positioning
systems, and smartphones. While all of these create basically
point-like information, the relation between different points is
more explicit and usually needed for an application. For example,
a spatial trajectory is represented by a certain set of points
yet we assume that some sort of interpolation is essential to
the concept of the trajectory. Or points generated from remote
sensing systems are usually georeferenced with various sizes of
errors. Still, inside the same sensor acquisition and image, errors
tend to be comparable and smaller as opposed to an “absolute”
error, which is not even easy to define given that the Earth
is a highly dynamic object. Therefore, it is essential to know
where the points came from and in what context they have to
be understood.

In addition, the concept of places has been evolving (Schmid
and Richter, 2006; Russell, 2008; Feld and Werner, 2013). Places
are somehow bound to location, but not absolutely precise
or unique in a geometric sense. In contrast, they are often
defined as some clusters or aggregates of observed locations
that are meaningful to the user. For example, “shop” might
be a specification of a place and might include the area
in front of the shop on sunny days as well. Or a public
building like the city hall might be a place specification even
without specifying the city. This becomes clearer in natural
language sentences like “In the city hall, you can get your
passport extended.” This sentence has a clear and specific spatial
ingredient though it can only be resolved to a location together
with the context of the conversation like which city actually is
meant. However, it is universally true and not incomplete as
a sentence.

An early and widely respected novel classification scheme
has been proposed by Kuhn et al. under the term Spatial
Core Concepts. They establish a scheme specifying “what
spatial information is about, at a level above data models,
but independent of particular application domain” (Dean and
Ghemawat, 2010). Their scheme consists of six spatial concepts:
Location, specifying a place in a geometric sense giving
coordinates relative to a reference system giving sense to these
numbers. Neighborhoods model the interaction of different
locations mainly in the sense that neighborhoods contain things
near to a location. Fields model phenomena that have a full
spatial extent. That is attributes that exist everywhere and vary
with time and space. Objects are bounded things in space having
an identity possibly linking to a lot of data defining the object
or its relations with other aspects. Networks cover connectivity
and implied knowledge usually given using techniques from
graph theory. Events, finally, are kind of a collective aspect
summarizing changes to things representable with the other
core concepts. This includes movement changing from one
location to another as well as changes like objects appearing
or disappearing.

In contrast to the traditional computational concepts of vector
and raster graphics, the higher level of semantics of the involved
concepts allows to define more specific algorithms and actually

guide algorithm design. However, these core concepts are not
sufficiently detailed if one wants to integrate current hot streams
of spatial data research like trajectories. However, it is easy
to follow the basic idea of these core concepts and to extend
them to include additional concepts. Now, it becomes possible
to clearly distinguish, for example, time series from trajectories
though they share the same computational representation as a
set of time-stamped points and as well many basic algorithms.
And this can have a significant impact on polymorphism
of functions.

Consider the simplification operation on both trajectories and
time series, which shall be an operation that reduces the number
of points. While the only way of simplifying time series is by
leaving out some of the measured points (e.g., sampling a subset
of the points of the time series), the interpolation assumption
of trajectories allows different algorithms from the field of
geometric simplification or even time-synchronous sampling
in which a set of trajectories is sampled with locations at
synchronous timestamps.

With this paper, we will not follow tightly to the spatial
core concepts as proposed by Kuhn. However, we think that it
makes sense to set up a taxonomy of spatial things that deserve
significantly different algorithmic treatments even if they might
share aspects of their representation in computing systems—just
like trajectories and time series have identical representations, but
different options for algorithms.

A CLASSIFICATION OF COMPUTATIONAL

SYSTEMS

In this section, we first classify computational systems in two
dimensions, first, on the pure architectural implementation and,
second, on the type of middleware that is used to coordinate
especially parallel systems.

Abstract Architectures
The previous two sections have set up two aspects for spatial
big data algorithm design: first, we need to understand and
learn on the aspects that dictate the practical performance
of spatial algorithms in current and future highly distributed
computing systems and, second, we need to take care that
we learn to differentiate spatial concepts at a semantic level
such that algorithms can be reused as much as possible across
domains. This section recalls shortly four classes of real-world
computing models and algorithm models that have significantly
different properties.

A Single Core Sequential Algorithms is an algorithm that
runs sequentially on a computer. Usually, it consists of a sequence
of steps including loops, computations, and decisions turning
an input to an output. Traditionally, sequential algorithms are
discussed in terms of their worst-case performance, though
this can be misleading as has been lately discussed in an
ACM spectrum review article “Beyond Worst-Case Analysis”
(Roughgarden, 2019). To this end, the database community
has already established a widely respected set of benchmark
datasets to augment such theoretical analyses with real-world

Frontiers in Big Data | www.frontiersin.org 5 December 2019 | Volume 2 | Article 44

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

performances. Toward big geospatial data, however, benchmark
sets and workload types are currently widely missing, especially
datasets crossing the historical boundaries of raster and
vector graphics.

