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Both statistical and neural methods have been proposed in the literature to predict

healthcare expenditures. However, less attention has been given to comparing

predictions from both these methods as well as ensemble approaches in the healthcare

domain. The primary objective of this paper was to evaluate different statistical,

neural, and ensemble techniques in their ability to predict patients’ weekly average

expenditures on certain pain medications. Two statistical models, persistence (baseline)

and autoregressive integrated moving average (ARIMA), a multilayer perceptron (MLP)

model, a long short-term memory (LSTM) model, and an ensemble model combining

predictions of the ARIMA, MLP, and LSTM models were calibrated to predict the

expenditures on two different pain medications. In the MLP and LSTM models, we

compared the influence of shuffling of training data and dropout of certain nodes in

MLPs and nodes and recurrent connections in LSTMs in layers during training. Results

revealed that the ensemble model outperformed the persistence, ARIMA, MLP, and

LSTM models across both pain medications. In general, not shuffling the training data

and adding the dropout helped the MLP models and shuffling the training data and not

adding the dropout helped the LSTM models across both medications. We highlight the

implications of using statistical, neural, and ensemble methods for time-series forecasting

of outcomes in the healthcare domain.

Keywords: time-series forecasting, persistence, autoregressive integrated moving average (ARIMA), multilayer

perceptron (MLP), long short-term memory (LSTM), ensemble, medicine expenditures, neural networks

INTRODUCTION

Healthcare costs are rising, and patients need to manage their healthcare expenditures on
medications (Bertsimas et al., 2008). Predicting medication cost in the future could help patients
better manage patient-related healthcare expenditures (Zhao et al., 2001). To predict medication
costs, one needs data concerning patients’ medicine-purchase patterns. Currently, there exist
significant amounts of digital healthcare data that can provide helpful insights into healthcare
expenditures, and these data could bring about positive changes in healthcare policymaking (Farley
et al., 2006). Although there exist data, accessing these data is a major challenge due to privacy
concerns of patients, hospitals, insurance companies, and pharmaceutical companies. One way
of overcoming this challenge is via anonymizing healthcare records and medicine information so
that connections to specific individuals or entities are lost. Using anonymization, prior research
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has attempted time-series forecasting of different healthcare costs
(Ash et al., 2000; Zhao et al., 2001, 2005; Farley et al., 2006). Here,
most of the existing attempts have used statistical or machine-
learning methods like regression (Ash et al., 2000; Zhao et al.,
2001, 2005; Powers et al., 2005), classification trees (Robinson,
2008), and clustering (Bertsimas et al., 2008). Although prior
research has performed the time-series forecasting in healthcare
data, a major challenge is selection of the appropriate predictive
model to use for performing analyses (there are very few
suggestive forecasting algorithms for healthcare data due to the
newness of this domain and its datasets). A way of overcoming
the model selection challenge is by evaluating the predictions
from existing forecasting methods with other recent methods in
literature (Makridakis et al., 2018). For example, recently, certain
recurrent machine-learning methods (e.g., long short-term
models) have been proposed (Gamboa, 2017). These recurrent
methods have been used for supervised learning of features for
time-series forecasting (Gamboa, 2017;Miotto et al., 2017). These
recurrent methods could provide improvements over existing
statistical time-series techniques [e.g., autoregressive integrated
moving average (ARIMA)], which are often dependent on the
hand-crafted features requiring expert knowledge in the field.

A popular statistical time-series method is the ARIMA model
(Newbold, 1983). The ARIMA model is popular because of its
statistical properties (e.g., moving averages) to find its parameters
(Box et al., 2015). ARIMA models generally use the historical
values of a univariate time series to predict the time series’ future
values. A special case of the ARIMAmodel is a persistencemodel,
where the future value in a time series is equal to its preceding
value (thus, a persistence model has only one autoregressive
term and no moving average terms). Given its simplicity, a
persistence model could serve as a good baseline to compare
other models. However, one challenge in persistence and ARIMA
models is their pre-assumption of linearity in the underlying time
series, which may be insufficient in various practical scenarios
(e.g., healthcare datasets) that contain non-linear time-series data
(Zhang, 2003).

To overcome the challenge of linear statistical time-series
models, many non-linear machine-learning models like artificial
neural networks (ANNs) have been proposed in the literature
(Zhang, 2003, 2007; Kihoro et al., 2004; Kamruzzaman et al.,
2006). ANNs belong to the data-driven approach, where training
depends on the available data with a little prior rationalization
regarding relationships between variables (Zhang, 2003). ANNs
do not make any assumptions about the statistical distributions
of the underlying time series and they can naturally perform
non-linear modeling (Zhang, 2003). As a result, ANNs are
self-adaptive by nature (Zhang et al., 1998; Zhang, 2003;
Kamruzzaman et al., 2006).

Prior research has carried out comparative studies between
ARIMA models and ANNs for performing time-series
forecasting of stock-market data (Jain and Kumar, 2007;
Adebiyi et al., 2014). This research showed that ANNs are a
good alternative to the ARIMA approach, particularly in the
case of non-linear time series and for long-term forecasting
(Jain and Kumar, 2007; Adebiyi et al., 2014). There are different
ANN-based forecasting models in the literature, where the

most popular model is the multilayer perceptron (MLP) (Zhang
et al., 2001). MLP models are memory-less, and they use the
feed forward neural network architecture, which applies a
supervised learning technique called back propagation algorithm
for training the neural network (Koskela et al., 1996; Zhang,
2007).

Besides ARIMA and ANNs, newer models of time-series
forecasting have been developed using recurrent memory-
based approaches (Gamboa, 2017; Miotto et al., 2017). Among
these models, memory-based recurrent neural network (RNN)
architectures (Elman, 1990) and its variants, namely, the
long short-term memory (LSTM) models (Hochreiter and
Schmidhuber, 1997) and the gated recurrent unit (GRU)
models (Chung et al., 2014), have been studied for extracting
informative patterns from sequential healthcare data and in
classifying data on the basis of diagnostic categories (Lipton
et al., 2015; Che et al., 2018). There are several applications
of RNN approaches in healthcare for performing predictions.
For example, Lipton et al. (2015) have used LSTMs to perform
diagnosis classification from clinical measurements of patients
in pediatric intensive unit care. Pham et al. (2016) developed a
dynamic memory model using LSTMs to predict future medical
outcomes. Razavian et al. (2016) have used LSTM, RNN, and
two convolutional neural network (CNN) models to predict
disease onsets from longitudinal lab tests. Ma et al. (2017)
have used bidirectional RNN architecture for predicting patients’
future health information. Kaushik et al. (2017) have used a
stacked LSTM for univariate time-series predictions of monthly
expenditures of patients for medication.

Furthermore, another way of addressing the model selection
challenge is by combining the predictions of various models
or ensembling (Adhikari et al., 2015). Here, a number of
ensembling mechanisms have been proposed (De Gooijer and
Hyndman, 2006; Jose and Winkler, 2008; Adhikari et al., 2015).
The standard approach of ensembling is simple averaging that
assigns equal weights to all forecasting component models (De
Gooijer and Hyndman, 2006; Jose and Winkler, 2008). However,
the simple averaging method may be sensitive to outlier values
and unreliable for skewed distributions (Freitas and Rodrigues,
2006; Adhikari et al., 2015). To correct for outliers, certain
weighted combination approaches have also been proposed in
the literature (Armstrong, 2001; Adhikari and Agrawal, 2014).
One approach is the least-square regression (LSR) approach
that attempts to find the optimal weights by minimizing the
sum of squared errors (SSEs) (Adhikari and Agrawal, 2014).
Another approach is the average of in-sample weights (AIW)
scheme, where each weight is computed as the normalized
inverse absolute forecasting error of an individual model, as has
previously been proposed (Armstrong, 2001).

