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Attribute-aware CF models aim at rating prediction given not only the historical rating

given by users to items but also the information associated with users (e.g., age),

items (e.g., price), and ratings (e.g., rating time). This paper surveys work in the past

decade to develop attribute-aware CF systems and finds that they can be classified into

four different categories mathematically. We provide readers not only with a high-level

mathematical interpretation of the existing work in this area but also with mathematical

insight into each category of models. Finally, we provide in-depth experiment results

comparing the effectiveness of the major models in each category.
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1. INTRODUCTION

Collaborative filtering is arguably the most effective method for building a recommender system. It
assumes that a user’s preferences regarding items can be inferred collaboratively from other users’
preferences. In practice, users’ past records regarding items, such as explicit ratings or implicit
feedback (e.g., binary access records), are typically used to infer similarity of taste among users
for the purposes of recommendation. In the past decade, matrix factorization (MF) has become
a widely adopted method of collaborative filtering. Specifically, MF learns a latent representation
vector for a user and an item and computes their inner products as the predicted rating. The learned
latent user/item factors are supposed to embed specific information about the user/item. That is,
two users with similar latent representations will have similar tastes regarding items with similar
latent vectors.

In the big data era, classical MF using only ratings suffers a serious drawback, as such a method
is unable to exploit other accessible information such as the attributes of users/items/ratings. For
instance, data could contain the location and time that a user rated an item. These rating-relevant
attributes, or contexts, could be useful in determining the scale of user liking for an item. The side
information or attributes relevant to users or items (e.g., the demographic information of users or
the item genre) can also reveal useful information. Such side information is particularly useful for
situations where the ratings of a user or an item are sparse, which is known as the cold-start problem
for recommender systems. Therefore, researchers have formulated attribute-aware recommender
systems (see Figure 1) aiming at leveraging not only the rating information but also the attributes
associated with ratings/users/items to improve the quality of recommendation.

Researchers have proposed different methods to extend existing collaborative filtering models
in recent years, such as factorization machines, probabilistic graphical models, kernel tricks, and
models based on deep neural networks. We notice that those papers can also be categorized based
on the type of attributes incorporated into the models. A class of recommender systems considers
relevant side information, such as age, gender, the occupation of users, or the expiration and
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FIGURE 1 | Interpretation of inputs, including ratings and attributes, in

attribute-aware collaborative filtering-based recommender systems.

price of items when predicting ratings (e.g., Adams et al., 2010;
Porteous et al., 2010; Fang and Si, 2011; Ning and Karypis, 2012;
Zhou et al., 2012; Park et al., 2013; Xu et al., 2013; Kim and
Choi, 2014; Lu et al., 2016; Zhao et al., 2016; Feipeng Zhao, 2017;
Guo, 2017; Yu et al., 2017; Zhou T. et al., 2017). On the other
hand, context-aware recommender systems (e.g., Shin et al., 2009;
Karatzoglou et al., 2010; Li et al., 2010b; Baltrunas et al., 2011;
Rendle et al., 2011; Hidasi and Tikk, 2012, 2016; Shi et al., 2012a,
2014a; Liu and Aberer, 2013; Chen et al., 2014; Nguyen et al.,
2014; Hidasi, 2015; Liu and Wu, 2015) enhance themselves by
considering the attributes appended to each rating (e.g., rating
time, rating location). Other terms may be used to indicate
attributes interchangeably such asmetadata (Kula, 2015), features
(Chen et al., 2012), taxonomy (Koenigstein et al., 2011), entities
(Yu et al., 2014), demographic data (Safoury and Salah, 2013),
categories (Chen et al., 2016), contexture information (Weng et al.,
2009), etc. The above setups all share the same mathematical
representation; thus, technically, we do not distinguish them in
this paper. That is, we regard whichever information is associated
with a user/item/rating as user/item/rating attributes, regardless
of its nature. Therefore, a CF model that takes advantage of
ratings as well as associated attributes is called an attribute-aware
recommender in this paper.

Note that the attribute-aware recommender systems discussed
in this paper are not equivalent to hybrid recommender systems.
The former treat additional information as attributes, while
the latter emphasize the combination of collaborative filtering-
based methods and content-based methods. To be more precise,
this review covers only works that assume unstructured and
independent attributes, either in binary or numerical format, for
each user, item, or rating. The reviewed models do not have
prior knowledge of the dependency between attributes, such as
the adjacent terms in a document or user relationships in a
social network.

This review covers more than one hundred papers in
this area in the past decade. We find that the majority of

the works propose an extension of matrix factorization to
incorporate attribute information in collaborative filtering. The
main contribution of this paper is to not only provide a
comprehensive review, but also provide a means to classify these
works into four categories: (I) discriminative matrix factorization,
(II) generative matrix factorization, (III) generalized factorization,
and (IV) heterogeneous graphs. For each category, we provide the
probabilistic interpretation of the models. The major distinction
of these four categories lies in their representation of the
interactions between users, items, and attributes. Discriminative
matrix factorization models extend the traditional MF by
treating the attributes as prior knowledge to learn the latent
representation of users or items. Generative matrix factorization
further considers the distributions of attributes and learns such,
together with the rating distributions. Generalized factorization
models view the user/item identity simply as a kind of attribute,
and various models have been designed for determining the low-
dimensional representation vectors for rating prediction. The last
category of models proposes to represent the users, items, and
attributes using a heterogeneous graph, where a recommendation
task can be cast into a link-prediction task on the heterogeneous
graph. In the following sections, we will elaborate on general
mathematical explanations of the four types of model designs and
discuss the similarities/differences among the models.

There have been four prior reviews (Adomavicius and
Tuzhilin, 2011; Verbert et al., 2012; Bobadilla et al., 2013; Shi
et al., 2014b) introducing attribute-aware recommender systems.
We claim three major differences between our work and the
existing papers. First, previous review papers mainly focused
on grouping different types of attributes and discussing the
distinctions of memory-based collaborative filtering and model-
based collaborative filtering. In contrast, we are the first that have
aimed at classifying the existing works based on the methodology
proposed instead of the type of data used. We further provide
mathematical connections for different types of models so that
the readers can better understand the spirit of the design of
different models as well as their technical differences. Second,
we are the first to provide thorough experiment results (seven
different models on eight benchmark datasets) to compare
different types of attribute-award recommendation systems. Note
that Bobadilla et al. (2013) is the only previous review work
with experimental results. However, for that study, experiments
were performed to compare different similarity measures in
collaborative filtering algorithms instead of directly verifying
the effectiveness of different attribute-aware recommender
systems. Finally, we cover the latest work on attribute-aware
recommender systems. We note that the existing review papers
do not include forty papers after 2015. In recent years, several
deep neural network-based solutions (Zhang et al., 2017) have
achieved state-of-the-art performance for this task.

Table 1 shows comparisons between our work and
previous reviews.

We will introduce the basic concepts behind recommender
systems in section 2, followed by formal analyses of attribute-
aware recommender systems in sections 3 and 4. A series of
experiments detailed in section 5 were conducted to compare the
accuracy and parameter sensitivity of six widely adopted models.
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TABLE 1 | Differences between previous works and our work.

Difference Previous works

(Adomavicius and Tuzhilin, 2011;

Verbert et al., 2012; Bobadilla

et al., 2013; Shi et al., 2014b)

Our work

Attribute

discussions

Categories and definitions

of diversified attributes

Mathematical formulations

of the most general attribute

vectors

Model

introduction

High-level summary

of text descriptions

Mathematical interpretation

of model design criteria

Comparative

experiments

For memory-based models in

Bobadilla et al. (2013);

no experiments in others

For seven model-based

models

on seven benchmark

datasets

Finally, section 6 concludes this review and identifies work to be
done in the future.

2. PRELIMINARIES

2.1. Problem Definition of Recommender
Systems
Recommender systems act as skilled agents to assist users to
conquer information overload while making selection decisions
over items by providing customized recommendations.Users and
items are general phrases denoting, respectively, entities actively
browsing and making choices and entities being selected, such as
goods and services.

Formally, recommender systems leverage one or more of the
following three information sources to discover user preferences
and generate recommendations: user-item interactions, side
information, and contexts. User-item interactions, or ratings, are
collected explicitly by prompting users to provide numerical
feedback on items and are acquired implicitly by tracking user
behaviors such as clicks, browsing time, or purchase history. The
data are commonly represented as a matrix that encodes the
preferences of users and is naturally sparse, since users normally
interact with a limited fraction of items. Side information is rich
information attached to an individual user or item that depicts
user characteristics such as education and job or item properties
such as description and product categories. Side information
can take diverse structures with rich meaning, ranging over
numerical status, texts, and images to videos, locations, and
networks. On the other hand, context refers to all the information
collected when a user interacts with an item, such as timestamps,
locations, or textual reviews. This contextual information usually
serves as an additional information source appended to the
user-item interaction matrix.

The goal of recommender systems is to disclose unknown
user preferences over items that users never interact with and
recommend the most preferred items to them. In practice,
recommender systems learn to generate recommendations
based on three types of approaches: pointwise, pairwise, and
listwise. The pointwise approach is the most common approach
and demands recommendation systems to provide accurate

numerical predictions on observed ratings. Items that a user
never interacts with are then sorted by their rating predictions,
and a number of items with the highest ratings are recommended
to the user. On the other hand, a pairwise approach seeks to
preserve the ordering of any pair of items based on ratings, while
in the listwise approach, recommender systems aim to preserve
the relative order of all rated items as a list for each user. The
pairwise approach and listwise approach are together considered
item rankings that only require recommender systems to output
the ordering of items but not ratings for individual items.

In most of the works covered in this paper, the task
of attribute-aware recommendation is defined as predicting
unknown ratings, that is: given Nu users, Ni items, a user-item
rating matrix R ∈ R

Nu×Ni with only a small portion Nr ratings
observed (i.e., there are a total of Nu × Ni − Nr missing ratings),
side information of usersX ∈ R

KX×Nu (assuming each user hasKX

attributes), side information of items Y ∈ R
KY×Ni , and contexts

Z ∈ R
KZ×Nr , the goal is to build a model that is capable of

predicting each of the unknown ratings in R.
Then, given any specific user, a recommender system

can make recommendations based on the predicted ratings.
Normally, items with higher ratings are recommended first.
Note that the dimension KX ,KY of side information attribute
matrix X,Y might be zero, denoting that there is no side
information about users or items. Likewise, if there is no
contextual information about user-item interactions, KZ will
be zero.

The core techniques or algorithms for realizing recommender
systems are generally classified into three categories: content-
based filtering, collaborative filtering, and hybrid filtering
(Bobadilla et al., 2013; Shi et al., 2014b; Isinkaye et al., 2015).
Content-based filtering generates recommendations based on
properties of items and user-item interactions. Content-based
techniques exploit domain knowledge and seek to transform item
properties in raw attribute structures such as texts, images, or
locations into numerical item profiles. Each item is represented
as a vector, and the matrix of side information of items Y

is constructed. A representation of each user is then created
by aggregating profiles of items that this user interacted with,
and a similarity measure is leveraged to retrieve a number of
the most similar items as recommendations. Note that content-
based filtering does not require information from any other
user to make recommendations. Collaborative filtering strives
to identify a group of users with similar preferences based on
past user-item interactions and recommends items preferred by
these users. Since discovering users with common preferences
is generally based on user-item ratings R, collaborative filtering
becomes the first choice when item properties are inadequate
in describing their content, such as movies or songs. Hybrid
filtering is the extension or combination of content-based
and collaborative filtering. Examples of this are building an
ensemble of the two techniques, using the item rating history
of collaborative filtering as part of the item profiles for content-
based filtering or extending collaborative filtering to incorporate
user characteristics X or item properties Y . This review focuses
on attribute-aware recommender systems that shed light not only
on user-item interactions R but also on the side information
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of users or items X,Y and contexts Z, which is a subset of
hybrid filtering.

2.2. Collaborative Filtering and Matrix
Factorization
Collaborative filtering (CF) has become the prevailing technique
for realizing recommender systems in recent years (Adomavicius
and Tuzhilin, 2005, 2011; Shi et al., 2014b; Isinkaye et al., 2015).
It assumes that the preferences users exhibit for items they
have interacted with can be generalized and used to infer their
preferences regarding items they have never interacted with by
leveraging the records of other users with similar preferences.
This section briefly introduces conventional CF techniques,
which assume the availability of only user-item interactions or
the rating matrix R. In practice, they are commonly categorized
into memory-based CF and model-based CF (Adomavicius and
Tuzhilin, 2005; Shi et al., 2014b; Isinkaye et al., 2015).

Memory-based CF directly exploits rows or columns in
the rating matrix R as representations of users or items and
identifies a group of similar users or items using a pre-defined
similarity measure. Commonly used similarity metrics include
the Pearson correlation, the Jaccard similarity coefficient, the
cosine similarity, or their variants. Memory-based CF techniques
can be divided into user-based and item-based approaches,
which identify either a group of similar users or similar items,
respectively. For user-based approaches, K nearest neighbors—
or the K most similar users—are extracted, and their preferences
or ratings regarding a target item are aggregated into a rating
prediction using similarities between users as weights. The rating
prediction for user u on item i, r̂ui, can be formulated as:

r̂ui =
1

Z

∑

v∈Uu

sim(u, v)rvi, (1)

where function sim(·) is a similarity measure, Z is the
normalization constant, and Uu is the set of similar users to user
u (Shi et al., 2014b). Rating predictions of item-based approaches
can be formulated in a similar way. The calculated pairwise
similarities between users or items act as the memory of the
recommender system since they can be saved for generating later
recommendations.

Model-based CF, on the other hand, takes the rating matrix R
to train a predictive model with a set of parameters θ to make
recommendations (Adomavicius and Tuzhilin, 2005; Shi et al.,
2014b). Predictive models can be formulated as a function that
outputs ratings for rating predictions or numerical preference
scores for item ranking given a user-item pair (u, i):

r̂ui = fθ (u, i). (2)

Model-based CF then ranks and selects the K items with the
highest ratings or scores rui as recommendations. Common core
algorithms for model-based CF involve Bayesian classifiers,
clustering techniques, graph-based approaches, genetic
algorithms, and dimension-reduction methods such as Singular
Value Decomposition (SVD) (Adomavicius and Tuzhilin, 2005,
2011; Bobadilla et al., 2013; Shi et al., 2014b; Isinkaye et al., 2015).