A Shared Memory Parallel Algorithms with Atomic

Operations is an algorithm that runs on a multi-core system
with a single main memory space. It runs in parallel and has
the option of executing a certain subset of the operations in
atomic form which means that the CPU cannot be interrupted
by other concurrent activities. These features are common in
modern CPUs and are needed to setup flags and to wait for
conditions or to make sure that parallel execution does not
destroy consistency of global variables. The advantage of shared
memory programs is that they have a simple consistent joint state
using global variables, but the downside is that their scalability
is generally limited. However, machines with several terabytes
of main memory are common in supercomputing centers, for
example the TeraMem system of the Leibniz Rechenzentrum
in Munich2.

A Distributed Memory Parallel Processing Algorithm is
an algorithm designed for a system in which independent
distributed components perform a joint task without any
consistently shared resource. The computers or nodes are
connected via a network and coordinate their work by
communication. The assumptions on the communication are
usually pretty vague like it is guaranteed that each message is
received at least once, but with no guarantees on when this
happens or even on whether it happens exactly once. In general,
the coordination of such systems is tricky and comes in twomajor
flavors: introducing a (logically) central management component
as is routinely done in cloud computing systems (e.g., the
NodeManager in Hadoop) and HPC systems (e.g., MPI rank
zero) or introducing a set of rules that all distributed components
obey in order to reach a consistent joint result.

As it is difficult to apply complexity theory to arbitrary
distributed algorithms, it is common that algorithms designed for
both shared memory multiprocessing and distributed memory
parallel processing are evaluated only on synthetic and real-
world workloads using wall-clock time or energy consumption
as the main metrics of interest and that an evaluation in terms
of theoretic bounds is not performed. An interesting example of
how this is done, is given by a paper describing how to scale deep
learning to the (currently) fastest supercomputer in the world
including 27,600 GPUs (Laanait et al., 2019).

Middleware and Framework
Many programs written in these various computational
environments share an outer structure and we want to list the
most important of these shared structures as one expects that
highly optimized such basic structures form a sensible building
block for real-world algorithm design and implementation.

The Message Passing Interface (MPI) is a traditional
middleware solution for distributed memory parallel processing

2LRZ. Teramem System for Applications with Extreme Memory Requirements.

Available online at: https://www.lrz.de/services/compute/special_systems/

teramem/

and most (if not all) high-performance computing (HPC)
systems support optimized versions of MPI as the distributed
computing framework. In MPI, a set of computers is collected
into a communicator and all nodes are numbered from zero to
n-1 called rank. Now, communication and coordination relies
on message passing, that is, it is possible to send messages
between those nodes. Communication in MPI is in general either
synchronous or asynchronous and can be collective or point-to-
point. But the basic idea of MPI is to provide highly optimized
implementation of common problems in HPC environments
like reading data from a distributed file system, distributing
data across the cluster, reducing and aggregating results, and
managing input and output of the system. Therefore, the MPI
system provides high-level API functions for data distribution
and synchronization (Barker, 2015; Hoefler et al., 2015; Garrett,
2017).

Another similarly traditional approach from the field of
distributed systems is the Remote Procedure Call (RPC). An RPC
is a mechanism with which it is possible to invoke a function on a
remote system as if it was a local procedure. In fact, most libraries
for RPC represent it actually as this: a middleware generates an
implementation of a local function that first sends the parameters
over the network to a remote host, invokes a subroutine there,
and collects the results and returns them. That is, for the program
using an RPC, it feels like a fully local function call. Traditional
RPCs have been around for long, for example in the context
of CORBA (Hudak, 1989), but the framework of RPC is an
ingredient to many current systems including gRPC (Gelernter
et al., 1960). Current web services are largely request-based and
a request can be seen as a remote method invocation. However,
they extend the framework of RPC with aspects such as attaching
to streams and reacting to events.

In terms of big data, novel middleware approaches have been
evolving which limit the interface and structure of functions that
can be used. While the previously mentioned approaches are
independent of the structure of the program, a novel paradigm
of structuring distributed computing has been proposed with the
MapReduce framework. In a MapReduce system, the dataset is
distributed in the beginning over the set of involved nodes (Dean
and Ghemawat, 2008; Hashem et al., 2016). Then, a map function
can be applied over the data which means that it is invoked once
for every data item (like a line in a text file or a record in a
dataset). This map function is able to consume data and it is also
able to produce and emit data to the next stage. In general, data is
represented in a key value fashion such that every data item has a
key associated with it. This becomes important in the next phase:
after a map operation has been invoked for all data items and
has generated named data items as the output, these data items
are sorted by the middleware and re-distributed across the cluster
such that the Reduce function is invoked once for each key that
has originated somewhere in the distributed system with all data
items that have been generated with this key.