Another challenge for time-series forecasting in the healthcare
domain is ensuring that models reduce their overfitting in the
underlying data (i.e., to ensure that models do not perform well
during training and poorly during testing). One way of reducing
overfitting is by evaluating different approaches like dropouts
and data shuffling as part of different time-series forecasting
algorithms in the healthcare domain (Srivastava et al., 2014;
Brownlee, 2016; Kang et al., 2017). Dropout is a regularization
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technique that helps reduce the problem of overfitting in neural
networks by dropping the nodes in the networks (Srivastava
et al., 2014). Similarly, recurrent dropout is another approach to
handle overfitting that drops the recurrent connections in RNNs.
Additionally, data shuffling is known to improve the general
learning of model during its training, where effects of serial data
presentation are reduced (Brownlee, 2016; Kang et al., 2017).

In this research, we address several of the above challenges
by evaluating the performance of memory-less neural network
models (e.g., MLP) with memory-based neural network
models (e.g., LSTM) for performing time-series predictions
of longitudinal healthcare data. Due to the popularity of the
ARIMA model (Zhang, 2003; Box et al., 2015), we evaluate
the performance of this model against both memory-less and
memory-based approaches in anonymized healthcare data.
Moreover, motivated by the use of ensemble architectures, we
evaluate the potential of a weighted ensemble model (Adhikari
and Agrawal, 2014), which combines the best predictions of
the individual ARIMA, MLP, and LSTM models via a dynamic
weight updation technique. Here, we compare the performance
of the ensemble model as well as the individual models (ARIMA,
MLP, and LSTM) with a persistence model, which serves as a
baseline model.

Furthermore, to overcome the overfitting challenge, we
evaluate the shuffling of time-series data with and without
dropouts across different neural network models. Thus, we
compare four different variations: shuffle with dropout, shuffle
without dropout, no shuffle with dropout, and no shuffle without
dropout. When shuffling is present (shuffle), smaller supervised
sets (mini-batches) containing attributes corresponding to the
chosen look-back period are created and shuffled across the time
series during network training. Shuffling is done to change the
order in which we present supervised sets to the models. It
helps the model to avoid the conditions of local minima while
training and thus it is helpful to reduce overfitting. However,
when shuffle is not present (no shuffle), the mini-batches are
created in the order they occur in data and inputted into the
network without shuffling. When dropout is present, we discard
certain number of nodes and recurrent connections (if present)
from the hidden layers. As the adverse effects of node dropout
in RNNs are known (Bayer et al., 2013), we tried both node
and recurrent connection dropouts in the LSTM model. When
dropout is absent, no nodes or recurrent connections (if present)
are discarded during training in the neural network. Overall,
introducing dropouts in neural network models may help reduce
the overfitting as dropouts reduce the total number of weights to
be trained in the model.

Overall, we expect the ensemble model to perform better in
predicting time-series healthcare data compared to its individual
constituting models as well as the baseline model. One likely
reason for this expectation is because the ensemble model’s
prediction is highly dependent on the individual models’ best
predictions (the ensemble is expected to give more weight to
those model predictions that are accurate compared to those
that are less accurate). Furthermore, we expect the neural
network models to perform better compared to statistical models
because of the presence of non-linearities in the time-series

data and the ability of neural networks to account for these
non-linearities. Also, we expect shuffling the training samples
and adding dropouts to help improve models’ performance.
The likely reason behind this expectation is that shuffling helps
models avoid getting trapped in local minima during training due
to an ordered presentation of training samples and dropouts help
reduce overfitting.

This research is novel in several ways. First, this research
addresses a number of challenges related to data anonymity,
model selection, overfitting, and ensembling of individual
models. In particular, this research compares statistical, neural,
and ensembling machine-learning architectures and proposes a
novel ensembling architecture that combines the best predictions
of several component models. Second, this research is first
of its kind on these data that consider existing and newer
forecasting algorithms for predicting patient-related healthcare
expenditures on medicines. Third, this research considers novel
combinations of data shuffling and dropout mechanisms in a
systematic way across a number of neural architectures. As the
potential of the evaluated algorithms is still to be explored for
predicting patient-related healthcare expenditures on medicines,
this research is expected to provide suitable benchmarks for
future research on time-series healthcare datasets concerning
expenditures. Additionally, we have implemented the persistence
algorithm to obtain the baseline performance of the time-series
forecasting problem. The forecasting models developed are also
likely to be useful to a number of stakeholders like patients,
hospitals, pharmacies, and drug manufacturers.

In what follows, first, we explain the datasets, evaluation
metrics, and experiment design. Then, we explain the working
of different statistical, neural, and ensemble models that are
proposed for predicting patients’ expenditures on different pain
medications. Furthermore, we present our experimental results,
where we compare persistence, ARIMA, MLP, LSTM, and
ensemble model predictions. We close the paper by discussing
the implication of using different statistical, neural, and ensemble
methods for predicting healthcare outcomes.

DATASETS

In this research, we selected two pain medications (named “A”
and “B” as provided in the Supplementary Material) from the
Truven MarketScan dataset for our analyses, where Truven
provides real-world healthcare data to analyze patterns and
cost (Danielson, 2014).1 The selected medications are among
the top 10 most prescribed pain medications in the US (Scott,
2014). Data for both medications range between 2nd January
2011 and 15th April 2015 (1,565 days). Every day, on average,
about 1,428 patients refilled medicine A, and about 550 patients
refilled medicine B. For both medicines, we prepared a univariate
time series containing the daily average expenditures by patients
on these medications, respectively. The average expenditure

1Due to a non-disclosure agreement, the actual names of the two pain medications

have not been disclosed. Also, by anonymizing medicine names, we ensure that

this research and its outcomes do not target specific drugs, drug manufacturers,

hospitals, pharmacies, or patients in the real world.
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per patient for medicine on a day t was defined as per the
following equation:

Daily Average Expendituret = it/jt (1)

where i is the total amount spent in a day t on the medicine
across all patients and j is the total number of patients who refilled
the medicine in day t. This daily average expenditure was used
to compute the weekly average expenditure for both medicines,
where the weekly average expenditure was used to evaluate model
performance. For our analyses, across both pain medications, we
used the dataset between 2nd January 2011 and 30th July 2014
(1,306 days) for model training and the dataset between 31st July
2014 and 15th April 2015 (259 days) for model testing. Moreover,
standardization was required before training the models because
our time-series data had input values with different scales (Patro
and Sahu, 2015). Therefore, we standardized/re-scaled the time
series for both medicines within range [−1,+1].

Evaluation Metrics
All models (ARIMA, MLP, LSTM, and ensemble) were fit to
data at a weekly level using the following metrics: root mean
squared error (RMSE; error) and R-square (R2; trend) (Yilmaz
et al., 2010). As weekly average expenditure predictions were
of interest, the RMSE and R2 scores and visualizations for
weekly average expenditures were computed in weekly blocks of
7 days. Thus, the daily average expenditures per patient were
summed across 7 days in a block for both training and test
datasets. This resulted in the weekly average expenditure across
186 blocks of training data and 37 blocks of test data. We
used the training data to train different models to perform their
parameter calibration. After finishing the training, we used the
test data to verify the performance of trained models, where,
during test, model parameters were kept at the values found
during training.

Figure 1A shows the time-series data for medicine A.
Figures 1B,C show the time-series data for medicine B before
and after differencing, respectively. The x-axis shows the weekly
blocks, and the y-axis shows the weekly average expenditure (in
USD per patient). In Figure 1, the first 186 blocks correspond
to training data and the last 37 blocks correspond to the test
data. We performed the augmented Dickey–Fuller (ADF) test
(Dickey and Fuller, 1981) to determine the stationarity of a
time series and confirm the value of d parameter. As shown in
Figure 1A, the time series for medicine A was stationary (ADF
statistics = −10.10, p < 0.05). However, as shown in Figure 1B,
medicine B was non-stationary (ADF statistics = −2.20, ns).
Thus, while training models for medicine B, we first made the
time series stationary using first-order differencing (d = 1)
(ADF statistics after one time differencing = −13.07, p < 0.05)
(see Figure 1C). We used stationary data across both medicines
to train the models. The predictions obtained from models for
medicine B were first transformed to the non-stationary data
before calculating the value of the objective function, i.e., RMSE
and R2. We followed this procedure to train all the models for
medicine B.