Over the last decade, a class of latent factor models, called matrix
factorization, has been popularized and is commonly adopted
as the basis of advanced techniques because of its success in the
development of algorithms for the Netflix competition (Koren
et al., 2009; Koren and Bell, 2011). In general, latent factor
models aim to learn a low-dimensional representation, or latent
factor, for each entity and combine the latent factors of different
entities using specific methods such as inner product, bilinear
map, or neural networks to make predictions. As one of these
latent factor models, matrix factorization for recommender
systems characterizes each user and item by a low-dimensional
vector and predicts ratings based on inner product.

Matrix factorization (MF) (Paterek, 2007; Koren et al., 2009;
Koren and Bell, 2011; Shi et al., 2014b), in the basic form,
represents each user u as a parameter vector wu ∈ R

K and each
item i as hi ∈ R

K , where K is the dimension of latent factors.
The prediction of user u’s rating or preference regarding item i,
denoted as r̂ui, can be computed using the inner product:

r̂ui = w⊤
u hi, (3)

which captures the interaction between them. MF seeks to
generate rating predictions that are as close as possible to those
recorded ratings. In matrix form, it can be written as finding
W,H such that R ≈ W⊤H where R ∈ R

Nu×Ni . MF is essentially
learning a low-rank approximation of the rating matrix, since the
dimension of representations K is usually much smaller than the
number of users Nu and items Ni. To learn the latent factors of
users and items, the system tries to findW,H that minimizes the
regularized square error on the set of entries of known ratings in
R [denoted as δ(R)]:

W∗, H∗ = argmin
W,H

∑

(u,i)∈δ(R)

1

2

(
rui − w⊤

u hi

)2
+

λW

2

Nu∑

u=1

‖wu‖
2
2

+
λH

2

Ni∑

i=1

‖hi‖
2
2, (4)

where λW and λH are regularization parameters. MF tends to
cluster users or items with similar rating configurations into
groups in the latent factor space, which implies that similar users
or items will be close to each other. Furthermore, MF assumes
that the rank of rating matrix R or the dimension of the vector
space generated by the rating configuration of users is far smaller
than the number of users Nu. This implies that each user’s rating
configuration can be obtained by a linear combination of ratings
from a group of other users since they are all generated by
K principal vectors. Thus, MF is in the spirit of collaborative
filtering, which is to infer a user’s unknown ratings by the ratings
of several other users.

Biased matrix factorization (Paterek, 2007; Koren et al.,
2009; Koren and Bell, 2011), an improvement of MF, models
the characteristics of each user and each item and the global
tendency that are independent of user-item interactions. The
obvious drawback of MF is that only user-item interactions w⊤

u hi
are considered in rating predictions. However, ratings usually
contain universal shifts or exhibit systematic tendencies with
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FIGURE 2 | PMF.

respect to users and items. For instance, there might be a group
of users inclined to give significantly higher ratings than others or
a group of items widely considered to be of high-quality and that
receive higher ratings. Besides, it is common that all ratings are
non-negative, which implies that the overall average might not
be close to zero and causes a difficulty for training small-value-
initialized representations. Due to the issues mentioned above,
biased MF augments MF rating predictions with linear biases
that account for user-related, item-related, and global effects. The
rating prediction is extended as follows:

r̂ui = µ + cu + di + w⊤
u hi, (5)

where µ, ci, dj are global bias, bias of user i, and bias of item j,
respectively. Biased MF then finds the optimal W,H, c, d,µ that
minimizes the regularized square error as follows:

W∗,H∗, c∗, d∗,µ∗

= argmin
W,H,c,d,µ

∑

(u,i)∈δ(R)

(rui − µ − cu − di − w⊤
u hi)

2 + λ
(
‖W‖2F

+‖H‖2F + ‖c‖22 + ‖d‖22
)
, (6)

where ‖W‖2F =
∑Nu

u=1 ‖wu‖
2
2 denotes the squared

Frobenius norm. The regularization parameter λ is tuned
by cross-validation.

Probabilistic matrix factorization (PMF, Figure 2 and Biased
PMF, Figure 3) (Salakhutdinov and Mnih, 2007, 2008) is a
probabilistic linear model with observed Gaussian noise and can
be viewed as a probabilistic extension of MF. PMF adopts the
assumption that users and items are independent and represents
each user or each item with a zero-mean spherical multivariate
Gaussian distribution as follows:

p
(
W | σ 2

W

)
=

Nu∏

u=1

N
(
wu | 0, σ 2

WI
)
, p
(
H | σ 2

H

)

FIGURE 3 | Biased PMF.

=

Ni∏

i=1

N
(
hi | 0, σ

2
HI
)
, (7)

where σ 2
W and σ 2

H are observed user-specific and item-specific
noise. PMF then formulates the conditional probability over the
observed ratings as

p
(
R | W,H, σ 2

)
=

∏

(i,j)∈δ(R)

N

(
rui | w

⊤
u hi, σ

2
R

)
, (8)

where δ(R) is the set of known ratings and N (x | µ, σ 2)
denotes the Gaussian distribution with mean µ and variance σ 2.
Learning in PMF is conducted by maximum a posteriori (MAP)
estimation, which is equivalent to maximizing the log of the
posterior distribution ofW,H:

log p
(
W,H | R, σ 2

R , σ
2
W , σ 2

H

)
= log p

(
R | W,H, σ 2

R

)

+ log p
(
W | σ 2

W

)
+ log p

(
H | σ 2

H

)
+ C

= −
1

2σ 2
R

∑

(u,i)∈δ(R)

(
rui − w⊤

u hi

)2
−

1

2σ 2
W

Nu∑

u=1

w⊤
u wu

−
1

2σ 2
H

Ni∑

i=1

h⊤i hi −
1

2

(
|δ(R)| log σ 2

R + NuK log σ 2
W

+NiK log σ 2
H

)
+ C (9)

where C is a constant independent of all parameters and K is the
dimension of user or item representations. With Gaussian noise
σ 2
R , σ

2
W , σ 2

H observed, maximizing the log-posterior is identical to
minimizing the objective function with the form:

∑

(u,i)∈δ(R)

1

2
(rui − w⊤

u hi)
2 +

λW

2

Nu∑

u=1

‖wu‖
2
2 +

λH

2

Ni∑

i=1

‖hi‖
2
2,

(10)
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FIGURE 4 | Model design flow of an attribute-aware collaborative

filtering-based recommender system. When reading ratings and attributes for

a proposed approach, we have to consider the sources and the types of

attributes or ratings, which could affect the recommendation goals and model

designs. The evaluation of a proposed recommender system depends heavily

on the chosen recommendation goals.

where λW = σ 2
R/σ 2

W , λH = σ 2
R/σ 2

H . Note that (10) has exactly
the same form as the regularized square error of MF, and gradient
descent or its extensions can then be applied in training PMF.

Since collaborative filtering techniques only consider rating
matrix R in making recommendations, they cannot discover
the preferences of users or for items with scant user-item
interactions. This problem is referred as the cold-start issue. In
section 3, we will review recommendation systems that extend CF
to incorporate contexts or rich side information regarding users
and items to alleviate the cold-start problem.

3. ATTRIBUTE-AWARE RECOMMENDER
SYSTEMS

3.1. Overview
Attribute-aware recommendation models are proposed to tackle
the challenges of integrating additional information from
user/item/rating. There are two strategies for designing attribute-
aware collaborative filtering-based systems. One direction is
to combine content-based recommendation models with CF
models, which can directly accept attributes as content to
perform recommendation. On the other hand, researchers also
try to extend an existing collaborative filtering algorithm such
that it leverages attribute information.

Rather, we will focus on four important factors in the design
of an attribute-aware recommender system in current research, as
shown in Figure 4. They are specifically discussed from sections
3.2 to 3.5. With respect to input data, attribute sources determine
whether an attribute vector is relevant to users, items, or ratings.
For example, age describes a user instead of an item; rating
time must be appended to ratings, representing when the rating
event occurred. Different models impose distinct strategies to
integrate attributes of specific sources. Additionally, a model may
constrain attribute types that can be used. For instance, graph-
based collaborative filtering realizations define attributes as node
types, which is not appropriate for numerical attributes. Rating

type is the factor that is emphasized by most model designers.
Besides usual numerical ratings, many recommendation models
concentrate on binary rating data, where the ratings represent
whether users interact with items. Finally, different recommender
systems emphasize different recommendation goals. One is to
predict the ratings from users to items through minimizing
the error between the predicted and real ratings. Another is
to produce the ranking among items given a user instead of
caring about the real rating value of a single item. We then
summarize the design categories of all the surveyed papers in a
table in section 3.6.

Throughout this paper, we will use X =
[
x1x2 . . . xN

]
∈

R
K×N to denote the attribute matrix, where each column xi

represents a K-dimensional attribute vector of entity i. Here,
an entity can refer to a user, an item, or a rating, determined
by attribute sources (discussed in section 3.2). If attributes are
limited categorically, then X ∈ {0, 1}K×N can be represented by
one-hot encoding (discussed in section 3.3). Note that our survey
does not include models designed specifically for a certain type
of attribute but rather covers models that are general enough to
accept different types of attributes. For example, Collaborative
Topic Regression (CTR) (Wang and Blei, 2011) extends matrix
factorization with Latent Dirichlet Allocation (LDA) to import
text attributes. Social Regularization (Ma et al., 2011a) specifically
utilizes user social networks to regularize the learning of matrix
factorization. Neithermodel is included since they are not general
enough to deal with general attributes.

3.2. Sources of Attributes
Attributes usually come from a variety of sources. Typically, side
information refers to the attributes appended to users or items.
In contrast, keyword contexts indicate the attributes relevant
to ratings. Ratings from the same user can be attached to
different contexts, such as “locations where users rate items.”
Recommendation models considering rating-relevant attributes
are usually called context-aware recommender systems. Although
contexts in some papers could include user-relevant or item-
relevant ones, in this paper, we tend to be precise and use the
term contexts only for rating-relevant attributes.

Sections 3.2.1 and 3.2.2, respectively introduce different
attribute sources. It is worth mentioning our observation as
follows. Even though some of the models we surveyed demand
side information while others require context information, we
discover that the two sets of attributes can be represented in
a unified manner and thus that both types of models can be
applied. We will discuss such unified representation in sections
3.2.3 and 3.2.4.

3.2.1. Side Information: User-Relevant or

Item-Relevant Attributes
In the surveyed papers, side information could refer to
user-relevant attributes, item-relevant attributes, or both.
User-relevant attributes determine the characteristics of a
user, such as “age,” “gender,” “education,” etc. In contrast,
item-relevant attributes describe the properties of an item, like
“movie running time,” “product expiration data,” etc. Below,
we discuss user-relevant attributes, but all the statements can
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be applied to item-relevant attributes. Given user-relevant
attributes, we can express them with matrix X ∈ R

K×Nu , where
Nu is the number of users. Each column of X corresponds
to K attribute values of a specific user. The most important
characteristic of user-relevant attributes is that they are assumed
unchanged with the rating process of a user. For example,
every rating from the same user shares the identical user-
relevant attribute “age.” In other words, even without any
ratings from a user in collaborative filtering, the user’s rating
behaviors on items could be still extracted from other users
that have similar user-relevant attribute values. Attribute-
aware recommender systems that address the cold-start user
problems (i.e., there are few ratings of a user) typically adopt
user-relevant attributes as their auxiliary information under
collaborative filtering. The attribute leverage methods are
presented in section 4.

Readers may ask why user-relevant attributes and item-
relevant attributes are not distinguished. Our observations
during this survey indicate that most of the recommendation
approaches have symmetric model designs for users and items. In
matrix factorization-based methods, rating matrix R is factorized
into two matrices W and H, referring to user and item latent
factors, respectively. However, matrix factorization does not
change its learning results if we exchange the rows and columns
of R. Despite the exchange of rows and columns, W and H

just exchange what they learn from ratings: W for items but H
for users.

On the basis of the above conclusions, some of the related
work could be further extended, in our opinion. If one attribute-
aware recommender system claims to be designed only for
user-relevant attributes, then readers could use a symmetric
model design for item-relevant attributes to obtain a more
general model.

3.2.2. Contexts: Rating-Relevant Attributes
Collaborative filtering-based recommender systems usually
define ratings as the interaction between users and items, though
it is likely to have more than one interaction. Since ratings
are still the focus of recommender systems, other types of
interactions, or rating-relevant attributes, are called contexts in
related work. For example, the “time” and the “location” that
a user rates an item are recorded with the occurrence of the
rating behavior. Rating-relevant attributes change with rating
behaviors, and thus they could offer auxiliary data on why a user
decides to give a rating to an item. Moreover, rating-relevant
attributes could capture the rating preference change of a user.
If we have time information appended to ratings, then attribute-
aware recommender systems could discover users’ preferences at
different times.

The format of rating-relevant attributes is potentially
more flexible than that of user-relevant or item-relevant
ones. In section 4.3, we will introduce a factorization-based
generalization of matrix factorization. In this class of attribute-
aware recommender systems, even the user and item latent
factors are not required to predict ratings; mere rating-
relevant attributes can do it, using their corresponding latent
factor vectors.

3.2.3. Converting Side Information to Contexts
Most attribute-aware recommender systems choose to leverage
one of the attribute sources. Some proposed approaches
specifically incorporate user- or item-relevant attributes, while
others are designed for rating-relevant attributes only. It seems
that existing approaches should be applied according to which
attribute sources they use. However, we argue that the usage
of attribute-aware recommender systems could be independent
of attribute sources if we convert them to each other using a
simple method.