In addition, the Reduce function can have properties like
associativity and commutativity such that the middleware can
interleave the execution and communication of the Reduce
function (this is sometimes called a Combiner if it is run on each
distributed node before the data is shuffled across the network

Frontiers in Big Data | www.frontiersin.org 6 December 2019 | Volume 2 | Article 44

https://www.lrz.de/services/compute/special_systems/teramem/
https://www.lrz.de/services/compute/special_systems/teramem/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

bringing together all data with the same key). This fixed structure
has been popularized by Google (Dean and Ghemawat, 2008)
and has been implemented as open source in the Hadoop project
(Lippert et al., 2011). It has after that been extended to allow
for more flexible patterns and to include in-memory processing
capabilities in the project Apache Spark (Bergman et al., 2008).

IMPLEMENTATION PATTERNS AND

STRATEGIES

The complicated and highly diverse computational environment
today as described in the previous sections often hinders the
design of optimal systems. In many practical cases, there are real-
world constraints coming from history (things you already know,
own, or have access to) or from the behavior of the crowd (cloud
computing is a hot topic). In this section, we want to collect the
most abstract algorithmic patterns that can be implemented in
all combinations of the previously mentioned aspects including
hardware, frameworks, and spatial data conceptualizations.

In general, there are two strategies to turn a computing
system from sequential to parallel: Data-parallel and Task-
parallel. Loosely speaking, a data-parallel system does the same
thing to different data while a task parallel system creates a list of
independent tasks which are executed in parallel.

Data parallel systems are easily supported in hardware, for
example with SIMD instructions. These are instructions that do
not work on a single register or pair of registers, but rather
on a small “array” register. For example, in a current 64-bit
architecture, SIMD units have 128 bit, 256 bit or more bits and
can do a subset of the operations (e.g., adding, multiplying,
etc.) on these large registers in a single CPU instruction. This
finds wide application in numeric calculations (e.g., matrix
multiplication), but even in text parsing. For example the
RapidJSON and simdjson JSON parser rely on SIMD instructions
to skip over multi-byte patterns in a single step reaching
gigabyte/s parsing speed for JSON documents (Langdale and
Lemire, 2019).

Of course, such hardware extensions support only a very
limited number of algorithms completely, therefore, data-parallel
systems can be implemented using threads or processes as well.
In a data-parallel thread system, a pool of threads applies the
same “thing” over the data. A typical example is a parallel for
loop in which the body of the four loop relates to a section of
the input data and produces a section of the output data. If we
can guarantee that the sections of the output data are disjoint, we
can let threads run without any synchronization. If the outputs
can overlap, we have to make sure that the order in which the
bodies of the loop generate results does not matter to the results.
This often implies synchronization making sure that only a single
thread is able to write a single block of memory at any time.

Task-parallel systems are often implemented as a task queue.
In this setting, a set of tasks is ordered into a queue and—
depending on certain preferences or heuristics—the involved
compute nodes will pull a task from this queue, execute it,
and publish or store the result. A more involved task-parallel
system is a divide-and-conquer system in which the distributed

task queue starts with a few tasks only and the tasks are split
into smaller subtasks which are then further distributed across
the cluster.

As already outlined, the simplest solution of parallel
programming is to have many tasks perform independent
operations, because this avoids the need of synchronization
and—depending on the flexibility or scale of the number of
tasks—makes it easy to execute tasks in parallel.

A little bit more involved is the case when many tasks are
loosely coupled to a joint objective, for example, the application
purpose. In this case, the tasks are “technically” independent and
can be run in parallel without any synchronization, but there is
a higher layer of synchronization and consistency management
which reduces the parallel efficiency in some situations. A typical
example is the MapReduce paradigm: While the Map-phase
consists of independent tasks that take a subset of the input
data and contribute to the output of the Map phase without any
communication between tasks, the precondition of the Reduce
phase is that the Map phase has finished or it is otherwise
guaranteed that all elements that end up in the same Reducer are
already available. In practice, this very aspect is organized by a
central entity called Master, but it is not a significant scalability
bottleneck, because the master does not actually manage the data,
but rather the task metadata: which tasks have been submitted to
which node and which tasks have already completed.

Even more involved is the case of pipelines, though they
actually create the highest possible parallel speed. In a pipeline
system, a sequence of tasks must be applied to the data and each
of those tasks is executed by another thread and the demand
is communicated: the successful execution of a task triggers the
next task in the pipeline on completion. This pattern is known
as stream computation and Apache Flink or Apache Storm are
respected implementations of this pattern (Hesse and Lorenz,
2015). The advantage of this is that waiting can be avoided
in many cases leading to a higher efficiency. In addition, it is
easy to scale by adjusting the number of threads that take over
certain tasks.

The producer-consumer pattern is a mixture of client-server
and pipeline patterns. Each component can act as a producer
and as a consumer and all producers and consumers form a
graph in which information (e.g., tasks and/or data) flow from
producers to consumers. A special producer-consumer pattern is
the pattern of distributed task queues. In these, each node has a
local task queue which acts as a producer and a thread pool which
consumes tasks from this queue. However, each task can produce
new tasks locally and remotely such that the consumer turns to
a producer in certain aspects. Finally, the program ends when no
producer generates new tasks or new data.