We calibrated all models to reduce error and capture trend in
data. Thus, all models were calibrated using an objective function

that was defined as the following: [RMSE/10 + (1–R2)]. The
RMSE accounts for the error between the actual and predicted
data. The smaller the RMSE, the smaller the error between
model’s predictions and the actual data. In addition, the R2

(between 0 and 1) accounts for whether the model’s predictions
follow the same trend as that present in the actual data. The
larger the R2 (closer to 1), the larger the ability of the model to
predict the trend in actual data. In our analyses, we found that
the variation in RMSE term for both medicines was 10 times the
variation in the 1–R2 term in the standardized data. Therefore, we
divided the RMSE value by 10 to bring the RMSE value for both
medicines in the range 0 to 1 (which is the range of 1–R2). In our
parameter calibrations, the magnitude of the RMSE/10 term and
the 1–R2 termwas comparable across all models andmedications.
Hence, we used [RMSE/10 + (1–R2)] as the objective function
because variation in both terms was similar and in [0, 1]. Overall,
the objective function ensured that the obtained parameters
minimized the error (RMSE) and maximized the trend (R2)
on the weekly average expenditure per patient between model
and actual data. Through model calibrations, different model
parameters were varied across different ranges to find a set of
parameters for which the model produced the least value of
objective function on training data.

Experiment Design
All models forecasted one-step ahead with walk-forward
validation (Kaastra and Boyd, 1996). In one-step-ahead walk-
forward validation, a model uses training data to make a
prediction for the next time step. This prediction is then
evaluated against the actual value. Next, the actual value
corresponding to the prediction is added to the training data
and the process is repeated by predicting the value for the next
time step.

MATERIALS AND METHODS

Models
In this section, we explain the working of different models
like persistence (baseline), ARIMA, MLP, LSTM, and
ensemble models.

Persistence
The persistence model uses the value at the previous time
step to predict the value at the next time step. This model is
implemented to obtain the baseline performance in the time-
series forecasting problem.

Autoregressive Integrated Moving Average
In an ARIMA model (Newbold, 1983), the future value of a
variable is assumed to be a linear function of several previous
observations and random errors. An ARIMA model is defined
as ARIMA (p, d, q):

p: order of the autoregressive part (AR);
d: degree of first differencing involved;
q: order of the moving average part (MA).

AR stands for “autoregressive,” and it is a stochastic process
whose output values are linearly dependent on the weighted sum
of its previous values and a white noise error (Newbold, 1983).
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FIGURE 1 | The weekly average expenditure (in USD per patient) for medicine A without differencing (A), for medicine B before differencing (B), and for medicine B

after differencing (C).

MA stands for “moving average,” and it describes a stochastic
process whose output value is linearly dependent on the weighted
sum of a white noise error and the error term from previous
periods (Newbold, 1983). One of the tasks for building the
ARIMA model is to determine the value of (p, d, q). Classically,
the autocorrelation and partial autocorrelation function plots

have been used in the literature to determine the approximate
range of p and q parameters, respectively (Newbold, 1983). Next,
this range for p and q parameters can then be used in a grid
search procedure (Whitley, 1994) to decide the precise values of
these parameters. Following this methodology, we created the
autocorrelation and partial autocorrelation function plots first

Frontiers in Big Data | www.frontiersin.org 5 March 2020 | Volume 3 | Article 4

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kaushik et al. Forecasting of Healthcare Expenditures

and, then using these plots, we set the lower and upper bound
values in the grid search for the p and q parameters.

The value of d indicates the number of times we need to
difference the time series to make it stationary.We performed the
ADF test (Dickey and Fuller, 1981) to determine the stationarity
of a time series and find the value of the d parameter.

The underlying time series has the following form in the
ARIMA model:

yt
′
= c+81yt−1

′
+. . .+ 8pyp−1

′
+θ1et−1+. . .+θqet−q+et (2)

AR :81yt−1
′
+ . . .+ 8pyp−1

′

MA : θ1et−1 + . . .+ θqet−q + et

where c is a constant, yt
′ is the differenced series of observations

(refer to Equation 2), et is the random error or white noise
at a time period t, 81, 82, . . . 8p are the coefficients of the
autoregressive part of the pth order, and θ1, θ2, . . . θq are
the coefficients of the moving-average part of the qth order
part, respectively.

Multilayer Perceptron
An MLP is a variant of the original perceptron model (see
Figure 2A) proposed by Rosenblatt (1961).

A neuron (represented as
∑

in Figure 2A) computes
a weighted sum of the inputs, followed by a non-linear
activation ϕ of the calculated sum, as shown in Equation 3.

FIGURE 2 | (A) Rosenblatt’s perceptron and (B) Architectural graph of an MLP with two hidden layers.
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Neural network architectures are considered as the universal
function approximators because of the presence of activation
functions. An activation function helps to generate mappings
from inputs to outputs, and it provides the neural network
model the ability to learn complex data representations (Chung
et al., 2016). There are a number of activation functions
proposed in literature, which include the sigmoid, tanh,
and ReLU (Krizhevsky et al., 2012; Chung et al., 2016).
Krizhevsky et al. (2012) have shown that the sigmoid and
tanh activation functions suffer from the problem of vanishing
gradient, while the ReLU activation function overcomes the
vanishing gradient problem and provides faster convergence.
Also, the function is computationally efficient to compute
(Krizhevsky et al., 2012). Thus, based on the literature, we
used the ReLU activation function in the MLP model. The
output oi of a neuron in the MLP was defined as per the
following equation:

oi = ϕ (

d
∑

j=1

(xjwij + bj)) (3)

where d is the length of the input vector, xi is a single instance of
the input vector, and bj andwij are the bias and weights associated
with each xj. Figure 2B shows the architecture of an MLP with
two hidden layers. A typical MLP is composed of multiple hidden
layers, with multiple neurons in each layer where every neuron in
a layer (say i) is fully connected to every other neuron in the next
layer (i.e., i + 1).

Long Short-Term Memory
An LSTM model is an RNN model with the capacity of
remembering (i.e., memory) the values from earlier stages in the
network. The architecture of an LSTM consists of units called
memory cells. Figure 3 shows an LSTM memory cell containing

self-connections and special multiplicative units called gates.
These connections remember the temporal state of the memory
cells and the gates control the flow of information. Each memory
cell contains an input gate, an output gate, and a forget gate.
The flow of input activations is controlled by the input gate,
while the flow of cell activations into the remaining network is
controlled by the output gate. Furthermore, the internal state
of the cell is scaled by the forget gate and is added back to the
cell as input through a self-recurrent connection. In Figure 3,
ct−1 is the previous cell state, ht−1 is the previous cell output,
xt represents input to the memory cell, ct represents the new
cell state, and ht represents the output of the hidden layer at
time t.

Ensemble
In this research, we propose a novel ensemble architecture
that combines the best predictions from multiple models to
predict outcomes of interest. The ensembling is expected to
reduce the bias and variance in the individual prediction models
by using conventional ensembling techniques like mode or
average (De Gooijer and Hyndman, 2006). In the case of a
mode or average ensembles, the most frequently occurring or
the average prediction from multiple models are used as the
final prediction from the ensemble (De Gooijer and Hyndman,
2006). To overcome the challenges of the mode or average
ensembling techniques, the ensembling approach in this research
uses a weighted average ensemble, where different individual
model’s best predictions are dynamically weighted (Adhikari
and Agrawal, 2014). In our ensemble model, the weights
associated with different best model predictions from ARIMA,
MLP, and LSTM models are calibrated using a normalized
exponential weighting algorithm (Adhikari et al., 2015). More
details about this model’s calibration are presented ahead in
this paper.