Let X ∈ R
KX×Nu be the user-relevant attribute matrix, where

each column xu ∈ R
KX is the attribute set of user u. Similarly,

let Y ∈ R
KY×Ni ,Z ∈ R

KZ×Nr be the matrices of item-relevant
attributes and rating-relevant attributes, respectively. Note that
a column index of matrix Z is denoted by π(u, i), which is
associated with user u and item i. A simple concatenation with
respect to users and items can achieve the goal of expressing X or
Y as Z, as shown below:

z′π(u,i) =



zπ(u,i)

xu
yi


 ∈ R

KZ+KX+KY . (11)

Equation (11) implies that we just extend the current rating-
relevant attributes zπ(u,i) to z

′
π(u,i)

using the attributes xu, yi from

corresponding users or items. If training data do not consist of
zπ(u,i), xu or yi, we can eliminate the notations on the right-
hand side of (11). Advanced attribute selection or dimensionality
reduction methods could extract effective dimensions in z′

π(u,i)
,

but further improvement is beyond our scope. If missing attribute
values exist in z′

π(u,i)
, then we suggest directly filling these

attributes with 0. Please refer to section 3.2.4 for our reasoning.

3.2.4. Converting Contexts to Side Information
Following the topic in section 3.2.3, the reader may be curious
about how to reversely convert rating-relevant attributes to user-
or item-relevant ones. In the following paragraphs, we adopt the
same notations as in section 3.2.3. Due to symmetric designs
for X and Y , we demonstrate only the conversion from Z to X.
Concatenation is still the simplest way to express Z as a part of X:

x′u =
[
x⊤u z⊤

π(u,1)
z⊤
π(u,2)

. . . z⊤
π(u,i)

. . . z⊤
π(u,Ni)

]⊤
∈ R

KX+KZNi .

(12)

All the rating-relevant attributes z(u,1), z(u,2), . . . , z(u,Ni) from Ni

items must be associated with user u. xu is thus extended to x
′
u by

appending these attributes. Note that there are a large number of
missing attributes on the right-hand side of (12), sincemost items
are never rated by user u in real-world data. Eliminating missing
zπ(u,i), as what we do in section 3.2.3, reveals different dimensions
between two user-relevant attributes x′u, x

′
v. To our knowledge,

there is no user-relevant attribute-aware recommender system
allowing individual dimensions of user-relevant attributes.

Readers can use attribute imputation approaches to remove
missing values in x′u. However, we argue that simply filling
missing elements with 0 is sufficient for attribute-aware
recommender systems. We explain our reasons through the
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observations in section 3.3. For numerical attributes, (13)–(15)
show the various attribute modeling methods. If attributes X are
mapped through function f like (13) or (15), then zero attributes
in f will cause no mapping effect (except constant intercept of f ).
If attributes X are fitted by latent factors onto function f such
as (14), then typically in the objective design, we can skip the
objective computation of missing attributes. As for categorical
attributes, we exploit one-hot encoding to represent them with
numerical values. Categorical attributes can then be handled as
numerical attributes.

3.3. Attribute Types
In most cases, attribute-aware recommender systems accept a
real-value attribute matrix X. However, we notice that some
attribute-aware recommender systems require attributes to be
categorical, which is typically represented by binary encoding.
Specifically, this approach demands a binary attribute matrix
where attributes of value 1 are modeled as discrete latent
information in some way. A summary of the two types of
attributes is given in sections 3.3.1 and 3.3.2.

It is trivial to put one-hot categorical attributes into
numerical attribute-aware recommender systems, since
binary values {0, 1} ⊂ R. Nonetheless, putting numerical
attributes into categorical attribute-aware recommendation
systems runs the risk of losing attribute information (e.g.,
quantization processing).

3.3.1. Numerical Attributes
In our paper, numerical attributes refer to the set of real-valued
attributes, i.e., attribute matrix X ∈ R

K×N . We also classify
integer attributes (like movie ratings {1, 2, 3, 4, 5}) to numerical
attributes.Most of the relevant papersmodel numerical attributes
as their default inputs in recommender systems, as is common in
machine learning approaches.

There are three common model designs through which
numerical attributes X affect recommender systems. First, we can
mapX to latent factor space by function fθ with parameters θ , and
then fit the corresponding user or item latent factor vectors:

argmin
θ ,W

∥∥fθ (X)−W
∥∥ orW = fθ (X) for user-relevant attributes,

argmin
θ ,H

∥∥fθ (X)−H
∥∥ orH = fθ (X) for item-relevant attributes.

(13)

Second, like the reverse of (13), we define a mapping function fθ
such that mapped values from user or item latent factors can be
close to observed attributes:

argmin
θ ,W

∥∥fθ (W)− X
∥∥ or X = fθ (W) for user-relevant attributes,

argmin
θ ,H

∥∥fθ (H)− X
∥∥ or X = fθ (H) for item-relevant attributes.

(14)

Finally, numerical attributes can be put into function fθ ,
which is independent of existing user or item latent factors in

matrix factorization:

argmin
θ ,W,H

∥∥∥fθ (X)+W⊤H − R
∥∥∥ . (15)

Equations (13) and (14) are typically seen in user-relevant or
item-relevant attributes, while rating-relevant attributes are often
put into (15)-like formats. However, we emphasize that attribute-
aware recommender systems are not limited to these three
model designs.

3.3.2. Categorical Attributes
The values of a numerical attribute are ordered, while, on the
other hand, the values of a categorical attribute show no ordered
relations with each other. Given a categorical attribute Food ∈

{Rice, Noodles, Other}, the meanings of the values do not imply
which one is larger than the other. Thus, it is improper to give
categorical attributes ordered dummy variables, like Rice =

0, Noodles = 1, Other = 2, which could incorrectly imply Rice <

Noodles < Other, misleading machine learning models. The
most common solution to categorical attribute transformation is
one-hot encoding. We generate d-dimensional binary attributes
that correspond to the d values of a categorical attribute. Each
of the d binary attributes indicates the current value of a
categorical attribute. For example, we express attribute Food ∈

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}. These correspond to the original
values {Rice, Noodles, Other}. Since the values of the categorical
attribute are unique, the mapped binary attributes contain only a
1, and others, 0. Once all the categorical attributes are converted
to one-hot encoding expressions, we can apply them to existing
numerical attribute-aware recommender systems.

Certain relevant papers are suitable for, or even adversely
limited to, categorical attributes. Heterogeneous graph-based
methods (section 4.4) add new nodes (e.g., Rice, Noodles, Other)
to represent the values of categorical attributes. Following
the concept of latent factor in matrix factorization, some
methods propose to assign each categorical attribute
value a low-dimensional latent factor vector (e.g., each of
Rice, Noodles, Other has a latent factor vector w ∈ R

K). These
vectors are then jointly learned with classical user or item latent
factors in attribute-aware recommender systems.

3.4. Rating Types
Although we always define the term ratings as the interactions
between users and items in this paper, some previous works claim
a difference between explicit opinions and implicit feedback.
Taking the dataset MovieLens, for example, a user gives a rating
value in {1, 2, 3, 4, 5} toward an item. The value denotes the
explicit opinion, which quantifies the preference of the user for
that item. How recommendation methods handle such type of
ratings will be introduced in section 3.4.1.

Even though modeling explicit opinions is more beneficial
for future recommendation, such data is more difficult to gather
from users. Users may hesitate to show their preferences due to
privacy considerations, or they may not be willing to spend time
labeling explicit ratings. Instead, recommender systems are more
likely to collect implicit feedback, such as user browsing logs. Such
datasets record a series of binary values, each of which implies
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whether a user ever saw an item. User preferences behind implicit
feedback assume that the items seen by a user must be more
preferred by the user than those items that have never been seen.
We discuss this type of rating in detail in section 3.4.2.

Some numerical rating data are controversial, like “the
number of times a user clicks on the hyperlink to visit the
page of an item.” Some of the related work may define such
data as implicit feedback because the number of clicks is not
equivalent to explicit user preferences. However, in this paper,
we still identify them as explicit opinions. With respect to model
designs, related recommendation approaches do not differentiate
such data.

3.4.1. Explicit Opinions: Numerical Ratings
A numerical rating matrix r ∈ R expresses users’ opinions on
items. Actually, numerical ratings in real-world scenarios are
often represented by positive integers, such as MovieLens ratings
r ∈ {1, 2, 3, 4, 5}. Though there are no explicit statements in
related work, we suppose that a higher rating implies a more
positive opinion.

Since, in most datasets, the gathered rating values are
positive, there could be an unbiased learning problem. Matrix
factorization could not learn the rating bias due to the non-
zero mean of ratings E(r) 6= 0. Specifically, in vanilla matrix
factorization, we have regularization terms ‖W‖2F and ‖H‖2F for
user and item latent factor matrix W,H. That is, we require
the expected value E(W) = E(H) = 0 from the viewpoint of
corresponding normal distributions. Given rating rui of user u to
item i, and assuming the independence of W,H as probabilistic
matrix factorization does, we obtain the expected value of rating
estimate E(r̂ui) = E(w⊤

u hi) = 0 ∀ (u, i), which cannot closely fit
true ratings ifE(rui) 6= 0. Biasedmatrix factorization can alleviate
the problem by absorbing the non-zeromean with additional bias
terms. Besides, we are able to normalize all the ratings (subtract
the rating mean from every rating) to make matrix factorization
prediction unbiased. Real-world numerical ratings also have
finite maximum and minimum values. Some recommendation
models choose to normalize the ratings to range r ∈ [0, 1] and
then constrain the range of rating estimate sig(r̂) ∈ (0, 1) using
the sigmoid function sig(x) = 1

1+exp(−x)
.

3.4.2. Implicit Feedback: Binary Ratings
Today, more and more researchers are interested in the scenario
of binary ratings r ∈ {0, 1} (i.e., implicit feedback), since such
rating data are more accessible, for instance, “whether a user
browsed the information about an item.” Online services do not
require users to give explicit numerical ratings, which are often
harder to gather than binary ones.

We observe only positive ratings r = 1; negative ratings r = 0
do not exist in training data. Taking browsing logs as an example,
the data include the items that are browsed by a user (i.e., positive
examples). Items not being in the browsing data could imply that
they are either absolutely unattractive (r = 0) or just unknown
(r ∈ {0, 1}) to the user. One-class collaborative filtering methods
are proposed to address the problem. Such methods often claim
two assumptions:

• An item must be attractive to a user (r = 1) as long as the user
has seen the item.

• Since we cannot distinguish between the two reasons
(absolutely unattractive or just unknown) why an item is
unseen, such methods suppose that all the unseen items are
less attractive (r = 0). However, the number of unseen items is
practically much larger than that of seen items. To alleviate the
problem of learning bias toward r = 0 together with learning
speed, we exploit negative sampling, which sub-samples partial
unseen ratings for training.

To build an objective function satisfying the above assumptions,
we can choose either pointwise learning (section 3.5.1) or
pairwise learning (section 3.5.2). The Area Under the ROCCurve
(AUC), Normalized Discounted Cumulative Gain (NDCG),
Mean Average Precision (MAP), precision, and recall are
often used to justify the quality of recommender systems for
binary ratings.

3.5. Recommendation Goals
Any recommender system needs human intervention to set up
a training goal. Since collaborative filtering-based recommender
systems rely on ratings, the most straightforward goal is to infer
what rating will be given by a user for an unseen item, called
rating prediction. If the ratings of every item can be accurately
predicted, then for any user, a recommender system can just
sort and recommend items based on highest predicted rating.
In machine learning, such a goal for model-based recommender
systems can be described as pointwise learning. That is,
given a user-item pair, a pointwise learning recommendation
model directly minimizes the error of predicted ratings and
true ones. The related mathematical details are presented in
section 3.5.1.

However, in general, our ultimate goal is to recommend
unseen items to users without being concerned about how these
items are rated. All unseen items in pointwise learning are finally
ranked in descending order of their ratings. In other words,
what we truly care about is the order of ratings, but not the
true rating values. Also, some research papers figure out that
a low error of rating prediction is not always equivalent to a
high quality of recommended item lists. Recent model-based
collaborative filtering models have begun to set optimization
goals of item ranking. That is, for the same user, such models
maximize the differences between high-rated items and low-
rated ones in training data. The implementation of item ranking
includes pairwise learning and listwise learning in machine-
learning domains. Both learning ideas try to compare the
potentially related ranks between at least two items for the same
user. section 3.5.2 will present how to define optimization criteria
for item ranking.

3.5.1. Rating Prediction: Pointwise Learning
In the training stage, given a ground-truth rating r, a
recommender system needs to make a rating estimate r̂ that
is expected to predict r. Model-based collaborative filtering
methods (e.g., matrix factorization) build an objective function
to be optimized (either maximization or minimization) for
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recommendation goals. For numerical ratings r ∈ R (section
3.4.1) of users u to items i, we can minimize the error between
the ground truth and the estimate as follows:

argmin
r̂

∑

(u,i)|rui∈δ(R)

(
r̂ui − rui

)2
,

argmin
r̂

∑

(u,i)|rui∈δ(R)

(
sig(r̂ui)− rui

)2
. (16)

δ(R) is the set of training ratings, which are the non-missing
entries in rating matrix R. As mentioned in section 3.4.1, if
ground-truth ratings r are normalized to [0, 1] in data pre-
processing, then in (16) we can put sigmoid function sig(x) =

1
1+exp(−x)

∈ (0, 1) onto rating estimate r̂ that fits r more closely.

With respect to probability, (16) is equivalent to maximizing
normal likelihood:

argmax
r̂

∏

(u,i)|rui∈δ(R)

N
(
rui | µ = r̂ui, σ

2
)

argmax
r̂

∏

(u,i)|rui∈δ(R)

N
(
rui | µ = sig(r̂ui), σ

2
)

(17)

where N is the probability density function of a normal
distribution with mean µ = r̂ and variance σ 2 is a predefined
uncertainty between r and r̂. Taking (− log) on (17) will give
(16). Evidently the rating prediction problem can be addressed
by regression models over ratings R with both (16) and (17).

For binary ratings r ∈ {0, 1} (section 3.4.2), other than (16)
with the sigmoid function, such data can also be modeled as a
binary classification problem. Specifically, we model r = 1 as the
positive set and r = 0 as the negative set. A logistic regression (or
Bernoulli likelihood) is then built for rating prediction:

argmax
r̂

∏

(u,i)|1=rui∈δ(R)

Pr
(
r̂ui = 1

) ∏

(u,i)|0=rui∈δ(R)

Pr
(
r̂ui = 0

)

= argmax
r̂

∏

(u,i)|1=rui∈δ(R)

sig
(
r̂ui
)

︸ ︷︷ ︸
Positive set

∏

(u,i)|0=rui∈δ(R)

(
1− sig

(
r̂ui
))

︸ ︷︷ ︸
Negative set

. (18)

The optimizations of (16) and (17) are based on an evaluation
metric: Root Mean Squared Error (RMSE), whose formal
definition is as follows:

RMSE =

√√√√ 1

|δ(R)|

∑

(u,i)|rui∈δ(R)

(
r̂ui − rui

)2
. (19)

For convenience of optimization, the regressionmodels eliminate
the root function from RMSE, essentially optimizing the MSE.
Since the root function is monotonically increasing, minimizing
MSE is equivalent to minimizing RMSE (19).