APPLICATION TO BIG GEOSPATIAL DATA

The previous sections have collected the needed background to
present a framework for designing scalable algorithms for big
geospatial data. In this section, we will discuss a certain set
of spatial algorithm classes and how they fit into the diverse
categories of big data computing systems and frameworks.

Frontiers in Big Data | www.frontiersin.org 7 December 2019 | Volume 2 | Article 44

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

The basic function of any GIS or spatial database is to enable
the user to access spatial subsets of the data for further processing.
Three types of queries are typical in this area:

- Range Queries: To find the objects in a specified spatial range
(e.g., circle, MBR, polygon).

- Nearest NeighborQueries:To create an ordered list of k items
in increasing distance.

- Spatial Join Queries: To compute the spatial predicate
interactions of two datasets.

For all of these queries, spatial indices are routinely used in
traditional computing. As we already explained, data locality is
key to scalability and we need to set up data locality patterns such
that physically nearby things (those that fulfill the same query
predicates with high probability) are near each other.

If the data is not changing significantly or if the spatial data
distribution is known, the best approach will be to grow some
recursive spatial indexing tree like an R-tree using sort-tile-
recurse (STR) bulk loading until a certain number of nodes has
been created. For each of those nodes, a task is created which is
to solve the range query for all data that belongs to this node. If
the spatial indexing tree is sufficiently balanced or if the tree is
grown until the task size is comparable, a task parallel system has
been defined in which data locality comes from a spatial indexing
tree. If the queries that are processed in the system are similarly
distributed as the data, this system will generate a high parallel
efficiency (Eldawy and Mokbel, 2015). However, if the queries
are sparse and local, the systems main limitation lies in the fact
that due to data distribution only a few nodes can contribute to
answering a single query, namely those that have the relevant
data locally. If the workloads are, however, skewed against the
spatial distribution of the dataset, two strategies can be followed:
to implement redundancy increasing the number of nodes that
own specific data until the capacity of the distributed system is
exceeded. This can be done in a random fashion or following
a different indexing and ordering scheme, for example, from
time-intervals. The goal is to minimize the amount of compute
nodes that are needed to answer a query while maximizing the
amount of nodes that could sensibly contribute to answering
a query.

While many systems follow the data distribution (e.g., Kini

and Emanuele, 2014; Whitman et al., 2014; Eldawy and Mokbel,
2015; Xie et al., 2016), it has not yet been widely discussed
how to follow the query distribution or how to adapt to the

query workload during execution. This is an interesting direction

for spatial big data research: How can we actually exploit the
joint distribution of queries and data in distributing data across

the cluster to solve the tradeoff between query locality and the
number of nodes that could contribute to a query execution.

A second category of queries is the category ofBasic Topology
Queries. These include, for example,

- Shortest Path Problems: Find shortest paths between vertices
of a graph.

- Traveling Salesman Problems: Given a distance matrix

between k objects, find the tour across all of them that
minimizes the total distance traveled.

- Connected Components:Compute connected components of
the underlying graph.

These problems are typically solved by applying graph search
algorithms and their variants over a graph. A widely-used data
structure for efficient representation graphs is an adjacency list.
In this context, the vertices are modeled and together with each
vertex, a list of the outgoing edges (and sometimes as well a list
of the incoming edges) is stored. A typical approach to parallel
graph algorithms is to distribute this adjacency list across a cluster
and to run algorithms across the global graph. This might imply
that algorithms run across a different set of computers in order
to solve a certain problem, especially, when following the out-
edges crossing node boundaries. An MPI implementation has
been proposed with the Parallel Boost Graph Library PBGL3.
It is interesting to look in detail into this implementation as it
provides certain program and data structures that come in handy
when designing distributed data structures in an MPI setting.
For example, they implement triggers, which can be used to
asynchronously send messages to remote data structures. In a
certain sense, these triggers can be used to invoke a member
function of a distributed data structure on a remote node, a
variant of RPC inside the framework of MPI. In addition, a
distributed queue has been implemented which is a view of a
set of local queues. Each node executes the elements from a
local queue. But this execution can push data to a remote queue
allowing for the implementation of various parallel algorithms
and the exploitation of remote direct memory access.

From an indexing point of view, it is, of course, possible to
use a spatial index for a spatial graph in order to distribute the
adjacency list across the cluster improving locality. If the graph
is not embedded into a Euclidean space, such a geometry can
be derived from the topology of the graph through embeddings
such as T-SNE (van der Maaten and Hinton, 2008). In Euclidean
graphs (or in graphs with a synthetic Euclidean geometry
attached), landmarks can be interesting in which a Dijkstra
search is run from a certain set of nodes for a predefined depth
or distance. Landmarks are added until the whole graph has
sufficing landmark coverage. Then, search algorithm can quickly
prune directions using a variant of the triangle inequality. One
example of this class is ALT search (Goldberg and Harrelson,
2005) which has won the ACM SIGSPATIAL GIS Cup 2015
in a shared memory multiprocessing setting for dynamic street
networks (Werner, 2015). However, parallel topology computing
has not been widely discussed in the spatial computing domain
and offers various options for future research.