FIGURE 3 | An illustration of an LSTM memory cell. Source: Gupta and Dinesh (2017).
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Models Training
Time-Series Forecasting Using ARIMA
As explained above, the ARIMA model possessed three
parameters p (order of autoregressive part), d (degree of
differencing), and q (order of moving average part) (Newbold,
1983). The p term describes the previous time steps of a time
series used for predicting the future value. The q term describes
the previous error terms used to predict the future value (Box
et al., 2015). The autocorrelation and partial autocorrelation
function plots revealed the best range for the variation of q
and p to be integer values between [0, 5]. Thus, the grid
search was applied by passing the integer values in the range
[0, 5] for both p and q to decide the precise values of these
parameters. Through grid search, we checked all the integer
combinations of p and q between 0 and 5 and chose the values
for which we obtained the least value of our objective function.
The parameter values for which we obtained the least value of
the objective function were termed as the optimum values of
these parameters.

The value of d indicates the number of times we need to
difference the time series to make it stationary. Based on the
ADF test (Dickey and Fuller, 1981), we found the time series
of medicine A to be already stationary (d = 0). However, the
time series for medicine B was non-stationary and required one-
time differencing (d = 1) (the ADF test confirmed that the
one-time differenced time series for medicine B was stationary).
As medicine A was stationary (see Figure 1A), the lag value was
calculated on the original time series. In the ARIMA model, we
obtained lag value of 2 time steps for medicine A. However,
in case of medicine B (non-stationary time series; Figure 1B),
the lag value was calculated after one-time differencing. Thus,
on the differenced series (Figure 1C), we obtained a lag value
of 2 time steps for medicine B [however, on the original (non-
differenced) series, it was a lag of 3 time steps for medicine
B]. The time series for each medication was transformed into a
supervised learning problem beforemodel training. Formedicine
A, we used the two previous time steps (t – 2) and (t – 1) of
the original series as inputs to a model and the current time
step (t) as the output from the model. For medicine B, we
trained the models using the differenced series where the models
utilized past 3 time steps (t – 3), (t – 2), and (t – 1) of the
original series (i.e., lag = 2 for the differenced series) as inputs
to a model and the current time step (t) as the output from
the model.

Time-Series Forecasting Using MLP and LSTM
Both MLP and LSTMmodels were trained across each of the two
medications on the training dataset. On medicine A, MLP and
LSTM models were trained on original time series. On medicine
B, MLP and LSTM models were trained on the differenced
time series. We used the genetic algorithm (Whitley, 1994) with
20% mutation and 80% crossover rate to tune the following
hyper-parameters using training data: number of hidden layers,
number of neurons in a layer, batch size, and epochs. The hyper-
parameters were varied in the following ranges: hidden layers (1,
2, 3, and 4), number of neurons in a layer (4, 8, 16, 32, and 64),
batch size (5, 10, 15, and 20), and number of epochs (8, 16, 32,

64, 128, 256, and 512). First, we hand-tuned the abovementioned
parameters in MLP and LSTM models to obtain an idea about
the minimum and maximum value of parameter ranges. The
minimum and maximum values of a hyper-parameter were the
ones where we did not find improvements in model’s fit by
choosing a value lower than the minimum and higher than the
maximum. Next, we varied the hyper-parameters between the
minimum and maximum and we used genetic algorithm to tune
the hyper-parameters (layers, neurons, batch size, and epochs) of
the MLP and LSTM architectures. The genetic algorithm used
RMSE/10 + (1–R2) as the objective function, and it was run
for 100+ generations. We stopped the genetic algorithm when
the value of objective function did not change for the past 20
generations. Out of these generations, we obtained the set of
hyper-parameters for which we got the minimum value of the
objective function (we call these optimum parameters). After
training, all the models were validated on test datasets. During
training, we did not want to give advantage to the memory-based
LSTM model over the memory-less MLP model. Therefore, we
varied the same range of hyper-parameters for both the MLP and
LSTM models. The LSTM model is a memory-based model that
could benefit by keeping larger lag values. However, we did not
find improvements in RMSEs in the LSTM model for different
lag values between 2 and 8. To ensure that the lag was kept the
same across all models, we chose a lag value of 2 time steps across
MLP and LSTM models for medicine A (using original series).
For medicine B, we trained the MLP and LSTMmodels using the
differenced series where the models utilized past 2 time steps of
the differenced series (i.e., lag= 3 of the original series). We used
these models to predict patients’ daily average expenditure on
medicines. After getting the predictions for 259 days (test data),
we summed these daily average expenditures on blocks of 7 days
to get the weekly average expenditures by patients on medicines.

In addition, in each MLP and LSTM model, we varied
shuffling of training data and dropout of nodes as per the
following combinations: shuffle with dropout, shuffle without
dropout, no shuffle with dropout, and no shuffle without
dropout. First, we converted the training time series for each
medicine into smaller supervised sets (mini-batches) containing
attributes corresponding to the chosen look-back period. When
shuffling was present, the mini-batches were shuffled randomly
across time series for each medicine. When shuffling was
absent, we did not shuffle the mini-batches and presented these
batches in sequential order to the neural network. Dropout is a
regularization technique, which is used to tackle overfitting in
neural networks (Srivastava et al., 2014). As per Srivastava et al.
(2014), dropout can be implemented on any or all hidden layers
in the network except the output layer. Based on this literature,
when dropout was present, 20% of the hidden-layer nodes in
the MLP model and 20% of the nodes or recurrent connections
in LSTMs were randomly dropped out during model training.
When dropout was absent, no nodes in the MLP model and no
nodes or recurrent connections in LSTMs were removed from
the hidden layers in the network.

Using the genetic algorithm, we obtained the best set of
hyper-parameters for eachmedication for different combinations
of dropouts and shuffling (the best set of hyper-parameters
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minimized the objective function) on training data. Next, we
ran these best hyper-parameters 30 times for each of the four
dropout and shuffle combinations (the model was run 30 times
as there is a run-to-run variability in model’s output) on training
data. Among the 30 model runs, the run with the least objective
function value was treated as the final prediction from the model
for a dropout and shuffle combination. These final predictions
with the least objective function value were then used along with
the other models’ final predictions to generate the predictions
for the ensemble approach. However, all the models were finally
compared based on their average performance across 30 runs.We
used the ReLU activation function while training the MLP and
LSTMmodels (Chung et al., 2016). These models were created in
Keras v2.2.2 using Tensorflow backend v1.10.0 (Chollet, 2015).
We used the same procedure for training the MLP and LSTM
models for both the pain medications.

Time-Series Forecasting Using Ensemble
In order to train the ensemblemodel, we used the best predictions
from ARIMA, MLP, and LSTM models on training data. As
mentioned above, all these models were run 30 times. The best
predictions from one of these 30 runs (the one with the lowest
RMSE) in each model were used to generate the predictions from
the ensemble model. The ARIMA model, however, is different
from the neural network models as it gives the same predictions
across the 30 runs. We used the predicted training data points
(1–1,306 points) from the best run of the ARIMA, MLP, and
LSTM models to compute the weights of the ensemble model.
In order to calibrate the weights of ensemble model, we used
the normalized exponential weighted algorithm (Adhikari et al.,
2015).

Normalized exponential weighted algorithm
The working of this algorithm is presented in the box below.
Given a set ofN predictions from differentmodels on the training
data (line 1), this algorithm starts with assigning equal weight
to all predictions (i.e., 1

3 weight to the ARIMA, MLP, and LSTM
model predictions; line 2). The assumption of each weight to be
1/N ensures that the sum of all model weights equal 1 at each
step of the model training. Then, for each of the training samples
(from 1 to T, where T = 1,306 in our data), the squared error
between each model’s prediction and actual data is computed
(line 4). After each training sample, each model’s weights are
updated using the squared error for different model predictions
(line 5), where the parameter η is a free learning-rate parameter.
Finally, we normalize the weights obtained for each model’s
predictions by dividing them with the total sum of the weights
across all models (line 6). We normalize these weights to bring
all weights between 0 and 1. This process continues until all
the 1,306 training samples are covered. To obtain the optimum
weights corresponding to each model, we need to try different
values of the η parameter. In this algorithm, we calibrated the
value of the η parameter by varying its values from 0.0 to 1.0 in
steps of 0.1. Therefore, we tried 11 different values of η parameter
and obtained different weights for each model. We selected those
weights for which we obtained the minimum value of objective
function (i.e., minimum RMSE and maximum R2). We call these
weights optimum weights for ARIMA, MLP, and LSTMmodels.