Even though a recommender system elects to optimize
(18), the binary classification also attempts to minimize RMSE,
except that rating estimate r̂ is replaced with sigmoid-applied
version sig(r̂). Observing the maximization of (18), we obtain a
conclusion: sig(r̂) → 1 as r = 1, or sig(r̂) → 0 as r = 0. In other
words, (18) tries tominimize the error between sig(r̂) ∈ (0, 1) and
r ∈ {0, 1}, which has the same optimization goal as RMSE (19).

3.5.2. Item Ranking: Pairwise Learning and Listwise

Learning
This class of recommendation goal requires a model to correctly
rank two items in the training data, even though the model
could inaccurately predict the value of a single rating. Since
recommender systems are more concerned about item ranking
for the same user u than ranking for different users, existing
approaches sample item pairs (i, j) where rui > ruj, given fixed
user u (i.e., item i is ranked higher than item j for user u), and
then let rating estimate pair (r̂ui, r̂uj) learn to rank the two items
with r̂ui > r̂uj. In particular, we can use the sigmoid function

sig(x) = 1
1+exp(−x)

to model the probabilities in the pairwise

comparison likelihood:

argmax
r̂

∏

(u,i,j)|
{rui,ruj}⊆δ(R),

rui>ruj

Pr
(
r̂ui > r̂uj

)

= argmax
r̂

∏

(u,i,j)|
{rui,ruj}⊆δ(R),

rui>ruj

sig
(
r̂ui − r̂uj

)
. (20)

Taking (− log) on objective function (20) will give the log-loss
function. Bayesian Personalized Ranking (BPR) (Rendle et al.,
2009) first investigated the usage and the optimization of (20)
for recommender systems. BPR shows that (20) maximizes a
differentiable smoothness of the evaluation metric Area Under
the ROC Curve (AUC):

AUC =
1

T

∑

(u,i,j)|
{rui,ruj}⊆δ(R),

rui>ruj

I
(
r̂ui > r̂uj

)
, (21)

where T is the number of training instances {(u, i, j) | {rui, ruj} ⊆
δ(R), rui > ruj}. I(x) ∈ {0, 1} denotes an indicator function whose
output is 1 if and only if condition x is judged true. We show the
connection between (20) and (21) below:

argmax
r̂

(21) = argmax
r̂

∑

(u,i,j)|
{rui,ruj}⊆δ(R),

rui>ruj

I
(
r̂ui − r̂uj > 0

)

≈ argmax
r̂

∑

(u,i,j)|
{rui,ruj}⊆δ(R),
rui−ruj>0

sig
(
r̂ui − r̂uj

)

≈ argmax
r̂

∑

(u,i,j)|
{rui,ruj}⊆δ(R),
rui−ruj>0

log sig
(
r̂ui − r̂uj

)

= argmax
r̂

log
∏

(u,i,j)|
{rui,ruj}⊆δ(R),
rui−ruj>0

sig
(
r̂ui − r̂uj

)
. (22)

Under the condition of argmax, we approximate non-
differentiable indicator function I(x) by differentiable sigmoid
function sig(x). The maximization of (22) is equivalent to
optimizing (20) due to the monotonically increasing logarithmic
function. AUC evaluates whether all the predicted item pairs
follow the ground-truth rating comparisons in the whole
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item list. Our observations indicate that most of the reviewed
approaches based on item ranking build their objective functions
with AUC optimization. There are other choices of optimization
functions to approximately maximize AUC, such as hinge loss:

argmin
r̂

∑

(u,i,j)|
{rui,ruj}⊆δ(R),

rui>ruj

max
{
0, r̂uj − r̂ui

}
. (23)

In the domain of top-N recommendation, the item order
outside top-N ranks is unimportant for recommender systems.
Maximizing AUC could fail to recommend items, since AUC
gives the same penalty to all items. That is, a recommender
system could gain high AUC when it accurately ranks the
bottom-N items, but it is not beneficial for real-world
recommendation, since a user only pays attention to the top-
N items. Listwise evaluation metrics like Mean Reciprocal Rank
(MRR), Normalized Discounted Cumulative Gain (NDCG), and
Mean Average Precision (MAP) are proposed to give different
penalty values to item ranking positions. There have been
attempts to optimize differential versions of the above metrics,
such as CliMF (Shi et al., 2012b), SoftRank (Taylor et al., 2008),
and TFMAP (Shi et al., 2012a).

Our observations of the surveyed papers indicate that
recommender systems reading binary ratings (section 3.4.2)
prefer to optimize an item-ranking objective function. Compared
with numerical ratings (section 3.4.1), a single binary rating
reveals less information on a user’s absolute preference. Pairwise
learning methods can capture more information by modeling a
user’s relative preferences, because the number of rating pairs
rui = 1 > 0 = ruj is more than the number of ratings for
each user.

3.6. Summary of Related Work
Having introduced the above categories for attribute-aware
recommender systems, we list which category each publication
we have surveyed belongs to in Tables 2–4. We trace back
10 years to summarize the recent trends in attribute-aware
recommender systems.

4. COMMON MODEL DESIGNS OF
ATTRIBUTE-AWARE RECOMMENDER
SYSTEMS

In this section, we formally introduce the common attribute
integration methods of existing attribute-aware recommender
systems. If collaborative filtering approaches are modeled by user
or item latent factor structures like matrix factorization, then
attribute matrices become either the prior knowledge of the
latent factors (section 4.1) or the generation outputs from the
latent factors (section 4.2). On the other hand, some approaches
used are actually generalizations of matrix factorization (section
4.3). Besides, the interactions between users and items can be
recorded by a heterogeneous network, which can incorporate
attributes by simply adding attribute-representing nodes (section
4.4). The major distinction of these four categories lies in
the representation of the interactions of users, items, and

attributes. The discriminative matrix factorizationmodels extend
the traditional MF by learning the latent representation of users
or items from the input attribute prior knowledge. Generative
matrix factorization further considers the distributions of
attributes and learns such together with the rating distributions.
Generalized factorization models view the user/item identity
simply as a kind of attribute, and various models have been
designed for learning the low-dimensional representation vectors
for rating prediction. The last category of models propose to
represent the users, items, and attributes using a heterogeneous
graph, where a recommendation task can be cast into a link
prediction task on the heterogeneous graph. We classify each
model into these categories in Table 5.

4.1. Discriminative Matrix Factorization
Intuitively, the goal of an attribute-aware recommender system
is to import attributes to improve recommendation performance
(either rating prediction or item ranking). In the framework of
matrix factorization, an item is rated or ranked according to
the latent factors of the item and its corresponding users. In
order words, the learning of latent factors in classical matrix
factorization depends only on ratings. Thus, the learning may fail
due to a lack of training ratings. If we can regularize the latent
factors using attributes or make attributes determine how to rate
items then matrix factorization methods can be more robust to
compensate for the lack of rating information in the training
data, especially for those users or items that have very few ratings.
In the following, we choose to describe attribute participation
from probabilistic perspectives. Learning in Probabilistic Matrix
Factorization (PMF) tries to maximize the posterior probability
p(W,H | R) of two latent factormatricesW (for users) andH (for
items) given observed entries of training rating matrix R. Clearly,
attribute-aware recommender systems claim that we are given
an extra attribute matrix X. Then by Bayes’ rule, the posterior
probability can be shown as follows:

argmax
W,H

p (W,H | R,X)︸ ︷︷ ︸
Posterior

= argmax
W,H

p (R | W,H,X) p (W,H | X)

p (R | X)

= argmax
W,H

p (R | W,H,X) p (W,H | X)

= argmax
W,H

p (R | W,H,X)︸ ︷︷ ︸
Likelihood

p (W | X) p (H | X)︸ ︷︷ ︸
Prior

.

(24)

We eliminate the denominator p(R | X) since it does not
contain variables W,H for maximization. At the prior part, we
follow the independence assumptionW⊥H of PMF, though here
the independence is given attribute matrix X. Now, compared
with classical PMF, both likelihood p (R | W,H,X) and prior
p (W | X) p (H | X) could be affected by attributes X. Attributes
in the likelihood can directly help predict or rank ratings, while
attributes in the priors regularize the learning directions of
latent factors. Moreover, some current works assume additional
independence between attributes and the matrix factorization
formulation. We give graphical interpretation of Discriminative
Matrix Factorization in Figure 5. For ease of explanation,
we suppose that all the random variables follow a normal
distribution p(x) = N (x | µ, σ 2) with mean µ and variance
σ 2, or a multivariate normal distribution p(x) = N (x | µ,6)
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TABLE 2 | List of model categories.

Model Year
Attri. Source (3.2) Attri. Type (3.3) Rating type (3.4) Recom. Goal (3.5)

User Item Rating Num. Cat. Num. Bin. Pred. Rank.

(3.2.1) (3.2.1) (3.2.2) (3.3.1) (3.3.2) (3.4.1) (3.4.2) (3.5.1) (3.5.2)

CMF (Singh and Gordon, 2008) 2008 X X X X X

TBM (Gunawardana and Meek, 2008) 2008 X X X X

WNMCTF (Yoo and Choi, 2009) 2009 X X X X X

CAR-AUC (Shin et al., 2009) 2009 X X X X

Multi. Recom.a (Weng et al., 2009) 2009 X X X X

RLFM (Agarwal and Chen, 2009) 2009 X X X X X X

Unified Boltz (Gunawardana and Meek, 2009) 2009 X X X X

Matchbox (Stern et al., 2009) 2009 X X X X X X X

BMFSI (Porteous et al., 2010) 2010 X X X X X

wAMAN.b (Li et al., 2010a) 2010 X X X X

CACF (Lee et al., 2010) 2010 X X X X

PLRM (Li et al., 2010b) 2010 X X X X X

LAFM (Gantner et al., 2010) 2010 X X X X X

GPMF (Shan and Banerjee, 2010) 2010 X X X X

LFL (Menon and Elkan, 2010) 2010 X X X X

TF (Karatzoglou et al., 2010) 2010 X X X X

GWNMTF (Gu et al., 2010) 2010 X X X X X

DPMF (Adams et al., 2010) 2010 X X X X X

SoRec (Ma et al., 2011b) 2011 X X X X X

UGPMF (Du et al., 2011) 2011 X X X X

BMCF (Yoo and Choi, 2011) 2011 X X X X X

MCRI (Fang and Si, 2011) 2011 X X X X X

Hybrid.c (Menon et al., 2011) 2011 X X X X

YMR (Koenigstein et al., 2011) 2011 X X X X X

CAMF (Baltrunas et al., 2011) 2011 X X X X

GFREC (Lee et al., 2011) 2011 X X X X

FM (Rendle et al., 2011) 2011 X X X X

FIP (Yang et al., 2011) 2011 X X X X X

iTALS (Hidasi and Tikk, 2012) 2012 X X X X

HVBMCF (Yoo and Choi, 2012) 2012 X X X X X

LCR (Weston et al., 2012) 2012 X X X X

HierIntegModel (Lu et al., 2012) 2012 X X X X

SVDFeature (Chen et al., 2012) 2012 X X X X X X

SSLIM (Ning and Karypis, 2012) 2012 X X X X

KPMF (Zhou et al., 2012) 2012 X X X X X

TFMAP (Shi et al., 2012a) 2012 X X X X

CCMF (Bouchard et al., 2013) 2013 X X X X X

GFMF (Chen et al., 2013) 2013 X X X X X

KBMF (Gönen et al., 2013) 2013 X X X X X

HBMFSI (Park et al., 2013) 2013 X X X X X

DACR (Safoury and Salah, 2013) 2013 X X X X

Maxide (Xu et al., 2013) 2013 X X X X X

MF-EFS (Koenigstein and Paquet, 2013) 2013 X X X X

HeteroMF (Jamali and Lakshmanan, 2013) 2013 X X X X X

SoCo (Liu and Aberer, 2013) 2013 X X X X X

Numbers in parentheses refer to the sections of the current paper giving category elaborations. All the model names come from the proposing publications, except that we use title

abbreviations if the authors do not name their approaches. Long model names are given in the footnotes.
aMultidimensional Recommendation.
bwAMANWithSchKW.
cHybrid+LogReg++.
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TABLE 3 | List of model categories.

Model Year
Attri. Source (3.2) Attri. Type (3.3) Rating type (3.4) Recom. Goal (3.5)

User Item Rating Num. Cat. Num. Bin. Pred. Rank.