The traveling salesman (TSP) type of graph problems stands
out because these problems are known to be NP-hard. However,
an approximation scheme has been defined for Euclidean TSPs
allowing for efficient and effective calculation of the exact
solution of the traveling salesman problem exploiting the triangle
inequality. But, in general, good solution for the TSP can also
be generated using heuristics such as local search or genetic

3Edmonds, N., Gregor, D., and Lumsdaine, A. The Parallel Boost Graph Library.

Available online at: https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/

doc/html/index.html

Frontiers in Big Data | www.frontiersin.org 8 December 2019 | Volume 2 | Article 44

https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/index.html
https://www.boost.org/doc/libs/1_63_0/libs/graph_parallel/doc/html/index.html
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

optimizations (Korte et al., 2012). While these are naturally
parallelizable, it is difficult to exactly know the quality of a
solution. Parallel computing and TSP problems is, however,
a very active research area (Zambito, 2006). The difficulty of
solving evenmedium-sized problems [e.g., the world TSP4 is only
11.5 megabytes or 1,904,711 points, but an exact solution has
not been proven] motivates a lot of research and might be one
of the domains in which quantum computing might provide a
revolution (Srinivasan et al., 2018).

However, more research is needed to solve spatial versions
of real-world instances of the Traveling Salesman Problem
in acceptable time using distributed computing. Instances of
interest will be much smaller than the two-million city example
and they might have additional structures like partial orderings
that could be exploited to solve the problem or to generate
approximate solutions quickly.

The third category for spatial computing operations is
a category of geometry operations actually changing or
generating geometry. Representative examples of this category of
operations are

- Simplification: Given a geometric object, represent a
sufficiently similar object with fewer data points.

- Buffer:Given a geometric object, create an enlarged version of
this object.

- Skeleton: Given a geometric object, create a smaller version of
the object.

These algorithms can be parallelized quite easily, because all
of them are local. For example, if we need to simplify a huge
geometric object, we can split the object into smaller pieces and
simplify those pieces. For raw simplification, no synchronization
is needed, in some cartographic scenarios, however, we need to
track that the simplification process does not change the topology
of the object. For example, a line simplification of a river must
not lead to the situation that a city is depicted on the wrong
side of the river after simplification. It is worth noting that
simplification is a complex topic and usually involves algorithms
of non-linear runtime. The most traditional algorithms, Douglas
Peucker, works on linestrings or rings in a divide and conquer
approach as follows: The first simplification is the line connecting
start and end point. Then, the point with a largest error measure
is found, inserted into the result, and used to split the problem
into two sub-problems before and after this inserted point.
Douglas Peucker algorithm is then recursively applied to all such
divisions forming a tree of computations until the simplification
fulfills the given error bound everywhere. The worst-case running
time of this approach is quadratic in the number of points and the
best algorithm known has a worst-case complexity of O(n log(n))
and is based on geometric hulls of the paths (Hershberger and
Snoeyink, 1992). This is a beautiful and traditional spatial big
data example as it exploits the spatial structure of the problem
in order to make larger instances feasible. Given that this paper
was already published in 1992, this highlights that spatial big
data is significantly older than the big data movement of the

4University Waterloo. The World TSP. Available online at: http://www.math.

uwaterloo.ca/tsp/world/

last decade. Similarly, the buffer operation which enlarges a
geometric object is naturally parallelizable, but needs careful
design of synchronization, because the buffer shall be a consistent
object (e.g., a polygon) and the generated part shapes might be
significantly influenced by geometry that has not been available
in a natural subdivision of the data. One algorithm was proposed
optimizing load-balancing by Dong et al. (2003) and is an
interesting read to get into this domain of parallel geometry
processing algorithms.

Many more algorithm categories can be defined, but this
paper is not intended to become a review of parallel geometry
processing. Instead, we want to use the already-presented aspects
to come back to the main topic of what structures algorithm
designers should look for in order to find efficient variants
for spatial processing operations. Abstracting from the walk-
through of a representative set of GIS problems and options
for their parallel implementation, we now try to isolate some
abstract aspects of the presented approaches which might guide
algorithm development.

From the first category of basic GIS functions, we conclude
that the statistical distributions of the input data and the
distribution of this input data across computational units is a very
difficult question and needs to be investigated in detail, because
there cannot be a good solution for many workloads. If the data
distribution across the cluster ensures very good data locality,
most queries will suffer from computational locality, that is, only
a small fraction of the cluster has access to the data needed to
answer the query. If on the other hand, the query distribution
is taken as the design rationale, the data distribution might be
heavily skewed leading to subtasks of different complexity across
the cluster in cases where the data and query distribution do
not coincide. In many cases, however, some structures of the
data locality pattern are shared across queries and data, especially
when it comes to data that is correlated to the same third
distribution like population density. Therefore, data scientists
working with huge sets of spatial data should look at the joint
distribution of queries and data.