Algorithm 1: Normalized Exponential Weighted Algorithm

1: Input: A model i predicting outcome f ti for round t and a
free parameter η

2: w1
i ←

1
N i = 1, . . . , N models (set initial weights of each

model’s predictions to 1/N such that sum of the weights is
equal to 1

3: For training samples t= 1 to T and for each model
i = 1 to N do

4: l
(

f ti yt
)

= (f ti − yt)
2

(calculation of squared error
where yt is the actual value)

5: wt+1
i ← wt

ie
ηl(f ti ,yt)

6: wt+1
i ← wt+1

i /
∑N

i= 1 w
t+1
i (normalization of weights)

EXPERIMENTAL RESULTS

Persistence Model
In the persistence model, we obtained RMSE= 145.68 (medicine
A) and RMSE = 40.33 (medicine B) on test data. Similarly, we
obtained R2 = 0.76 (medicine A) and R2 = 0.91 (medicine B)
on test data. Figure 4 shows the persistence model’s performance
for medicine A (Figure 4A) and medicine B (Figure 4B) on the
average expenditure per patient in test data.

ARIMA Model
The ARIMA model for medicine A possessed the following
parameters: p = 2, d = 0, and q = 1. The ARIMA model
for medicine B possessed the following parameters: p = 2,
d = 1, and q = 2. Table 1 shows the ARIMA model’s
RMSE and R2 on training and test data for both medicines.
Figure 5 shows the ARIMA model’s performance for medicine
A (Figure 5A) and medicine B (Figure 5B) on the average
expenditure per patient in test data. As seen in Figure 5 and
Table 1, the model fits were poor across both training and test
data for both medicines.

MLP Model
Table 2 shows theMLPmodel’s RMSE andR2 on training and test
data for different shuffle and dropout combinations onmedicines
A and B (shufflewith dropout, shufflewithout dropout, no shuffle
with dropout, and no shuffle without dropout). As shown in
Table 2, the best RMSE (= 142.69) on test data was obtained
for the no shuffle with dropout combination for medicine A,
and this model contained 2 hidden layers, 4 neurons in each
hidden layer, 15 batch size, and 16 epochs. On medicine B, we
obtained the best RMSE (= 40.33) on test data for no shuffle
and dropout combination. The corresponding MLP model for
medicine B possessed 3 layers, 4 neurons in each layer, 5 batch
size, and 128 epochs. Figure 6 shows the MLP model fits for
medicine A (Figure 6A) and medicine B (Figure 6B) in test
data for the best-performing model combinations. As shown
in Figure 6, the MLP model fits were reasonably accurate for
both medicines.

LSTM Model
Table 3 shows the LSTM model’s RMSE and R2 on training
and test data for different shuffle and dropout combinations on
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FIGURE 4 | Average expenditure (in USD per patient) from the persistence model for medicine A (A) and for medicine B (B) in test data.

TABLE 1 | ARIMA results during training and test.

Medicine name Train RMSE Train R2 Test RMSE Test R2

A 248. 72 0.14 260.97 0.0004

B 102.02 0.89 126.18 0.08

medicines A and B (shuffle with node and recurrent connection
dropout, shuffle without dropout, no shuffle with node and
recurrent connection dropout, and no shuffle without dropout).
As shown in Table 3, the best RMSE (= 143.69) on test data
was obtained for the shuffle and no dropout combination for
medicine A, and this model contained 1 hidden layer, 4 neurons
per hidden layer, 20 batch size, and 8 epochs. On medicine B,
we obtained the best RMSE (= 40.30) on test data for shuffle
and no dropout combination. The corresponding LSTM model
possessed 1 layer, 4 neurons, 20 batch size, and 8 epochs. Figure 7
shows the LSTM model fits for medicine A (Figure 7A) and

medicine B (Figure 7B) in test data for the best-performing
model combinations. As shown in Figure 7, the LSTMmodel fits
were reasonably accurate for both medicines.

Ensemble Model
Table 4 shows the ensemble model’s RMSE and R2 on training
and test data on both the medicines. These results were
obtained using the best predictions out of 30 runs from each
of the ARIMA, MLP, and LSTM models. The ensemble results
on medicine A were obtained with the following weights:
0.333 for ARIMA, 0.329 for MLP, and 0.329 for LSTM,
with η = 0.2 as the learning rate parameter from the
normalized exponential weighted algorithm. On medicine B,
the ensemble results were obtained with the following weights:
0.000 for ARIMA, 0.231 for MLP, and 0.768 for LSTM. The
ensemble model weights for medicine B were obtained for
η = 0.9 using the normalized exponential weighted algorithm.
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FIGURE 5 | Average expenditure (in USD per patient) from the ARIMA model for medicine A (A) and for medicine B (B) in test data.

TABLE 2 | MLP results during training and test.

Medicine

Name

Combinations of

shuffle and dropout

Train

RMSE

Train R2 Test

RMSE

Test R2

A Shuffle with dropout 118.87 0.83 148.09 0.77

Shuffle without dropout 134.10 0.79 153.80 0.74

No shuffle with

dropout

130.63 0.79 142.69 0.74

No shuffle without

dropout

136.59 0.77 154.45 0.74

B Shuffle with dropout 50.59 0.97 49.03 0.88

Shuffle without dropout 53.58 0.97 55.00 0.85

No shuffle with

dropout

43.35 0.98 40.33 0.91

No shuffle without

dropout

56.86 0.97 54.80 0.85

The bold text highlights the variation with the lowest RMSE on test data.

Figure 8 shows the model fits from the ensemble model for
medicine A (Figure 8A) and medicine B (Figure 8B). As shown
in Figure 8, the ensemble model’s fits (RMSE and R2) on
test data were reasonably better compared to its individual
constituting models.

Model Comparison
Table 5 shows the best test RMSE and best test R2 obtained
over 30 runs from all the models for both the medicines. The
average RMSE and R2 were obtained by averaging the RMSE
and R2 across both medicines A and B. As seen in the table,
both the MLP and LSTM models outperformed the persistence
(baseline) as well as the ARIMA model. Also, the ensemble
model performed the best among all the models for both the
medicines on the test data. The overall trend across persistence,
LSTM, and MLP models was similar and better compared to the
ARIMA model.
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FIGURE 6 | Average expenditure (in USD per patient) from the MLP model for medicine A (A) and for medicine B (B) in test data.

DISCUSSIONS AND CONCLUSIONS

The primary objective of this research was to compare the
performance of existing statistical (persistence and ARIMA) and
neural (MLP and LSTM) models with a novel ensemble model
for forecasting patient-related expenditures on medications.
Another objective of this paper was to systematically evaluate
the advantages of shuffling of training data and adding of
dropouts while training the neural network models individually
or as a part of the ensemble model. Overall, we expected the
ensemble model to perform better compared to the statistical and
neural models. Also, we expected shuffling and dropouts to help
models improve their performance. Overall, our results have met
our expectations.