(3.2.1) (3.2.1) (3.2.2) (3.3.1) (3.3.2) (3.4.1) (3.4.2) (3.5.1) (3.5.2)

C-CTR-SMF2 (Chen et al., 2014) 2014 X X X X X X

VBMFSI-CA (Kim and Choi, 2014) 2014 X X X X X

IMC (Natarajan and Dhillon, 2014) 2014 X X X X X

CARS2 (Shi et al., 2014a) 2014 X X X X X X

LLR (Ji et al., 2014) 2014 X X X X

GBFM (Cheng et al., 2014) 2014 X X X X

SCF (Sedhain et al., 2014) 2014 X X X X

LCE (Saveski and Mantrach, 2014) 2014 X X X X

CSEL (Zhang et al., 2014) 2014 X X X X X

GPFM (Nguyen et al., 2014) 2014 X X X X X X

NCRPD-MF (Hu et al., 2014) 2014 X X X X X

HeteRec (Yu et al., 2014) 2014 X X X X

CAPRF (Gao et al., 2015) 2015 X X X X X

mSDA-CF (Li et al., 2015) 2015 X X X X X

BIMC (Shin et al., 2015) 2015 X X X X X

Convex FM (Blondel et al., 2015) 2015 X X X X

CDL (Wang et al., 2015) 2015 X X X X

LightFM (Kula, 2015) 2015 X X X X X

DCT (Barjasteh et al., 2015) 2015 X X X X X

GFF (Hidasi, 2015) 2015 X X X X

CALR (Liu and Wu, 2015) 2015 X X X X X

VBPR (He and McAuley, 2016) 2016 X X X X

GFF (Hidasi and Tikk, 2016) 2016 X X X X

PNFM (Blondel et al., 2016) 2016 X X X X

TCRM (Kasai and Mishra, 2016) 2016 X X X X

PCFSI (Zhao et al., 2016) 2016 X X X X

CKE (Zhang et al., 2016) 2016 X X X X

CRAE (Wang et al., 2016) 2016 X X X X

SIMMCSI (Lu et al., 2016) 2016 X X X X X

DSR (Zheng et al., 2016) 2016 X X X X X

ALMM (Chou et al., 2016) 2016 X X X X

FFM (Juan et al., 2016) 2016 X X X X X X

ReMF (Yang et al., 2016) 2016 X X X X

TAPER (Ge et al., 2016) 2016 X X X X

LPRRM-CF (Chen et al., 2016) 2016 X X X X

HeteRS (Pham et al., 2016) 2016 X X X X X X

MVM (Cao et al., 2016) 2016 X X X X

SQ (Yu et al., 2017) 2017 X X X X X

LoCo (Sedhain et al., 2017) 2017 X X X X

aSDAE (Dong et al., 2017) 2017 X X X X X

CoEmbed (Guo, 2017) 2017 X X X X X

HMF (Brouwer and Liò, 2017) 2017 X X X X X

DeepFM (Guo et al., 2017) 2017 X X X X X

LDRSSI (Feipeng Zhao, 2017) 2017 X X X X

CGSI (Zhou T. et al., 2017) 2017 X X X X X X X

The numbers in parentheses refer to the sections of the current paper giving category elaborations. All the model names come from the proposing publications, except that we use title

abbreviations if the authors do not name their approaches. Long model names are given in the footnotes.
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TABLE 4 | List of model categories.

Model Year
Attri. Source (3.2) Attri. Type (3.3) Rating Type (3.4) Recom. Goal (3.5)

User Item Rating Num. Cat. Num. Bin. Pred. Rank.

(3.2.1) (3.2.1) (3.2.2) (3.3.1) (3.3.2) (3.4.1) (3.4.2) (3.5.1) (3.5.2)

Func. Embed.a (Chen et al., 2017) 2017 X X X X X X

CVAE (Li and She, 2017) 2017 X X X X

entity2rec (Palumbo et al., 2017) 2017 X X X X

NFM (He and Chua, 2017) 2017 X X X X

MFM (Lu et al., 2017) 2017 X X X X

Focused FM (Beutel et al., 2017) 2017 X X X X

GB-CENT (Zhao et al., 2017) 2017 X X X X

CML (Hsieh et al., 2017) 2017 X X X X

ATRank (Zhou C.et al., 2017) 2018 X X X X

Div-HeteRec (Nandanwar et al., 2018) 2018 X X X X X X

HeteLearn (Jiang et al., 2018) 2018 X X X X X X

RNNLatentCross (Beutel et al., 2018) 2018 X X X X

DDL (Zhang et al., 2018) 2018 X X X X

The numbers in parentheses refer to the sections of the current paper giving category elaborations. All the model names come from the proposing publications, except that we use title

abbreviations if the authors do not name their approaches. Long model names are given in the footnotes.
aFunctional Embedding.

TABLE 5 | Classification of attribute-aware recommender systems.

DMF Similarity Adams et al., 2010; Gu et al., 2010; Li et al., 2010a; Du

et al., 2011; Zhou et al., 2012; Gönen et al., 2013; Chen

et al., 2014; Barjasteh et al., 2015; Yu et al., 2017

Linear Menon and Elkan, 2010; Porteous et al., 2010; Menon

et al., 2011; He and McAuley, 2016; Zhao et al., 2016;

Feipeng Zhao, 2017; Guo, 2017

Bilinear Agarwal and Chen, 2009; Stern et al., 2009; Li et al.,

2010b; Yang et al., 2011; Chen et al., 2012; Park et al.,

2013; Xu et al., 2013; Kim and Choi, 2014; Natarajan

and Dhillon, 2014; Shin et al., 2015; Chou et al., 2016;

Lu et al., 2016

GMF Multiple

Matrix

Factorization

Singh and Gordon, 2008; Shan and Banerjee, 2010;

Fang and Si, 2011; Ma et al., 2011b; Yoo and Choi,

2011; Bouchard et al., 2013; Saveski and Mantrach,

2014; Gao et al., 2015; Ge et al., 2016; Brouwer and

Liò, 2017; Sedhain et al., 2017

Deep

Neural

Networks

Li et al., 2015; Wang et al., 2015, 2016; Zhang et al.,

2016; Dong et al., 2017; Li and She, 2017

GF TF Karatzoglou et al., 2010; Hidasi and Tikk, 2012; Hidasi,

2015; Kasai and Mishra, 2016; Zhou T. et al., 2017

FM Rendle et al., 2011; Cheng et al., 2014; Nguyen et al.,

2014; Blondel et al., 2015, 2016; Cao et al., 2016; Juan

et al., 2016; Guo et al., 2017; He and Chua, 2017; Lu

et al., 2017

HG Yu et al., 2014; Zheng et al., 2016; Palumbo et al., 2017

with mean vector µ and covariance matrix 6. Theoretically, the
following models accept other probability distributions.

We further introduce the sub-categories below.

4.1.1. Attributes in a Linear Model
This is the generalized form to utilize attributes in this category.
Given the attributes, a weight vector is applied to perform

FIGURE 5 | Graphical interpretation of a discriminative probabilistic matrix

factorization whose attributes X,Y,Z are given for ratings and latent factors.

User and item-relevant attributes X,Y could affect the generation of latent

factors W,H, or ratings R, while rating-relevant attributes Z typically determine

the rating prediction R. The models of this class may eliminate some of the

gray arrows to imply additional independence assumptions between attributes

and other factors.

linear regression together with classical matrix factorization
w⊤
u hi. Its characteristics in mathematical form are shown in

likelihood functions:

argmax
W,H,θ

∏
(u,i)|rui∈δ(R) N

(
rui|µR=w⊤

u hi+α(xu)+β(yi)+γ (zπ(u,i)),σ
2
R

)
︸ ︷︷ ︸

Likelihood

p(W | X)p(H | Y)︸ ︷︷ ︸
Prior

; , (25)
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where θ = {α,β , γ }, while δ(R) denotes the non-missing
ratings in the training data, and π(u, i) is the column index
corresponding to user u and item i. X ∈ R

K×Nu ,Y ∈

R
K×Ni ,Z ∈ R

K×|δ(R)| denote attribute matrices relevant to
user, item, and ratings, respectively, while α,β , γ are their
corresponding transformation functions, where attribute space
is mapped toward the rating space identical with w⊤

u hi. Most
early models select simple linear transformations, i.e., α(x) =

a⊤x,β(y) = b⊤y, γ (z) = c⊤z, which has shown a boost in
performance, but recent works consider neural networks for
non-linear α,β , γ mapping functions. A simple linear regression
model can be expressed as a likelihood function of normal
distribution N (r | µ, σ 2) with mean µ and variance σ 2. Ideally,
the distributions of latent factorsW,H will have prior knowledge
from attributes X,Y , but we have not yet observed an approach
aiming at designing attribute-aware priors as the last two terms
of (25).

• Bayesian Matrix Factorization with Side Information

(BMFSI) (Porteous et al., 2010) is an example in this
sub-category. On the basis of Bayesian Probabilistic
Matrix Factorization (BPMF) (Salakhutdinov and Mnih,
2008), BMFSI uses a linear combination like (25) to
introduce attribute information to rating prediction. It is
formulated as:

argmax
W,H,θ

p(R | W,H, θ)︸ ︷︷ ︸
Likelihood

p(W)p(H)︸ ︷︷ ︸
Priors

= argmax
W,H,θ

∏

(u,i)|rui∈δ(R)

N

(
rui | w

⊤
u hi + a⊤u xu + b⊤i yi, σ

2
R

)

︸ ︷︷ ︸
Matrix factorization using attributes

∏

u

N
(
wu | µu,6u

)∏

i

N
(
hi | µi,6i

)

︸ ︷︷ ︸
Regularization

, (26)

where θ = {a, b} and δ(R) is the set of training ratings.
The difference from (25) is that rating attributes z will
be concatenated with either xu or yu, and thus we drop
independent weight variable c in BMFSI. We ignore other
attribute-free designs of BMFSI (e.g., the Dirichlet process).

4.1.2. Attributes in a Bilinear Model
This is a popular method when two kinds of attributes (usually
user and item) are provided. Given user attribute matrix X
and item attribute matrix Y , a matrix A is used to model the
relation between them. The mathematical form can be viewed
as follows:

argmax
W,H,θ

∏

(u,i)|rui∈δ(R)

N

(
rui | µR = α(xu, yi)+ β(xu)+ γ (yi)+ b, σ 2

R

)

︸ ︷︷ ︸
Likelihood

p(W|X)p(H|Y)︸ ︷︷ ︸
Prior

, (27)

where θ = {α,β , γ } are transformation functions from attribute
space to rating space. In particular, function α learns the interior

dependency between user attributes x and item attributes y,
while β and γ find the extra factors by which x or y itself
affects the rating result. Compared with (25), the advantage
of (27) is that it further considers a set of rating factors that
come from the intersections between user and item attributes.
However, such a modeling approach cannot work if either
user attributes or item attributes are not provided by training
data. Prior studies commonly select a simple linear form, called
bilinear regression:

µR = α(xu, yi)+ β(xu)+ γ (yi)+ b

= x⊤u Ayi + c⊤u xu + d⊤i yi + b

= x̃⊤u Ã̃yi. (28)

In fact, as mentioned in Lu et al. (2016), c⊤u xu + d⊤i yi + b

can be absorbed into x⊤u Ayi and written in the form x̃⊤u Ã̃yi by
appending a new dimension whose value is fixed to 1 for each x

and y.
Works in this category differ on whether the bilinear term

is explicit or implicit. Also, the latent factor matrices W,H are
inherently included in the bilinear form. Specifically, (28) implies
that the form of the dot product of two linear-transformed
attributes wu = Sxu and hi = Tyi since it can be reformed
as w⊤

u hi = x⊤u (S
⊤T)yi where A = S⊤T. Some works such as

the Regression-based Latent Factor Model (see below) choose to
softly constrain wu ≈ Sxu and hi ≈ Tyi using priors p(W | X)
and, p(H | Y).

• Matchbox (Stern et al., 2009) (Figure 6). Let X,Y ,Z be the
attribute matrices with respect to users, items, and ratings,
respectively. Matchbox assumes a rating is predicted by the
linear combinations of X,Y ,Z:

argmax
A,B,c

p(R | A,B, c,X,Y ,Z)︸ ︷︷ ︸
Likelihood

p(c)p(A)p(B)︸ ︷︷ ︸
Prior

= argmax
A,B,c

∏

(u,i)|rui∈δ(R)

N

(
rui | x

⊤
u A

⊤Byi + c⊤zπ(u,i), σ
2
R

)

︸ ︷︷ ︸
Matrix factorization using attributes

∏
m N(cm|µcm,σ

2
cm)

∏
(u,k) N

(
auk|µAuk ,σ

2
Auk

)∏
(i,l) N

(
bil|µBil ,σ

2
Bil

)
︸ ︷︷ ︸

Regularization

(29)

where δ(R) is the set of non-missing entries in rating matrix
R. xu, yi represents the attribute set of user u or item i. z(u,i)
denotes the rating-relevant attributes associated with user u
and item i. Note that (29) defines latent factorsW = AX,H =

BY , and then we just have to learn the shared weight matrices
A,B. The prior distributions of A,B, c are further factorized,
which assumes that all the weight entries in these matrices are
independent of each other.

• Friendship-Interest Propagation (FIP) (Yang et al., 2011)
(Figure 7). Following the notations from the previous RLFM
introduction, FIP considers two types of attribute matrices:
X and Y . Based on vanilla matrix factorization, FIP encodes
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FIGURE 6 | Matchbox.

FIGURE 7 | FIP.

attribute information by modeling the potential correlations
between X and Y :

argmax
W,H,A,B,C

p(R | W,H,C,X,Y)︸ ︷︷ ︸
Likelihood

p(W | A,X)p(H | B,Y)︸ ︷︷ ︸
Prior

= argmax
W,H,A,B,C

∏

(u,i)|rui∈δ(R)

N

(
rui | w

⊤
u hi + x⊤u Cyi, σ

2
R

)

︸ ︷︷ ︸
Matrix factorization using attributes

(30)
∏

u

N (wu | Axu,6W)
∏

i

N
(
hi | Byi,6H

)

︸ ︷︷ ︸
Regularization using attributes

where matrix C forms the correlations between attribute
matrices X and Y .

• Regression-based Latent Factor Model (RLFM) (Agarwal
and Chen, 2009) (Figure 8). Given three types of attribute

FIGURE 8 | RLFM.

FIGURE 9 | KPMF.

matrices: user-relevant X, item-relevant Y , and rating-relevant
Z, RLFM models them in different parts of biased matrix
factorization. X,Y serve as the hyperparameters of latent
factors, while Z joins the regression framework to predict
ratings together with latent factors. RLFM can be written as:

argmax
W,H,θ

p(R | W,H, c, d, γ ,Z)︸ ︷︷ ︸
Likelihood

p(W | A,X)p(H | B,Y)p(c | α,X)p(d | β ,Y)︸ ︷︷ ︸
Prior

= argmax
W,H,θ

∏

(u,i)|rui∈δ(R)

N

(
rui | w

⊤
u hi + cu + di + γ⊤zπ(u,i), σ

2
R

)

︸ ︷︷ ︸
Matrix factorization using attributes

∏
u N (wu|Axu ,6W )N

(
cu|α

⊤xu ,σ
2
c

)∏
i N (hi|Byi ,6H)N

(
di|β

⊤yi ,σ
2
d

)

︸ ︷︷ ︸
Regularization using attributes

(31)

where θ = {c, d,A,B,α,β , γ } and δ(R) is the set of non-
missing ratings for training. Biased matrix factorization adds
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two vectors c, d to learn the biases for each user or item.
Parameters A,B,α,β , γ map attributes with latent factors (for
X,Y) or rating prediction (for Z).