From the second category of GIS functions, those related to
graph theory and topology, we conclude that there are many
algorithms in which the computation will not be local after
splitting the data across nodes. For the graph search, this means
that a shortest path search will walk around the cluster and
that we need a lightweight mechanism of invoking remote
methods on a distributed data structure. A distributed queue
in the semantics of the parallel boost graph library is a very
clean and powerful tool, because it allows to have a clear
notion of computational responsibility (e.g., the local queue)
while allowing for distributing work across the cluster without
a central entity (e.g., by triggering functions on remote nodes).
This is significantly different from the implementation structure
of many open source big data stacks, which usually follow a
master-slave paradigm with a central component limiting their
scalability. However, finding out whether such an algorithm
terminated can become difficult, because we have informally
written that the algorithm terminates if no thread produces new
data. How do we know? This is a matter of debate and needs a
master node again, this time only to collect one bit per node,

Frontiers in Big Data | www.frontiersin.org 9 December 2019 | Volume 2 | Article 44

http://www.math.uwaterloo.ca/tsp/world/
http://www.math.uwaterloo.ca/tsp/world/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

namely, that it is not going to generate new tasks. However,
in large systems, this one bit can be reduced by a collective
Reduce operation such that it is compressed on its way to the
master node.

From the third category of geometry operations, we remember
that geometry often allows for a natural divide-and-conquer
structure (e.g., splitting a raster into cells, splitting a polygon
into triangles, splitting a linestring into sub-linestrings) with
varying amounts of synchronization needs. For Douglas Peucker,
synchronization is easy as all subtasks are independent, for the
geometric buffer operation, however, the results of the subtask
must fit to each other and the amount of geometric context
needed to calculate the buffer in a location is not known.
Complex distributed data structures with some synchronization
mechanisms are the consequence and paradigms such as
MapReduce are non-trivial to apply to these problems.

CONCLUSION

With this paper, we first gave an overview of the computational
infrastructures that are available today. We set up some intuitive
questions that can guide algorithm design including data
distribution and locality, redundancy in distributed systems,
locally sequential access (also known as cache-awareness) and
computational locality (that is, that algorithms rely on local
data). While these intuitive measures are helpful, they are
not precise enough to guide algorithm design. Therefore, we
discuss both available middleware for computing as well as
common structures for parallel programs. With this background
information, we discuss as examples three classes of basic spatial
and condense the central design patterns out of these. These are,
first of all, data distribution, query distribution, data locality and
computational locality. The second aspect is the question, what
happens if data locality is possible, but computational locality is
not. A basic example is shortest path search in large graphs.While
we can split the graph across nodes, we cannot make sure that all
paths reside on a single node. Instead, the graph search will move
across the graph and, thus across the cluster. For scalable graph

algorithms, this has been implemented in a messaging paradigm
of unlimited scalability by implementing distributed queues and
functions to synchronize the emptiness of this distributed queue
and of submitting new information to these queues. Finally, we
show that spatial data has a natural divide and conquer structure
(e.g., by space subdivisions), but that a coordinated computation
is not always easy, that is, a distributed algorithm for spatial data
must include methodology to exploit non-local context and to
ensure final global consistency of the results.

In summary, this paper showed that even a very basic GIS,
as soon as it leaves the area of pure range and nearest neighbor
search, is not directly compatible with MapReduce and that
much more advanced structures from distributed computing
including triggers and distributed queues of varying types are
needed to implement distributed algorithms. An interesting
and ultimately useful research direction would be the question
whether there is a generalization of the strict independence
assumption of MapReduce allowing for a wider class of spatial
problems to be computed in the framework. In addition, we
wanted to highlight, that traditional HPC and big data processing
is a valid and interesting direction and that the community
should start to investigate the actual usefulness of cloud
computing given that HPC infrastructures are widely available
to science for free (based on a scheme of applications guided by
scientific excellence) while large-scale cloud computing is not yet
widely available and expensive. Finally, many algorithms from
spatial computing do not have rock-solid and system-agnostic
distributed implementations making it impossible to reliably
compare different approaches from an algorithmic or practical
point of view. Therefore, both the development of benchmark
dataset collections with a good workload coverage as well as the
design of a more abstract spatial computing framework seem to
be needed to combat the current fragmentation of contributions
given the fragmented computational environment.

AUTHOR CONTRIBUTIONS

MW is the only contributor to this manuscript.

REFERENCES

Apon, A., Ahalt, S., Dantuluri, V., Gurdgiev, C., Limayem, M., Bao Ngo, L.,

et al. (2010). High performance computing instrumentation and research

productivity in US universities. J. Inf. Technol. Impact 10, 87–98.

Barker, B. (2015). “Message passing interface (mpi),” in Workshop: High

Performance Computing on Stampede (Ithaca, NY), 262.

Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., et al.