First, as per our expectation, the best performance in terms
of error was found from the ensemble model, followed by MLP,
LSTM, persistence, and ARIMAmodels. A likely reason for these

results is that the persistence and ARIMA models are perhaps
not able to capture the non-linearities present in the time-series
data. Thus, overall, these models tended to perform not as well
compared to other models. Also, overall, the neural network
models (MLP and LSTM) performed similarly and better than the
persistence and ARIMA models. That is likely because data for
both medicines were non-linear and neural network models, by
their design, could account for the non-linear trends in datasets.
However, another reason for this result could be simply because
the neural network models possess several weights (parameters),
whereas the ARIMA model possesses only three parameters.
These reasons for the MLP and LSTM models and the fact that
increasing the lag in the LSTM model did not help this model
improve its performance could also help explain the similarity
in performance for the MLP and LSTM models. Furthermore,
the novel ensemble model performed better compared to all the
individual models because this model gave more weight to the
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TABLE 3 | LSTM results during training and test.

Medicine

name

Combinations of

shuffle and dropout

Train

RMSE

Train R2 Test

RMSE

Test R2

A Shuffle with node

dropout

120.124 0.82 145.961 0.77

Shuffle with recurrent

connection dropout

130.33 0.78 155.29 0.72

Shuffle without

dropout

109.96 0.87 143.69 0.77

No shuffle with node

dropout

104.78 0.87 145.69 0.76

No shuffle with

recurrent connection

dropout

129.35 0.82 200.42 0.67

No shuffle without

dropout

139.11 0.77 150.51 0.76

B Shuffle with node

dropout

43.36 0.98 40.34 0.91

Shuffle with recurrent

connection dropout

52.43 0.97 52.02 0.85

Shuffle without

dropout

43.35 0.98 40.30 0.91

No shuffle with node

dropout

43.33 0.98 40.35 0.91

No shuffle with

recurrent connection

dropout

61.04 0.96 65.42 0.76

No shuffle without

dropout

45.29 0.98 43.42 0.91

The bold text highlights the variation with the lowest RMSE on test data.

accurate model predictions than the less accurate ones as well as
dynamically adjusted its weights.

In our results, the ensemble model outperformed other
statistical and neural models. This result may not be in agreement
with prior literature that shows that ensembling approaches
may only produce minor improvements (Hinton et al., 2015). A
likely reason behind achieving substantial boost in performance
through our novel ensemble model is the design of its training
procedures. After getting the best model configurations (hyper-
parameters) from individual models, we trained all individual
models several times to obtain the best value of their objective
function. Additionally,MLP and LSTMwere trainedwith shuffle-
and-dropout variations. Out of the several individual model
runs, the ensemble model chose the best predictions to train its
weight and learning-rate parameters. For calibrating the weights,
the ensemble model dynamically adjusted its weights using a
normalized exponential algorithm.

Third, we found that, in general, the MLP model performed
better on test data with no shuffle and dropout combination
across both medicines. A likely reason for this result could be
that adding the dropout helped the MLP to generalize better
with reduced overfitting (performance of MLP during test was
comparable or better compared to that during training). In
addition, MLPmodels do not possess memory to account for past
presentations of training data. Thus, in the absence of memory,

the sequential (non-shuffled) presentation of training data most
likely helped the MLP models to improve their performance.

Fourth, for LSTM models, the best results on test data were
obtainedwhen input data were shuffled and dropouts were absent
in the network. A likely reason for this result could be that
the LSTM models contain memory, so they could save the past
presentation of training data when shuffled mini-batches were
passed to the network. Dropout did not reduce the overfitting
in the LSTM model for medicine A. Furthermore, the results of
medicine B were much better compared to those of medicine
A. In order to reduce overfitting in the recurrent network (i.e.,
LSTM), we also implemented recurrent dropout that drops the
recurrent connections in the network. With recurrent dropout,
the lowest RMSE obtained was 155.29 on test data for medicine
A. However, with the best shuffle-and-dropout condition, we
obtained 143.69 RMSE for medicine A. Similarly, on medicine
B, the RMSE increased from 40.30 to 52.02 by implementing
recurrent dropout. Thus, the overall utility of dropout (to
reduce overfitting) across the two medications was not found in
this model. Overall, from our findings, we may conclude that
shuffling the input training data may help the LSTM models
and adding the dropout may help the MLP-based time-series
forecasting models to perform better. Interestingly, the results of
ensemble model showed no overfitting for both medicines. Thus,
in contrast to using dropouts, the ensemble model’s use may help
reduce overfitting in data.

Beyond dropouts, prior research has proposed other
regularization techniques such as L1 and L2 regularization
for the problem of overfitting (Srivastava et al., 2014). These
regularization techniques add a regularization term to the cost
function to penalize the model for having several parameters.
The parameter reduction leads to simpler models that likely
reduce overfitting. In the future, we plan to apply the L1 and
L2 regularization to evaluate their ability to reduce overfitting
in data.

Additionally, the persistence (baseline) model performed
better compared to the ARIMA model. A likely reason
for this result could be the nature of datasets, where the
average per-patient expenditure changed little between two
adjacent blocks. Perhaps, due to these smaller changes in the
expenditure, the persistence model was able to gain advantage
over the ARIMA model. In fact, a smaller value of p and
q parameters in the ARIMA model agreed well with the
plausibility of the persistence model performing better across
both medications.

This research work has a number of implications for
healthcare data analytics. First, an implication from our results is
that neural network models could be used in healthcare datasets
to predict medicine expenditures. However, an ensemble of these
neural models may improve the overall results further. Although
we considered the weekly expenditure per patient onmedications
in this paper, our results are likely to hold for other patient-
related healthcare expenditures. However, it may be prudent to
test these models on other per-patient healthcare expenditures
before using them in a production environment. Second,
another implication of our results is that it may be expensive
to train neural network and ensemble models; however, once
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FIGURE 7 | Average expenditure (in USD per patient) from the LSTM model for medicine A (A) and for medicine B (B) in test data.

TABLE 4 | Ensemble model results during training and test.

Ensemble model for medicines Train RMSE Train R2 Test RMSE Test R2

A 131.60 0.78 127.20 0.77

B 66.48 0.95 40.24 0.91

these models are trained, they are easy and computationally
and temporarily inexpensive to apply on new data.
Therefore, we believe that the neural and ensemble approaches
would be useful to caregivers, patients, pharmacies, and
pharmaceutical companies. For example, the proposed ensemble
and neural models could be bundled into a mobile or desktop
application that helps patients better manage their spending
on medicine purchases by forecasting their future spending.
Third, the proposed models may help pharmaceutical companies
optimize their manufacturing processes and determine an
attractive pricing for their medications. Furthermore, the

proposed models could also be beneficial for medicine inventory
management and pricing across pharmacies and hospitals.

Although the proposed ensemble approach performs
relatively better compared to other statistical and neural
approaches and is reproducible, it may require model retraining
at regular time intervals especially when newer data are generated
over time. Also, we believe that our results replicated on two pain
medications show a certain amount of generalizability. However,
it may be advisable to test the proposed ensembling approach
against other types of medications with similar or dissimilar
distribution to the current dataset as part of future research.

There are several possibilities for future research that
could extend this work. For example, beyond predicting
per-patient medicine expenditures, future research could use
CNN models and other RNN models to predict disease
risk and diagnose patient symptoms (Lipton et al., 2015;
Maxwell et al., 2017). Here, RNNs like the GRUs (Chung
et al., 2014) could be used and compared to regression-based
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FIGURE 8 | Average expenditure (in USD per patient) from ensemble model for medicine A (A) and for medicine B (B) in test data.

TABLE 5 | Best results over 30 runs on test data from different models across

both medicines.