4.1.3. Attributes in a Similarity Matrix
In this case, a similarity matrix that measures the closeness
of attributes between users or between items is presented.
Given the user attribute matrix X ∈ R

D×Nu , where Nu is
the number of users and D is the user attribute dimension, a
similarity matrix S ∈ R

Nu×Nu is computed. There are many
metrics for similarity calculation, such as Euclidean distance and
kernel functions. The similarity matrix is then used for matrix
factorization or other solutions. The special quality of this case
is that human knowledge is involved in determining how the
interactions between attributes should be modeled. One example
is Kernelized Probabilistic Matrix Factorization, which utilizes
both a user similarity matrix and item a similarity matrix.

• Kernelized Probabilistic Matrix Factorization (KPMF)

(Zhou et al., 2012) (Figure 9). Let K,Nu,Ni be the number of
latent factors, users, and items. Given user-relevant attribute
matrix X ∈ R

K×Nu or item-relevant attribute matrix Y ∈

R
K×Ni , we can always obtain a similarity matrix SX ∈

R
Nu×Nu or SY ∈ R

Ni×Ni where each entry stores a pre-
defined similarity between a pair of users or items. KPMF
then formulates the similarity matrix as the prior of its
corresponding latent factor matrix:

argmax
W,H

p(R | W,H)︸ ︷︷ ︸
Likelihood

p(W | X)p(H | Y)︸ ︷︷ ︸
Prior

= argmax
W,H

∏

(u,i)|rui∈δ(R)

N

(
rui | w

⊤
u hi, σ

2
R

)

︸ ︷︷ ︸
Matrix factorization∏

k

N

(
wk | 0, SX

)∏

l

N

(
hl | 0, SY

)
.

︸ ︷︷ ︸
Regularization using attributes

(32)

Here, we use subscripts wu to denote the u-th column vector
of a matrix W, while superscripts wk imply the k-th row
vector of W. Intuitively, the similarity matrices control the
learning preferences of user or item latent factors. If two users
have similar user-relevant attributes (i.e., they have a higher
similarity measure in SX), then their latent factors are forced
to be closer during the matrix factorization learning.

Neural Collaborative Filtering (He et al., 2017) (NCF) is a
model that combines a linear structure and a neural network.
He et al. (2018) further improves it by using CNN on top
of the outer product of user and item embeddings. However,
the authors only used user and item one-hot encoding vectors
as their input. Though they mentioned that it could be easily
modified to accommodate additional attributes, it was not clearly
demonstrated. Therefore, we do not include it in either of the
categories since it is beyond the scope of our survey (though
it is similar to Discriminative Matrix Factorization). We still
include NCF as a baseline model in the empirical comparison

section, as well as including a slight modification of the model
that takes additional attributes as inputs as a competitor. A
brief introduction of the model and its variance will be given in
section 5.1.1.

4.2. Generative Matrix Factorization
In Probabilistic Matrix Factorization (PMF), ratings are
generated by the interactions of user or item latent factors.
However, the PMF latent factors are not limited to rating
generation. We can also generate attributes from latent factors.
Mathematically, using Bayes’ rule, we maximize a posteriori
as follows:

argmax
W,H

p (W,H | R,X)︸ ︷︷ ︸
Posterior

= argmax
W,H

p (R,X | W,H) p (W,H)

p (R,X)

= argmax
W,H

p (R,X | W,H) p (W,H)

= argmax
W,H

p (R | W,H) p (X | W,H)︸ ︷︷ ︸
Likelihood

p (W) p (H)︸ ︷︷ ︸
Prior

. (33)

where p(R,X) does not affect the posterior maximization. We
again assume independence R⊥X given latent factors W,H in
(33), which is commonly adopted in related work. Furthermore,
X may share either latent factors W [i.e., p(X | W)] or H [i.e.,
p(X | H)] with R but not both due to matrix factorization
having more generalization capability. We give the graphical
interpretation of Generative Matrix Factorization in Figure 10.

The following relevant works are classified in this category.
For simplicity, all the probabilities follow a normal distribution,
i.e, p(x) = N (x | µ, σ 2) (i.e., squared loss objective) with mean
µ and variance σ 2 (or mean vector µ and covariance matrix

FIGURE 10 | Graphical interpretation of generative probabilistic matrix

factorization, whose attributes X,Y,Z, together with ratings, are generated or

predicted by latent factors. User and item-relevant attributes X,Y could be

generated by corresponding latent factors W,H, respectively. Rating-relevant

attributes Z are likely to result from both W and H. For models of this class,

some of the gray arrows are removed to represent their additional

independence assumptions about attribute generation.
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6 for multivariate normal distributions). However, the example
models are never restricted to within normal distributions.

There are two different branches in this direction. On the one
hand, earlier works again use the matrix factorization technique
to generate attributes from user or item latent factors. This can
be seen as a linear mapping between latent factors and attributes.
On the other hand, with the help of deep neural networks, recent
works combine matrix factorization and deep autoencoders to
realize non-linear mappings for attribute generation. We will
introduce them in the following sections.

4.2.1. Attributes in Multiple Matrix Factorization
Similar to PMF R ≈ W⊤H for rating distributions; attributes
distributions are modeled using another matrix factorization
form. Given user attribute matrix X, item attribute matrix Y ,
and rating attribute matrix Z, they can be factorized as X ≈
A⊤W,Y ≈ B⊤H of, low rank. Specifically, its objective function
is written as:

argmax
W,H,A,B

∏
(u,i)|rui∈δ(R) N

(
rui|µR=w⊤

u hi ,σ
2
R

)∏
(j,u) N

(
xju|a

⊤
j wu ,σ

2
X

)∏
(v,i) N

(
yvi|b

⊤
v hi ,σ

2
Y

)

︸ ︷︷ ︸
Likelihood

∏

(u,i)|rui∈δ(R)

N

(
zui | w

⊤
u Chi, σ

2
Z

)

︸ ︷︷ ︸
Likelihood

p(W)p(H)︸ ︷︷ ︸
Prior

, (34)

where δ(R) denotes the non-missing entries of matrix R. The
insight of (34) is to share the latent factors W,H in multiple
factorization tasks. W is shared with user attributes, while H is
shared with item attributes. Z requires the sharing of both W

andH due to user- and item-specific rating attributes. Therefore,
the side information of X,Y , and Z can indirectly transfer
to rating prediction. Auxiliary matrices A,B, and C learn the
mappings between latent factors and attributes. With respect to
the mathematical form of matrix factorization, the expectation
of feature values is linearly correlated with its corresponding
latent factors.

• Collective Matrix Factorization (CMF) (Singh and Gordon,
2008) (Figure 11). Here, we introduce a commonmodel in this
sub-category. The CMF framework relies on the combination
of multiple matrix factorization objective functions. CMF first
builds the MF for rating matrix R. User- and item-relevant
attribute matrices X,Y are then appended to the matrix
factorization objectives. Overall, we have:

argmax
W,H,A,B

p(R | W,H)p(X | W,A)p(Y | H,B)︸ ︷︷ ︸
Likelihood

p(W)p(H)p(A)p(B)︸ ︷︷ ︸
Prior

= argmax
W,H,A,B

∏

(u,i)|rui∈δ(R)

N

(
rui | w

⊤
u hi, σ

2
R

)

︸ ︷︷ ︸
Matrix factorization of R

∏

(j,u)

N

(
xju | a⊤j wu, σ

2
X

)

︸ ︷︷ ︸
Matrix factorization of X

∏

(v,i)

N

(
yvi | b

⊤
v hi, σ

2
Y

)

︸ ︷︷ ︸
Matrix factorization of Y
∏

u N (wu|0,6W )
∏

i N (hi|0,6H )
∏

j N

(
aj|0,6A

)∏
v N (bv|0,6B)

︸ ︷︷ ︸
Regularization

(35)

FIGURE 11 | CMF.

where δ(R), δ(X), δ(Y) denote the non-missing entries of
matrix R,X,Y that are generated by latent factor matrices
W,H,A,B of zero-mean normal priors (i.e., l2 regularization).
In (35), W,H are shared by at least two matrix factorization
objectives. Attribute information in X,Y is transferred to
rating prediction R through sharing the same latent factors.
Note that CMF is not limited to three matrix factorization
objectives (35).

4.2.2. Attributes in Deep Neural Networks
In deep neural networks, an autoencoder is usually used to learn
the latent representation of observed data. Specifically, the model
tries to construct an encoder E and a decoder D, where the
encoder learns to map from possibly modified attributes X̃ to
low-dimensional latent factors, and the decoder recovers original
attributes X from latent factors. Moreover, activation functions
in autoencoders can reflect non-linear mappings between latent
factors and attributes, which may capture the characteristics of
attributes more accurately.

To implement an autoencoder, we first generate another

attribute matrix X̃ from X. X̃ could be the same as X or
could be different due to corruption, e.g., adding random
noise. Autoencoders aim to predict the original X using latent

factors that are inferred from generated X̃. Here, attributes
serve not only as the generation results X but also as the

prior knowledge X̃ of latent factors. Let us review Bayes’
Rule to figure out where autoencoders appear for generative
matrix factorization:

argmax
W,H

p
(
W,H | R,X, X̃

)
= argmax

W,H

p
(
R,X | W,H, X̃

)
p
(
W,H | X̃

)

p
(
R,X | X̃

)

= argmax
W,H

p
(
R,X | W,H, X̃

)
p
(
W,H | X̃

)

= argmax
W,H

p
(
R | W,H, X̃

)

︸ ︷︷ ︸
Matrix factorization

p
(
X | W,H, X̃

)

︸ ︷︷ ︸
DecoderD︸ ︷︷ ︸

Likelihood

p
(
W | X̃

)
p
(
H | X̃

)

︸ ︷︷ ︸
EncoderE︸ ︷︷ ︸

Prior with assumptionW⊥H|X̃

.

(36)
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FIGURE 12 | CDL.

p(R,Y | Ỹ) is eliminated due to irrelevance in maximization
of (36). By sharing latent factors W,H between autoencoders
and matrix factorization, attribute information can affect
the learning of rating prediction. Modeling D with normal
distributions, we can conclude that the expectation of attributes
X is non-linearly mapped from latent factors W,H. Although
latent factors have priors from attributes, we categorize
relevant works as generative matrix factorization, since we
explicitly model attribute distributions in the decoder part of
autoencoders.

• Collaborative Deep Learning (CDL) (Wang et al., 2015)
(Figure 12). This model uses a combination of collaborative
filtering and Stacked Denoising Auto-Encoder (SDAE). Since
the model claims to exploit item attributes Y only, in the
following introduction we define Y = X, Ỹ = X̃ in (36).
In SDAE, input attribute Ỹ is not equivalent to Y due to
the addition of random noise to Ỹ . CDL implicitly adds
several independence assumptions (R⊥Ỹ | W,H), (Y⊥W |

H, Ỹ), (W⊥Ỹ) to formulate its model. Then, using identical
notations in CMF introduction, normal distributions N are
again applied to CDL:

argmax
W,H,θ ,φ

p (R, | W,H) p
(
Y | H, Ỹ

)

︸ ︷︷ ︸
Likelihood

p
(
H | Ỹ

)
p (W)

︸ ︷︷ ︸
Prior

= argmax
W,H,θ ,φ

∏

(u,i)|rui∈δ(R)

N

(
rui | w

⊤
u hi, σ

2
R

)

︸ ︷︷ ︸
Matrix factorization∏

i

N
(
yi | Dφ(Eθ (ỹi)),6Y

)
N
(
hi | Eθ (ỹi),6H

)

︸ ︷︷ ︸
Stacked denoising auto-encoder for Y

∏

u

N (wu | 0,6W)

︸ ︷︷ ︸
Regularization

. (37)

Functions E ,D indicate the encoder and the decoder of SDAE.
The two functions could be formed by multi-layer perceptrons
whose parameters are denoted by θ ,φ. The distribution of

FIGURE 13 | w-weighted generalization.

attribute matrix Y to be modeled in the decoder part can be
clearly seen. Last but not least, the analysis from (36) to (37)
implies that other ideas, user-relevant attributes for example,
could be involved naturally in CDL, as long as we removemore
independence assumptions.

4.3. Generalized Factorization
Thanks to the success of matrix factorization in recommender
systems, advanced works have emerged on generalizing the
concept of matrix factorization in order to extract more
information from attributes or interactions between users and
items. The works classified in either sections 4.1 or 4.2 propose
to design attribute-aware components on the basis of PMF. They
explicitly express an assumption of vanilla PMF: the existence
of a latent factor matrix W to represent user preferences and
another matrix H for items. However, the works classified in
this section do not regard W and H as special features of the
models. Rather, such works propose an expanded latent factor
space shared by users, items, and attributes. Here, neither users
nor items are special entities in a recommender system. They are
simply considered as categorical attributes. Taking rating rui as an
example, it implies that we have a one-hot user-encoding vector
where all the entries are 0 except for the u-th entry; similarly,
we also have a one-hot item-encoding vector of the i-th entry, 1.
Thus, external attributes X can be involved simply in the matrix-
factorization-based models, because now users and items are also
attributes whose interactions commonly predict or rank ratings.
We first propose the most generalized version of interpretation:
Given a rating r and its corresponding attribute vector x ∈ R

N ,
then we make rating estimate (Figure 13):

argmax
w

∏

r∈δ(R)

N

(
r | µR

=

DM∑

d=Dm

N∑

j1=1

N∑

j2=j1+1

. . .

N∑

jd=jd−1+1

wj1j2...jd

(
xj1xj2 . . . xjd

)
, σ 2

R

)
,

(38)
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FIGURE 14 | v-approximate generalization.

where δ(R) indicates the set of observed ratings in training data.
Variable d ∈ {0} ∪ N determines the dth-order multiplication
interaction between attributes xj. As d = 0, we introduce an extra
bias weight w0 ∈ R in (38). The large number of parameters
w ∈ R is very likely to overfit training ratings due to the
dimensionality curse. To alleviate overfitting problems, the ideas
in matrix factorization are applied here. For higher values of
d, it is assumed that each w is a function of low-dimensional
latent factors:

wj1j2...jd = fd
(
vj1 , vj2 , . . . , vjd

)
, (39)

where vj ∈ R
Kj implies the K-dimensional (Kj ≪ N∀j)

latent factor or representation vector for each element xj of x
(Figure 14). Function fd maps these d vectors to a real-valued
weight. Our learning parameters then become v. The overall
number of parameters (Dm ≤ d ≤ DM) decreases from∑DM

d=Dm

n!
d!(n−d)!