(2008). Exascale Computing Study: Technology Challenges in Achieving Exascale

Systems. Defense Advanced Research Projects Agency Information Processing

Techniques Office (DARPA IPTO), Technical Report, 15.

Brewer, E. A. (2000). “Towards robust distributed systems,” in PODC

(Portland, OR), 7.

Chung, J.-Y., Ferguson, D., Wang, G., Nikolaou, C., and Teng, J. (1995).

“Goal-oriented dynamic buffer pool management for data base systems,” in

Proceedings of First IEEE International Conference on Engineering of Complex

Computer Systems, ICECCS’95 (Fort Lauderdale, FL), 191–198.

Couclelis, H. (1992). “People manipulate objects (but cultivate fields): beyond

the raster-vector debate in GI,” in Theories Methods of Spatio-Temporal

Reasoning in Geographic Space, eds A. U. Franki and C. U. Formentini (Pisa:

Springer), 65–77.

Dean, J., and Ghemawat, S. (2008). MapReduce: simplified data processing

on large clusters. Commun. ACM. 51, 107–113. doi: 10.1145/1327452.

1327492

Dean, J., and Ghemawat, S. (2010). MapReduce: a flexible data

processing tool. Commun. ACM. 53, 72–77. doi: 10.1145/1629175.

1629198

DeWitt, D. J., and Gray, J. (1992). Parallel Database Systems: The Future of High

Performance Database Processing. Wisconsin, WI: University of Wisconsin;

Madison, WI: Madison Department of Computer Sciences.

Dong, P., Yang, C., Rui, X., Zhang, L., and Cheng, Q. (2003). “An effective

buffer generation method in GIS,” in IGARSS 2003. 2003 IEEE International

Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.

03CH37477), Vol. 6 (Toulouse).

Frontiers in Big Data | www.frontiersin.org 10 December 2019 | Volume 2 | Article 44

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1629175.1629198
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Werner Parallel Processing Strategies for Big Geodata

Eldawy, A., andMokbel, M. F. (2015). “Spatialhadoop: a mapreduce framework for

spatial data,” in 2015 IEEE 31st International Conference on Data Engineering

(ICDE) (Seoul), 1352–1363.

Fagg, G. E.,Gabriel, E., Bosilca, G., Angskun, T., Chen, Z., Pjesivac-Grbovic, J.,

et al. (2004). “Extending the MPI specification for process fault tolerance

on high performance computing systems,” in Proceedings of the International

Supercomputer Conference (ICS) (Saint Malo), 12.

Feld, S., and Werner, M. (2013). “Efficient path planning involving equivalent

places,” in Proceedings of the 10. GI/ITG KuVS Fachgespräch Ortsbezogene

Anwendungen und Dienste (Jena), 13–23.

Garrett, C. K. (2017). An MPI Tutorial: Collectives and Point-to-Point

Communication. Los Alamos, NM: Los Alamos National Lab. (LANL).

Gelernter, H., Hansen, J., and Gerberich, C. (1960). A FORTRAN-compiled list-

processing language. J. ACM 7, 87–101. doi: 10.1145/321021.321022

Gilbert, S., and Lynch, N. (2002). Brewer’s conjecture and the feasibility of

consistent, available, partition-tolerant web services. ACM Sigact News 33,

51–59. doi: 10.1145/564585.564601

Goldberg, A. V., and Harrelson, C. (2005). “Computing the shortest path: a

search meets graph theory,” in Proceedings of the Sixteenth Annual ACM-SIAM

Symposium on Discrete Algorithms (Vancouver, BC), 156–165.

Hashem, I. A., T., Anuar, N. B., Gani, A., Yaqoob, I., Xia, F., and Khan, S. U.

(2016). MapReduce: review and open challenges. Scientometrics 109, 389–422.

doi: 10.1007/s11192-016-1945-y

Hershberger, J. E., and Snoeyink, J. (1992). Speeding up the Douglas-Peucker

Line-Simplification Algorithm. Vancouver, BC: University of British Columbia,

Department of Computer Science, 134–143.

Hesse, G., and Lorenz, M. (2015). “Conceptual survey on data stream processing

systems,” in 2015 IEEE 21st International Conference on Parallel and Distributed

Systems (ICPADS) (Melbourne, VIC), 797–802.

Hoefler, T., Dinan, J., Thakur, R., Barrett, B., Balaji, P., Gropp, W., et al. (2015).

Remote memory access programming in MPI-3. ACM Trans. Parallel Comput.

2:9. doi: 10.1145/2780584

Hudak, P. (1989). Conception, evolution, and application of functional

programming languages. ACM Comput. Surv. 21, 359–411.

doi: 10.1145/72551.72554

Hursey, J., Graham, R., L., Bronevetsky, G., Buntinas, D., Pritchard, H., and Solt,

D., G. (2011). “Run-through stabilization: an MPI proposal for process fault

tolerance,” in European MPI Users’ Group Meeting (Santorini), 329–332.

Kini, A., and Emanuele, R. (2014). “Geotrellis: adding geospatial capabilities to

spark,” in Spark Summit (San Francisco, CA).