Model RMSE

(A)

RMSE

(B)

R2 (A) R2 (B) Average

RMSE

Average

R2

Persistence 145.68 40.33 0.76 0.91 93.00 0.84

ARIMA 260.97 126.18 0.0004 0.08 193.58 0.04

MLP 142.69 40.33 0.74 0.91 91.51 0.83

LSTM 143.69 40.30 0.77 0.91 91.99 0.84

Ensemble 127.20 40.24 0.77 0.91 83.72 0.84

The bold text highlights the model with the lowest RMSE on test data.

techniques, i.e., support vector regression (Morid et al., 2017),
to predict healthcare outcomes. Also, as the focus of this paper
was on the applicability of statistical, neural, and ensemble

architectures on longitudinal healthcare data, one could extend
this comparison to other datasets with different challenges such
as variability in data velocity, data missingness, and data types.
In addition to weighted ensembles, there exists bagging, or
bootstrap aggregating, which makes decisions based on the
aggregated results of the sampled decision trees. Along with
the weighted ensembles, one may use bootstrapped samples
of the training data, thereby creating a random forest of
models to create ensemble models. Still another possibility for
future research is to extend univariate time-series forecasting
to multi-variate time-series forecasting (Kaushik et al., 2019),
where one uses other patient-related variables (both continuous
and discrete) alongside per-patient expenditures on different
medications. Some of these ideas form the immediate next
steps in our research program on time-series forecasting of
healthcare datasets.

Frontiers in Big Data | www.frontiersin.org 15 March 2020 | Volume 3 | Article 4

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kaushik et al. Forecasting of Healthcare Expenditures

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

SK andVD contributed to the conception and design of the study.
SK wrote the first draft of the manuscript. SK and VD improved
the final version of the manuscript draft. ND, SN, and LP helped
in getting the data used in this paper. SK and AC organized the
database and trained ARIMA, LSTM, and ensemble models. PS
trained the MLP model. All authors contributed to manuscript
revision, read and approved the submitted version.

FUNDING

This research was supported by a research grant from
RxDataScience, Inc., USA, to the Indian Institute of Technology
Mandi, India. The research reported in this paper is meant
solely for societal benefit, and authors may be contacted to
get models and data used in this research. The project was
supported by grants (awards: #IITM/CONS/PPLP/VD/03 and
IITM/CONS/RxDSI/VD/33) to VD.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.
2020.00004/full#supplementary-material

REFERENCES

Adebiyi, A. A., Adewumi, A. O., and Ayo, C. K. (2014). Comparison of ARIMA

and artificial neural networks models for stock price prediction. J. Appl.

Mathematics 7, 1–7. doi: 10.1155/2014/614342

Adhikari, R., and Agrawal, R. K. (2014). Performance evaluation of weights

selection schemes for linear combination of multiple forecasts. Artif. Intel. Rev.

42, 529–548. doi: 10.1007/s10462-012-9361-z

Adhikari, R., Verma, G., and Khandelwal, I. (2015). A model ranking based

selective ensemble approach for time series forecasting. Procedia Comput. Sci.

48, 14–21. doi: 10.1016/j.procs.2015.04.104

Armstrong, J. S. (ed.). (2001). Principles of Forecasting: A Handbook for Researchers

and Practitioners, Vol. 30. New York, NY: Springer Science & Business Media.

Ash, A. S., Ellis, R. P., Pope, G. C., Ayanian, J. Z., Bates, D. W., Burstin, H., et al.

(2000). Using diagnoses to describe populations and predict costs. Health Care

Finance Rev. 21, 7–28.

Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Urban, S., and van der

Smagt, P. (2013). On fast dropout and its applicability to recurrent networks.

arXiv 1311.0701.

Bertsimas, D., Bjarnadóttir, M. V., Kane, M. A., Kryder, J. C., Pandey, R., Vempala,

S., et al. (2008). Algorithmic prediction of health-care costs. Oper. Res. 56,

1382–1392. doi: 10.1287/opre.1080.0619

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time Series

Analysis: Forecasting and Control. San Francisco, CA: John Wiley & Sons.

Brownlee, J. (2016). Embrace Randomness in Machine Learning. Available online

at: https://machinelearningmastery.com/randomness-in-machine-learning/

Che, Z., Purushotham, S., Cho, K., Sontag, D., and Liu, Y. (2018). Recurrent neural

networks for multivariate time series with missing values. Sci. Rep. 8:6085.

doi: 10.1038/s41598-018-24271-9

Chollet, F. (2015). Keras: Deep Learning Library for Theano and Tensorflow.

Available online at: https://keras.io/k.7

Chung, H., Lee, S. J., and Park, J. G. (2016). “Deep neural network using

trainable activation functions,” in 2016 International Joint Conference on Neural

Networks (IJCNN) (Montreal, QC: IEEE), 348–352.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation of

gated recurrent neural networks on sequence modeling. arXiv 1412.3555.

Danielson, E. (2014). Health Research Data for the Real World: The

MarketScan:Registered: Databases. Ann Arbor, MI: Truven Health Analytics.

De Gooijer, J. G., and Hyndman, R. J. (2006). 25 years of time series forecasting.

Int. J Forecast. 22, 443–473. doi: 10.1016/j.ijforecast.2006.01.001

Dickey, D. A., and Fuller,W. A. (1981). Likelihood ratio statistics for autoregressive

time series with a unit root. Econometrica 49, 1057–1072. doi: 10.2307/1912517

Elman, J. L. (1990). Finding structure in time. Cogn. Sci. 14, 179–211.

doi: 10.1207/s15516709cog1402_1

Farley, J. F., Harley, C. R., and Devine, J. W. (2006). A comparison of

comorbidity measurements to predict healthcare expenditures. Am. J. Manag.

Care 12, 110–118.

Freitas, P. S., and Rodrigues, A. J. (2006). Model combination in neural-based

forecasting. Eur. J. Operat. Res. 173, 801–814. doi: 10.1016/j.ejor.2005.06.057

Gamboa, J. C. B. (2017). Deep learning for time-series analysis. arXiv 1701.01887.

Gupta, S., and Dinesh, D. A. (2017). “Resource usage prediction of cloud

workloads using deep bidirectional long short-termmemory networks,” in 2017

IEEE International Conference on Advanced Networks and Telecommunications

Systems (ANTS). (Bhubaneswar: IEEE), 1–6.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural

network. arXiv 1503.02531.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780.

Jain, A., and Kumar, A. M. (2007). Hybrid neural network models for

hydrologic time series forecasting. Appl. Soft Comput. 7, 585–592.

doi: 10.1016/j.asoc.2006.03.002

Jose, V. R. R., and Winkler, R. L. (2008). Simple robust averages

of forecasts: some empirical results. Int. J. Forecast. 24, 163–169.

doi: 10.1016/j.ijforecast.2007.06.001

Kaastra, I., and Boyd, M. (1996). Designing a neural network for forecasting

financial and economic time series. Neurocomputing 10, 215–236.

doi: 10.1016/0925-2312(95)00039-9

Kamruzzaman, J., Begg, R. K., and Sarker, R. A. (Eds). (2006). “Artificial neural

networks: applications in finance and manufacturing,” in Artificial Neural

Networks in Finance andManufacturing, 1st Edn (Hershey, PA: IGI Publishing),

1–27.

Kang, G., Dong, X., Zheng, L., and Yang, Y. (2017). Patchshuffle regularization.

arXiv 1707.07103.

Kaushik, S., Choudhury, A., Dasgupta, N., Natarajan, S., Pickett, L. A., and Dutt, V.

(2017). “Using LSTMs for predicting patient’s expenditure on medications,” in

2017 International Conference on Machine Learning and Data Science (MLDS).

(Noida: IEEE), 120–127.

Kaushik, S., Choudhury, A., Dasgupta, N., Natarajan, S., Pickett, L. A., and

Dutt, V. (2019). “Ensemble of multi-headed machine learning architectures for

time-series forecasting of healthcare expenditures,” in Applications of Machine

Learning, eds J. Kumar Verma, P. Johri, and S. Paul (Singapore: Springer Nature

Singapore Pvt Ltd.).

Kihoro, J., Otieno, R., and Wafula, C. (2004). Seasonal time series forecasting:

A comparative study of ARIMA and ANN models. AJST 5, 41–49.

doi: 10.4314/ajst.v5i2.15330

Koskela, T., Lehtokangas, M., Saarinen, J., and Kaski, K. (1996). “Time series

prediction with multilayer perceptron, FIR and Elman neural networks,” in

Proceedings of the World Congress on Neural Networks. (San Diego, CA: INNS

Press), 491–496.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. Adv. Neural. Inform. Process. Syst.