= O(2N) to
∑N

j=1 Kj = O(NK) where K =

max1≤j≤N Kj. Next, we prove that matrix factorization is a special
case of (38). Let Dm = DM = 2 and x be the concatenation of
one-hot encoding vectors of users as well as items. Also, we define
f2(v, y) = v⊤y. Then, for rating rui of user u to item i, we have:

argmax
v

∏

rui∈δ(R)

N


r̂ui | µR =

N∑

j1=1

N∑

j2=j1+1

v⊤j1 vj2
(
xj1xj2

)
= v⊤u vNu+i, σ

2
R


 ,(40)

where Nu denotes the number of users. Equation (40) is
essentially equivalent to matrix factorization. In this class,
the existing works either generalize or improve two early
published models: Tensor Factorization (TF) (Figure 15) and the
Factorization Machine (FM) (Figure 16). Both models can be
viewed as special cases of (38). We introduce TF and FM in the
sections below.

4.3.1. TF-Extended Models
Tensor Factorization (TF) (Karatzoglou et al., 2010) requires the
input features to be categorical. Attribute vector x ∈ {0, 1}N

FIGURE 15 | TF.

FIGURE 16 | FM.

is the concatenation of D one-hot encoding vectors. (D −

2) categorical rating-relevant attributes form their own binary
one-hot representations. The additional two one-hot vectors
represent IDs of users and items, respectively. As a special case
of (38), TF fixes Dm = DM = D to build a single D-order
interaction between attributes. Since weight function fD in (39)
allows individual dimensions Kj for each latent factor vector vj,
TF defines a tensor S ∈ R

K1×K2×...×KD to exploit the tensor
product of all latent factor vectors. In sum, (38) is simplified
as follows:

µR =

N∑

j1=1

N∑

j2=j1+1

. . .

N∑

jD=jD−1+1

fD
(
vj1 , vj2 , . . . , vjD

) (
xj1xj2 . . . xjD

)

= fD
(
vl1 , vl1 , . . . , vlD

)
as xl1 = xl2 = . . .

= xlD = 1, other x = 0

=
〈
S , vl1 , vl2 , . . . , vlD

〉

=

K1∑

k1=1

K2∑

k2=1

. . .

KD∑

kD=1

sk1k2...kDvl1k1vl2k2 . . . vlDkD (41)
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where function f (·) =< · > denotes the tensor product. Note
that attribute vectors x in TF must consist of exact C 1s due
to one-hot encoding. Therefore, there exists only the matches
j1 = l1, j2 = l2, . . . , jD = lD where all the attributes in these
positions are set to 1.

4.3.2. FM-Extended Models
The Factorization Machine (FM) (Rendle et al., 2011) allows
numerical attributes x ∈ R

N as input, including one-hot
representations of users and items. Although higher-order
interactions between attributes could be formulated, FM focuses
on at most second-order interactions. To derive FM from (38),
let 0 = Dm ≤ d ≤ DM = 2 and wj1j2 = f2(vj1 , vj2 ) = v⊤j1 vj2 in

(39) be applied for the second-order interaction. We then begin
to simplify (38):

µR = w0

︸︷︷︸
d=0

+

N∑

l=1

wlxl

︸ ︷︷ ︸
d=1

+

N∑

j1=1

N∑

j2=j1+1

wj1j2

(
xj1xj2

)

︸ ︷︷ ︸
d=2

= w0 +

N∑

l=1

wlxl +

N∑

j1=1

N∑

j2=j1+1

v⊤j1 vj2
(
xj1xj2

)
(42)

which is exactly the formulation of FM. Note that FM implicitly
requires all the latent factor vectors v to be of the same
dimension K; however, this requirement could be removed from
the viewpoint of our general form (38). Models in this category
mainly differ in two aspects. First, linear mapping can be replaced
by deep neural networks, which allows non-linear mapping of
attributes. Second, FM only extracts first-order and second-order
interactions. Further works such as Cao et al. (2016) extract
higher-order interactions between attributes.

4.4. Modeling User-Item-Rating
Interactions Using Heterogeneous Graphs
We notice several relevant works that perform low-rank
factorization or representation learning in heterogeneous graphs,
such as (Lee et al., 2011; Yu et al., 2014; Pham et al., 2016; Zheng
et al., 2016; Palumbo et al., 2017; Jiang et al., 2018; Nandanwar
et al., 2018). Note that these works do not require graph-
structured data. Instead, they model the interactions between
user, item, rating, and attribute as a heterogeneous graph.
The interactions of users and items can be represented by a
heterogeneous graph with two node types. An edge is unweighted
for implicit feedback and weighted for explicit opinions. External
attributes are typically leveraged by assigning them extra nodes
in the heterogeneous graph. A heterogeneous graph structure
is more suitable for categorical attributes, since each candidate
value of attributes can be naturally assigned a node.

In heterogeneous graphs, recommendation can be viewed as a
link prediction problem. Predicting a future rating corresponds
to forecasting whether an edge will be built between user and
item nodes. The existing works commonly adopt a two-stage
algorithm to learn the model. First, we apply a random-walk
or a meta-path algorithm to gather the similarities between
users and items from a heterogeneous graph. The similarity

information can be kept as multiple similarity matrices or
network embedding vectors. Then, a matrix factorization model
or other supervised machine learning algorithms are applied
to extract discriminative features from the gathered similarity
information, which is used for future rating prediction. Another
kind of method is to first define the environment where ranking
or similarity algorithms are applied. Defining the environment
refers to either determining the heterogeneous graph structures
or learning the transition probabilities between nodes from
observed heterogeneous graphs. Having the environment, we can
apply an existing algorithm (Rooted PageRank, for example) or
a proposed method to gain the relative ranking scores for each
item. In other words, the main difference between the two kinds
ofmethods is whether the similarity calculation is in the first stage
or the second stage. Both kinds of methods as abovementioned
can be unified as a constrained likelihood maximization:

argmax
θ

p (s,R | θ ,X)︸ ︷︷ ︸
Likelihood

such that

s (u, i) =
∑

w∈Pu,i|X

fθ (w, rui) ∀(u, i), rui ∈ δ(R)

︸ ︷︷ ︸
Constraint considering attributes

, (43)

where a parameterized function fθ is specifically defined to
estimate a similarity score s(u, i) of item i, given user u as a
query. The calculation of a similarity score comes from the
set Pu,i of random walks or paths w from node u to i in
the heterogeneous graph. The generation of Pu,i considers the
attribute node set X. Either or both of the likelihood and the
constraint may involve the information of observed ratings δ(R)
of rating matrix R for likelihood maximization or similarity
calculation. In our estimation, the current heterogeneous-graph-
based models do not directly solve the constrained optimization
problem (Equation 43). Commonly, they first exploit a two-
stage solution that either solves the likelihood maximization or
satisfies the similarity constraint. The output is then cast into
the other part of (Equation 43). With different definitions of fθ
and p, the two-stage process may run only once or iteratively
until convergence. The definition of s(u, i) in the surveyed papers
includes PageRank (Lee et al., 2011; Jiang et al., 2018), PathSim
(Yu et al., 2014), and so on. The likelihood function p guides the
similarity-related parameters θ to fit the distribution objective of
observed similarities s or ratings R. The objective may be given
attributes X as auxiliary learning data. Minor works like (Lee
et al., 2011) do not optimize the likelihood; instead, they directly
compute the similarity constraint with pre-defined θ from a
specifically designed heterogeneous graph.

We now explain why random walk or path-based algorithms
in heterogeneous graphs are regarded as collaborative filtering
methods. For ease of explanation, we first consider the case of no
auxiliary attributes. We have users and items as nodes in a graph
structure, where edge weights denote the ratings of users toward
items. If both users u and v rate the same item i, then i becomes
a shortcut from u to v. Therefore, starting from user node u,
another user v at a low shortest path distance from u could have
similar rating behaviors as u. We can then recommend items at
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short distances from u, based on the shortcut through v. This is
just the spirit of collaborative filtering, which exploits the similar
rating behaviors of other users for future recommendation to
target users. If attribute nodes are taken into consideration in
heterogeneous graphs, they also become the shortcuts for paths
between users and items.

• HeteRec (Yu et al., 2014). This model first assumes an
attribute-aware heterogeneous graph formed by attributes
and ratings. We then obtain M non-negative PathSim Sun
et al. (2011) similarity matrices S(1), S(2), . . . , S(m), . . . , S(M).
Given low-rank non-negative factorization of each S(m) =

U(m)⊤V(m), a rating estimate r̂ is defined as follows:

r̂ =

M∑

m=1

θmu
(m)⊤v(m). (44)

• Graph-Based Flexible Recommendation (GFREC) (Lee et al.,
2011). This approach applies personalized PageRank, an
unsupervised random walk-based algorithm, to perform
random walks in a bipartite heterogeneous graph for
recommendation. Instead of independently defining a single
node for each categorical attribute value, GFRECmakes a node
imply both an attribute value and its associated user or item.
For example, given a user u and its corresponding attribute
value x, we can put a node named (u, x) in the heterogeneous
network. In a GFREC bipartite heterogeneous graph, two
disjoint sets respectively refer to users and items. GFREC
shows that personalized PageRank can compute the visiting
probabilities of each node in this bipartite heterogeneous
graph. Finally, the probabilities are used to rank items to
be recommended.

4.5. Differences Between Models
In our classification system, there are still a number of works
in each category. Although models in the same category share a
similar mathematical form in terms of the design of the objective
function, they can vary in certain design aspects. One of the most
important differences is the task they focus on. Some models
emphasize predicting future ratings. Therefore, they are usually
dedicated to minimizing the Root Mean Square Error (RMSE) to
achieve a more accurate prediction of scores. Some other models
care more about the top-N items that a user may like. Hence, they
adopt pairwise ranking to predict the preference for items of a
given user.A second difference is based on the types of attributes
that are exploited. For example, Yang et al. (2011) takes a social
network as its input feature matrix. A third difference is the
source of attributes each model claims to use. Some models claim
to accept only user attributes, while others might be more general
for different types of attributes.

5. EMPIRICAL COMPARISON

In this section, we evaluate the effectiveness of each model
by examining its performance on several datasets. We focus
on the rating prediction task since the majority of the models
have their objectives designed for this task. We also compare

TABLE 6 | Attribute types that are used for each model.

Model U I R

TF X X X

CMF X X

RLFM X X X

FIP X X

FM X X X

NCF X X

NFM X X X

MF

U, user-relevant attribute; I, item-relevant attribute; R, rating-relevant attribute.

the performance of each competitor under different conditions:
with/without user-relevant attributes, item-relevant attributes, or
rating-relevant attributes. Hyperparameters for each model are
tuned based on grid search.

5.1. Experimental Setup
5.1.1. Model
We consider several popular models that are representative
of each category for comparison: the Regression-based Latent
FactorModel (RLFM) (Agarwal andChen, 2009) and Friendship-
Interest Propagation (FIP) (Yang et al., 2011) in Discriminative
Matrix Factorization, Collective Matrix Factorization (CMF)
(Singh and Gordon, 2008) in Generative Matrix Factorization,
and Tensor Factorization (TF) (Karatzoglou et al., 2010), the
Factorization Machine (FM) (Rendle et al., 2011), and the
Neural Factorization Machine (NFM) (He and Chua, 2017) in
Generalized Factorization. We also select Matrix Factorization
(MF) (Chin et al., 2016) as a simple baseline model that does
not include any attribute and Neural Collaborative Filtering
(NCF) (He et al., 2017) as a stronger baseline (the simple version
where attributes are one-hot encoding vectors of users and
items). NCF+ (where attributes are one-hot encoding vectors
appended with those from datasets) serves as a competitor in
DMF. We do not compare Heterogeneous Graph models, as
models in this category are more diverse and it is hard to pick a
representative model. The attribute types that eachmodel accepts
are summarized in Table 6.

• Tensor Factorization (TF)

TF is anD-dimensional extension ofMF.We denote the tensor
containing the ratings by R ∈ R

N1×N2×...×ND . The tensor
R can be factorized into D matrices V j ∈ R

Kj×Nj and one
central tensor S ∈ R

K1×K2×...×KD where K1,K2, . . . ,KD is the
dimension of latent factors. In this case, the predicted rating
for rj1j2...jD is r̂j1j2...jD = S ×V1 V1×V2 V2× . . .×VD VD. Note
that the subscript of the tensor-matrix multiplication operator
×V shows the direction on which the tensor multiplies the
matrix. The loss function for this model is

argmin
S,V

∑

j1 ,j2 ,...,jD|rj1 j2 ...jD∈δ(R)

(
r̂j1j2...jD − rj1j2...jD

)2

+

D∑

j=1

�
(
V j

)
+ �(S), (45)
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where δ(R) is the set of non-missing entries in R, and
�(V) = λV

2 ‖V‖2F is the regularization term of squared
Frobenius norm. We can update the latent factors using SGD.
One major concern of with model is that its complexity and
storage requirement grow exponentially with the number of
dimensions of the rating tensorR.

• Collective Matrix Factorization (CMF)

CMF is a model incorporating side information by factorizing
multiple matrices simultaneously. In an D-entities schema,
X(ij) ∈ R

Ni×Nj represents the relation between entity i and j if
the relation exists, i.e., Ei ∼ Ej. CMF factorizes these matrices

into U(1) ∈ R
K×N1 ,U(2), . . . ,U(D) ∈ R

K×ND such that X(ij) ≈

f (ij)(U(i)⊤U(j)). For a dataset with user- and item-relevant
attributes, there are four entities (E1: user id, E2: item id, E3:
user features, and E4: item features) and three relations (X(12):
ratings matrix, X(13), X(24): feature matrix). In our experiment,
f is the identity function for the rating matrix and the sigmoid
function is that for the feature matrix. Let E = {(i, j) :Ei ∼

Ej∩i < j} denote the set of all existing relations pairs,U denote
the set of latent factors, W denote the set of weight matrices,
and DF(Y||X,W) =

∑
ij wij(F(yij) + F∗(xij) − yijxij) measure

the weighted divergence of two matrices Y and X. The loss
function for this model is

argmin
U ,W

∑

ij∈E

α(ij)

(
DF(ij) (U

(i)⊤U(j))||X(ij),W(ij))

+DG(i) (0||U(i))+ DG(j) (0||U(j))

)
(46)

where F(ij) defines the loss for a reconstruction, and G(i)

defines the loss for a regularizer. We can update U through
a Newton-Raphson step.