Korte, B., Vygen, J., Korte, B., and Vygen, J. (2012). Combinatorial Optimization,

Vol. 2. Springer.

Laanait, N., Romero, J., Yin, J., Young, M. T., Treichler, S., Starchenko, V.,

et al. (2019). Exascale deep learning for scientific inverse problems. arXiv

preprint arXiv:1909.11150.

Lakshman, A., and Malik, P. (2010). Cassandra: a decentralized

structured storage system. ACM SIGOPS Operat. Syst. Rev. 44, 35–40.

doi: 10.1145/1773912.1773922

Langdale, G., and Lemire, D. (2019). Parsing gigabytes of JSON per second. arXiv

preprint arXiv:1902.08318. doi: 10.1007/s00778-019-00578-5

Liang, F., Feng, C., Lu, X., and Xu, Z. (2014). “Performance benefits of

DataMPI: a case study with BigDataBench,” in Workshop on Big Data

Benchmarks, Performance Optimization, and Emerging Hardware (Salt Lake

City, UT), 111–123.

Lippert, T., Eickermann, T., and Erwin, D. W. (2011). “PRACE: Europe’s

supercomputing research infrastructure,” in PARCO (Ghent), 7–18.

Maffini, G. (1987). Raster versus vector data encoding and handling: a

commentary. Photogramm. Eng. Remote Sens. 53, 1397–1398.

Open Geospatial Consortium (2007). Simple Feature Access, Part 1: Common

Architecture. Available online at: http://www.opengeospatial.org/standards/sfa

Roughgarden, T. (2019). Beyond worst-case analysis. Commun. ACM, 62, 88–96.

doi: 10.1145/3232535

Russell, A. (2008) “Turning spaces into places,” in AI Game ProgrammingWisdom,

Vol. 4 (Cengage Learning).

Schmid, F., and Richter, K.-F. (2006). “Extracting places from location data

streams,” in Inteirnational Workshop on Ubiquitous Geographical Information

Services (Munster).

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). “The hadoop

distributed file system,” inMSST (Incline Village, NV), 1–10.

Srinivasan, K., Satyajit, S., Behera, B. K., and Panigrahi, P. K. (2018). Efficient

quantum algorithm for solving travelling salesman problem: an IBM quantum

experience. arXiv preprint arXiv:1805.10928.

Strobl, C. (2008). “PostGIS,” in Encyclopedia of GIS, 891–898.

Tomlin, C. D. (1994).Map algebra: one perspective. Landsc. Urban Plann. 30, 3–12.

doi: 10.1016/0169-2046(94)90063-9

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

Wang, F., Ramamritham, K., and Stankovic, J. A. (1995). Determining redundancy

levels for fault tolerant real-time systems. IEEE Trans. Comput. 44, 292–301.

doi: 10.1109/12.364540

Werner, M. (2015). “GISCUP 2015: notes on routing with polygonal constraints,”

in SIGSPATIAL GIS CUP 15, in Conjunction With 23rd ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems (ACM

SIGSPATIAL 2015) (Washington, DC).

Whitman, R. T., Park, M. B., Ambrose, S. M., and Hoel, E. G. (2014).

“Spatial indexing and analytics on hadoop,” in Proceedings of the 22nd ACM

SIGSPATIAL International Conference on Advances in Geographic Information

Systems (Dallas, TX), 73–82.

Xie, D., Li, F., Yao, B., Li, G., Zhou, L., and Guo, M. (2016). “Simba: efficient in-

memory spatial analytics,” in Proceedings of the 2016 International Conference

on Management of Data (San Francisco, CA), 1071–1085.

Zambito, L. (2006). “The traveling salesman problem: a comprehensive survey,” in

Project for CSE, 4080.

Zhang, H., Chen, G., Ooi, B. C., Tan, K.-L., and Zhang, M. (2015).

In-memory big data management and processing: a survey. IEEE

Trans. Knowl. Data Eng. 27, 1920–1948. doi: 10.1109/TKDE.2015.

2427795

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Werner. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org 11 December 2019 | Volume 2 | Article 44

https://doi.org/10.1145/321021.321022
https://doi.org/10.1145/564585.564601
https://doi.org/10.1007/s11192-016-1945-y
https://doi.org/10.1145/2780584
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1007/s00778-019-00578-5
http://www.opengeospatial.org/standards/sfa
https://doi.org/10.1145/3232535
https://doi.org/10.1016/0169-2046(94)90063-9
https://doi.org/10.1109/12.364540
https://doi.org/10.1109/TKDE.2015.2427795
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Parallel Processing Strategies for Big Geospatial Data
	Introduction
	Selected Aspects of Spatial Computing Design
	Morphology of Spatial Data
	A Classification of Computational Systems
	Abstract Architectures
	Middleware and Framework

	Implementation Patterns and Strategies
	Application to Big Geospatial Data
	Conclusion
	Author Contributions
	References