25, 1097–1105. doi: 10.1145/3065386

Lipton, Z. C., Kale, D. C., Elkan, C., and Wetzel, R. (2015). Learning to diagnose

with LSTM recurrent neural networks. arXiv 1511.03677.

Frontiers in Big Data | www.frontiersin.org 16 March 2020 | Volume 3 | Article 4

https://www.frontiersin.org/articles/10.3389/fdata.2020.00004/full#supplementary-material
https://doi.org/10.1155/2014/614342
https://doi.org/10.1007/s10462-012-9361-z
https://doi.org/10.1016/j.procs.2015.04.104
https://doi.org/10.1287/opre.1080.0619
https://machinelearningmastery.com/randomness-in-machine-learning/
https://doi.org/10.1038/s41598-018-24271-9
https://keras.io/k.7
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.2307/1912517
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1016/j.ejor.2005.06.057
https://doi.org/10.1016/j.asoc.2006.03.002
https://doi.org/10.1016/j.ijforecast.2007.06.001
https://doi.org/10.1016/0925-2312(95)00039-9
https://doi.org/10.4314/ajst.v5i2.15330
https://doi.org/10.1145/3065386
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Kaushik et al. Forecasting of Healthcare Expenditures

Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., and Gao, J. (2017). “Dipole: diagnosis

prediction in healthcare via attention-based bidirectional recurrent neural

networks,” in Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. (Halifax, NS: ACM), 1903–1911.

doi: 10.1145/3097983.3098088

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2018). Statistical and

machine learning forecasting methods: concerns and ways forward. PLoS ONE

13:e0194889. doi: 10.1371/journal.pone.0194889

Maxwell, A., Li, R., Yang, B., Weng, H., Ou, A., Hong, H., et al. (2017).

Deep learning architectures for multi-label classification of intelligent

health risk prediction. BMC Bioinform. 18:523. doi: 10.1186/s12859-017-

1898-z

Miotto, R., Wang, F., Wang, S., Jiang, X., and Dudley, J. T. (2017). Deep

learning for healthcare: review, opportunities and challenges. Brief Bioinform.

19, 1236–1246. doi: 10.1093/bib/bbx044

Morid, M. A., Kawamoto, K., Ault, T., Dorius, J., and Abdelrahman, S. (2017).

“Supervised learning methods for predicting healthcare costs: systematic

literature review and empirical evaluation,” in AMIA Annual Symposium

Proceedings, Vol. 2017 (Washington, DC: American Medical Informatics

Association), 1312.

Newbold, P. (1983). ARIMA model building and the time series analysis

approach to forecasting. J. Forecast. 2, 23–35. doi: 10.1002/for.39800

20104

Patro, S., and Sahu, K. K. (2015). Normalization: a preprocessing stage. arXiv

1503.06462. doi: 10.17148/IARJSET.2015.2305

Pham, T., Tran, T., Phung, D., and Venkatesh, S. (2016). “Deepcare: a

deep dynamic memory model for predictive medicine,” in Pacific-Asia

Conference on Knowledge Discovery and Data Mining (Cham: Springer), 30–41.

doi: 10.1007/978-3-319-31750-2_3

Powers, C. A., Meyer, C. M., Roebuck, M. C., and Vaziri, B. (2005). Predictive

modeling of total healthcare costs using pharmacy claims data: a comparison

of alternative econometric cost modeling techniques.Med. Care 43 1065–1072.

doi: 10.1097/01.mlr.0000182408.54390.00

Razavian, N., Marcus, J., and Sontag, D. (2016). “Multi-task prediction of disease

onsets from longitudinal laboratory tests,” in Machine Learning for Healthcare

Conference (Los Angeles, CA), 73–100.

Robinson, J. W. (2008). Regression tree boosting to adjust health care

cost predictions for diagnostic mix. Health Serv. Res. 43, 755–772.

doi: 10.1111/j.1475-6773.2007.00761.x

Rosenblatt, F. (1961). Principles of Neurodynamics. Perceptrons and the Theory

of Brain Mechanisms (No. VG-1196-G-8). Buffalo NY: Cornell Aeronautical

Lab Inc.

Scott, G. (2014). Top 10 Painkillers in the US. MD magazine. Retrieved

from: https://www.mdmag.com/medical-news/top-10-painkillers-in-us.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. J.

Machine Learn. Res. 15, 1929–1958.

Whitley, D. (1994). A genetic algorithm tutorial. Stat. Comput. 4, 65–85.

doi: 10.1007/BF00175354

Yilmaz, I., Erik, N. Y., and Kaynar, O. (2010). Different types of learning algorithms

of artificial neural network (ANN)models for prediction of gross calorific value

(GCV) of coals. Sci. Res. Essays 5, 2242–2249.

Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA

and neural network model. Neurocomputing 50, 159–175.

doi: 10.1016/S0925-2312(01)00702-0

Zhang, G. P. (2007). A neural network ensemble method with jittered

training data for time series forecasting. Inform. Sci. 177, 5329–5346.

doi: 10.1016/j.ins.2007.06.015

Zhang, G. P., Patuwo, B. E., and Hu, M. Y. (1998). Forecasting with

artificial neural networks: the state of the art. Int. J. Forecast. 14, 36–62.

doi: 10.1016/S0169-2070(97)00044-7

Zhang, G. P., Patuwo, B. E., and Hu, M. Y. (2001). A simulation study of artificial

neural networks for nonlinear time-series forecasting. Comput. Oper. Res. 28,

381–396. doi: 10.1016/S0305-0548(99)00123-9

Zhao, Y., Ash, A. S., Ellis, R. P., Ayanian, J. Z., Pope, G. C., Bowen, B., et al. (2005).

Predicting pharmacy costs and other medical costs using diagnoses and drug

claims.Med. Care 43, 34–43.

Zhao, Y., Ellis, R. P., Ash, A. S., Calabrese, D., Ayanian, J. Z., Slaughter, J. P.,

et al. (2001). Measuring population health risks using inpatient diagnoses and

outpatient pharmacy data. Health Serv. Res. 36:180.

Conflict of Interest: ND, SN, and LP are employed by RxDataScience, Inc., USA.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Kaushik, Choudhury, Sheron, Dasgupta, Natarajan, Pickett and

Dutt. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org 17 March 2020 | Volume 3 | Article 4

https://doi.org/10.1145/3097983.3098088
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.1186/s12859-017-1898-z
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1002/for.3980020104
https://doi.org/10.17148/IARJSET.2015.2305
https://doi.org/10.1007/978-3-319-31750-2_3
https://doi.org/10.1097/01.mlr.0000182408.54390.00
https://doi.org/10.1111/j.1475-6773.2007.00761.x
https://www.mdmag.com/medical-news/top-10-painkillers-in-us
https://doi.org/10.1007/BF00175354
https://doi.org/10.1016/S0925-2312(01)00702-0
https://doi.org/10.1016/j.ins.2007.06.015
https://doi.org/10.1016/S0169-2070(97)00044-7
https://doi.org/10.1016/S0305-0548(99)00123-9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	AI in Healthcare: Time-Series Forecasting Using Statistical, Neural, and Ensemble Architectures
	Introduction
	Datasets
	Evaluation Metrics
	Experiment Design

	Materials and Methods
	Models
	Persistence
	Autoregressive Integrated Moving Average
	Multilayer Perceptron
	Long Short-Term Memory
	Ensemble

	Models Training
	Time-Series Forecasting Using ARIMA
	Time-Series Forecasting Using MLP and LSTM
	Time-Series Forecasting Using Ensemble
	Normalized exponential weighted algorithm



	Experimental Results
	Persistence Model
	ARIMA Model
	MLP Model
	LSTM Model
	Ensemble Model
	Model Comparison

	Discussions and Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