• Regression-Based Latent Factor Model (RLFM)

Let rui denote the rating given by user u to item i. zπ(u,i) ∈ R
KZ ,

xu ∈ R
KX and yi ∈ R

KY denote attribute vectors for rating
π(u, i) (i.e., index associated with user u and item i), user u,
and item i, respectively. This model learns the latent factors
(αu ∈ R,wu ∈ R

K) to user u, (βi ∈ R, hi ∈ R
K) to item i and

(b ∈ R
KZ ) to rating rij, such that the rating is estimated by:

r̂ij = z⊤π(i,j)b+ αu + βi + w⊤
u hi (47)

This model assumes that αu, βi, wu, and hi follow Gaussian
distribution given attributes xu and yi, so the model can be
fitted by a Monte Carlo EM algorithm.

• Friendship-Interest Propagation (FIP)

FIP combines learned latent factors (W, H) and a given
attribute matrix (X,Y) to fit user profiles and item properties.
Let U be the set of users and I be the set of items. For each
training example (u, i, r) ∈ O, user u ∈ U gives item i ∈ I a
rating r. The objective function is as follows:

argmin
W,H,C

∑

(u,i,r)∈O

L(r,w⊤
u hi + xTuCyi)+ λC�(C)

+λW(�(W)+ �(wu − Axu))+ λH(�(H)

+�(hi − Byi))+ λA�(A)+ λB�(B) (48)

where L(r, r̂) is a loss function, C is a correlation matrix,
A and B are the correlation matrices between attribute and
latent factors, �(·) is a regularization term, and all of the λ

with subscripts are hyperparameters. If both user and item
attributes are not given, the model is then reduced to matrix
factorization. Since it is often the case that a dataset contains
either user or item attributes, in the experiments, if a user (or
item) attribute is not given, we assume it is a vector of ones
with the same dimension as item (or user).

• Factorization Machine (FM)
FM reduces the original recommendation problem into a
traditional classification (or regression) problem. For example,
for each observation (u, i, r) ∈ O, it can be transformed into an
attribute vector x (which can be formed by representing user u
and item i as two one-hot encoding vectors and concatenating
them together) and a target rating r. The goal is then to fit
the target value by utilizing the attribute vector. The objective
function can be addressed as follows:

argmin
w,V

∑

(u,i,r)∈O

L


r,w0 +

N∑

i=1

wixi +

N∑

i=1

D∑

j=i+1




K∑

k=1

vikvjk


 xixj




+λw�(w)+ λV�(V) (49)

where w is the weight vector (wi is its i-th element) and V ∈

R
K×N is the latent factor matrix. This is called a factorization

machine of degree 2 (or two-way factorization machine). An
N-way factorization machine can be expressed as follows:

argmin
w,V

∑

(u,i,r)∈O

L

(
r,w0 +

N∑

i=1

wixi

+

N∑

l=2

N∑

i1=1

N∑

i2=i1+1

· · ·

N∑

il=il−1+1

(
K∑

k=1

l∏

j=1

vijk

)
l∏

j=1

xij

)

+λw�(w)+ λV�(V). (50)

In our experiments, only a two-way factorization machine
is used as our baseline model, since it is the most
frequent configuration in the experiments conducted in
previous studies.

• Neural Collaborative Filtering (NCF)

NCF (Figure 17) consists of two parts: generalized matrix
factorization (GMF) and multi-layer perceptron (MLP). The
GMF layer computes the element-wise product of user and
item latent factors. The MLP layer is a neural network that
takes the concatenation of user and item latent factors as
inputs and outputs a vector. The results of GMF and MLP
are then concatenated as a vector and serve as the input of
the NeuMF layer, which is a one-layer perceptron and outputs
the predicted rating. Normally, a user/item attribute is a one-
hot encoding vector that represents the user/item. However, if
external attributes are provided, they can be easily modified.

• Neural Factorization Machine (NFM)
NFM is a generalization of two-way FM.While FM extracts the
linear interaction between attributes, NFM is able to extract
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TABLE 7 | Basic statistics of datasets.

Dataset Users Items Training ratings Test ratings Density

MovieLens-1M 6040 3883 900188 100021 3.84× 10−2

MovieLens-10M 69878 10681 9000048 1000006 1.21× 10−2

MovieLens-20M 138493 10378 17819935 1979993 1.24× 10−2

Netflix 475708 17770 9907271 1408394 1.17× 10−3

Yahoo Music 1 129100 4772 702947 6858 1.14× 10−3

Yahoo Music 2 50751 3852 367556 7249 1.88× 10−3

Yelp 1029432 135086 3635310 406952 2.61× 10−5

We define Density as
#(training ratings)
#(users)×#(items)

.

FIGURE 17 | Model structure of NCF.

non-linear interactions with the help of a non-linear activation
function in a deep neural network. The objective of NFM can
be expressed as follows:

argmin
w,V ,f

∑

(u,i,r)∈O

L


r,w0 +

N∑

i=1

wixi + f (

N∑

i=1

N∑

j=i+1

xivi ⊙ xjvj)




+λw�(w)+ λV�(V)+ λf �(f ) (51)

where⊙ is element-wise product of vectors and f is the neural
network. The neural network takes second-order interactions
of attribute vectors in FM as input. In fact, FM can be reduced
from NFM where f is a vector of ones.

5.1.2. Dataset
We use widely used data available online to compare the
performance of the models. Here, we briefly introduce these
datasets, and their statistics can be seen in Tables 7–9. For each
dataset, we use the original training and testing sets if they are
provided by the host. Otherwise, the training set and testing sets
are split based on timestamps, where the training set represents
past data and the testing set represents future ratings.

• MovieLens-1M, 10M, 20M (Harper and Konstan, 2015)
The MovieLens datasets contain ratings that users give to
different movies with different numbers of ratings (i.e., 1,

TABLE 8 | Attribute statistics of datasets.

Dataset U I R

MovieLens-1M 29 99 0

MovieLens-10M 0 112 0

MovieLens-20M 0 220 0

Netflix 0 95 0

Yahoo Music 1 0 300 0

Yahoo Music 2 0 300 0

Yelp 18 234 3

0 means the type of attribute is not present in this dataset.

TABLE 9 | Percentage of new users/items (users/items in testing data but not in

training data).

Dataset % of new users % of new items

MovieLens-1M 2.4 0.8

MovieLens-10M 65.5 10.8

MovieLens-20M 73.1 8.5

Netflix 4.8 0

Yahoo music 1 61.1 0

Yahoo music 2 46.3 0

Yelp 49.8 3.0

10, and 20M). They also include certain user information,
such as genre, age and occupation, and item information, for
example, the genre of a movie and the year when the movie
was produced. The training and testing sets are divided by the
time that the ratings were generated. The latest-timestamped
10% ratings serve as the testing set, while the others are served
as the training set.

• Netflix1

The Netflix Prize is a competition dedicating to the design of a
better movie recommendation system. The data that the host
provides contain a large amount of rating instances. It also
includes side information about the movies. The testing set
is extracted from the probe set, which the host has provided.

1http://www.netflixprize.com/
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TABLE 10 | RMSE on all datasets except Yelp.

Dataset MF NCF TF CMF RLFM FIP FM NFM NCF+

ML-1M 0.9002 0.9082 * 0.9088 0.8824 0.9396 0.8798 0.9162 0.9054

ML-10M 0.9820 0.9161 * 0.9763 0.9111 1.1085 0.9103 0.9132 0.9129

ML-20M 0.9923 0.9402 * 0.9954 0.9227 1.1128 0.9297 0.9260 0.9240

Netflix 1.2033 1.0737 1.1434 1.0848 1.1325 1.1312 1.0887 1.0707 1.0705

Yahoo 1 34.9989 33.0522 * 34.3325 32.9302 35.8085 33.1422 33.9271 33.1743

Yahoo 2 46.8444 41.2785 * 45.2139 45.3166 50.6670 45.4528 42.2594 40.4920

TABLE 11 | RMSE on Yelp.

Baselines Attribute TF CMF RLFM FIP FM NFM NCF+

MF: 1.4809 NCF:1.3805

U * 1.3967 1.1434 1.4162 1.1337 1.1440 1.1280

I * 1.3951 1.2672 1.4269 1.2849 1.2923 1.2586

U+I * 1.3848 1.1029 1.2905 1.0603 1.0876 1.0372

R 1.4958 – 1.3114 – 1.3065 1.3386 –

U+R * – 1.1244 – 1.1067 1.1168 –

I+R * – 1.2470 – 1.2566 1.2693 –

U+I+R * – 1.0852 – 1.0372 1.0755 –

However, since the training set is so large that several of
the models that we are testing cannot finish training in a
reasonable amount of time, it is randomly sampled to one-
tenth of the original size in all of our experiments.

• Yahoo Music2

Yahoo provides two music datasets (denoted by Yahoo Music
1 and 2 in our experiments) for researchers to study how users
ratemusic products, including tracks and albums. Information
such as the genre or artist of a product is provided. The data
were also used in the KDD Cup 2011. Among the items being
rated in the original competition (albums, tracks), we extract
tracks as targets to be rated. The training and testing sets are
split in the way provided by the host.

• Yelp3

The Yelp Challenge is a contest that allows participants to
come up with a research topic themselves based on the given
Yelp dataset. The dataset contains ratings given by users to
businesses. It includes user information and item information
of various types. The reviews that users give to items are also
included. The training and testing sets are split in the sameway
as we did in the MovieLens datasets.

5.1.3. Attribute Extraction
Most models accept real value attributes as their input. For
categorical attributes, the value merely represents which category
the user/item belongs to, which means that there is no physical
meaning to the value. Therefore, each category is treated as a new
attribute dimension. For each dimension, if the user (or item)
is in this category, the value is 1, and otherwise 0 (i.e., one-hot
encoding). However, categorical attributes are not used in the TF
model due to its high space complexity. Since one-hot encoding

2https://webscope.sandbox.yahoo.com/
3https://www.yelp.com/dataset

significantly increases the dimensions of attributes, we find that
many of the experimented models cannot finish training in a
reasonable amount of time for large-scale datasets. Hence, we
determine to retain only the top 100 representative transformed
attributes that have the most values of 1. For the Yelp dataset,
since some of its attribute values vary significantly, log(1 + x) is

applied if the original attribute value x is positive, and− log(−x)

is applied for negative ones. For TF, the attribute value is further
rounded to the nearest integer. For the MovieLens-1M dataset,

we combine user attributes with item attributes. For the Yelp

dataset, we separate user, item, and rating attributes and compare
the results of different combinations of these attributes. For all
the other datasets, we use item attributes only.

5.1.4. Evaluation Metric
Root Mean Square Error (RMSE) [defined in (19)] is selected

as the evaluation metric in our experiments. RMSE is arguably

the most widely used evaluation metric for rating prediction,
since most model-based collaborative filtering methods try to

minimizeMSE (RMSE without root) or RMSE as their objectives.

5.2. Performance Comparisons
We run seven benchmark models on seven attribute-appended

rating datasets. All the empirical comparisons, evaluated with

RMSE, are reported in Tables 10, 11. Note that the bold values

are best performances in that caetgory among different models
and the star symbol (*) indicates excessive running time or high

memory usage (over 24 h or more than 64 GB memory); this
usually happens when TF runs on data with a large number of
features. MF and NCF are trained on ratings only. We can see
that RLFM, FM, NFM, and NCF+ can outperform the basic MF
models on all datasets. In general, NCF+ yields the best results
among these models.
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TABLE 12 | Comparison between three types of models.

Models DMF GMF GF

General attributes No No Yes

Predicting missing attributes No Yes No

Performance Good Not as Good Good

5.3. Findings and Discussion
In this section, we give a brief comparison in Table 12

and discuss some findings from the experiment results
in section 5.2.

• Attribute-aware models outperform their counterparts that do
not incorporate attributes
We first identify two pairs of recommender systems: MF
with FM and NCF with NCF+. FM can be seen as a
design that incorporates attributes into MF, and the same
applies for NCF+ vs. NCF. From Tables 10, 11, we can see
that in most cases, attribute-aware designs (FM, NCF+) do
outperform their counterparts (MF, NCF). This is intuitive,
as attributes can provide additional information that benefits
recommendation performance. Therefore, for each of the two
pairs, attribute-aware design can achieve better performance.

• DMF and GF models perform better than GMF in general
The results in Tables 10, 11 show that discriminative matrix
factorization models (TF, RLFM, and NCF+) and matrix
factorization generalization (FM and NFM) perform better
than a generative matrix factorization design (CMF). This
may be because, in addition to reconstructing a rating matrix,
generative matrix factorization models have to simultaneously

recover attribute matrices, which could lead to overfitting
when given insufficient data.

• User attributes are more beneficial than item and
rating attributes
As the dataset contains three kinds of attributes (user, item,
and rating), we would focus our discussion based on the result
of Table 11. RLFM, FM, and NFM are the only models that
consider all three types of attributes, and it is apparent that the
best result occurs when all attributes are exploited. However,
if we consider three types of attribute separately, it seems that
the user attributes are the most beneficial to most models.
The result is expected as the goal of recommender systems is
to predict user preferences regarding items. Therefore, user
information should play the most important role. Rating
attributes are not as effective as the others, and NCF+ can
achieve top performance without using them.

6. CONCLUSION

Collaborative filtering is arguably the most effective approach
to building a recommender system. This paper introduces and
compares the performance of different attribute-aware models.
We believe it can benefit not only researchers in this area but also
engineers intending to build a recommender system that utilizes
a rich set of attributes.
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