
METHODS
published: 28 May 2020

doi: 10.3389/fdata.2020.00016

Frontiers in Big Data | www.frontiersin.org 1 May 2020 | Volume 3 | Article 16

Edited by:

Enrico Capobianco,

University of Miami, United States

Reviewed by:

Shailesh Tripathi,

Tampere University of

Technology, Finland

Thomas Hartung,

Johns Hopkins University,

United States

*Correspondence:

Holger Fröhlich

holger.froehlich@scai.fraunhofer.de

Specialty section:

This article was submitted to

Medicine and Public Health,

a section of the journal

Frontiers in Big Data

Received: 10 October 2019

Accepted: 16 April 2020

Published: 28 May 2020

Citation:

Gootjes-Dreesbach L, Sood M,

Sahay A, Hofmann-Apitius M and

Fröhlich H (2020) Variational

Autoencoder Modular Bayesian

Networks for Simulation of

Heterogeneous Clinical Study Data.

Front. Big Data 3:16.

doi: 10.3389/fdata.2020.00016

Variational Autoencoder Modular
Bayesian Networks for Simulation of
Heterogeneous Clinical Study Data

Luise Gootjes-Dreesbach 1, Meemansa Sood 2,3, Akrishta Sahay 2,

Martin Hofmann-Apitius 2,3 and Holger Fröhlich 2,3,4*

1UCB Pharma (UCB Celltech Ltd.), Slough, United Kingdom, 2Department of Bioinformatics, Fraunhofer Institute for

Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany, 3 Bonn-Aachen International Center for IT, University

of Bonn, Bonn, Germany, 4UCB Pharma (UCB Biosciences GmbH), Monheim am Rhein, Germany

In the area of Big Data, one of the major obstacles for the progress of biomedical

research is the existence of data “silos” because legal and ethical constraints often do

not allow for sharing sensitive patient data from clinical studies across institutions. While

federated machine learning now allows for building models from scattered data of the

same format, there is still the need to investigate, mine, and understand data of separate

and very differently designed clinical studies that can only be accessed within each of the

data-hosting organizations. Simulation of sufficiently realistic virtual patients based on the

data within each individual organization could be a way to fill this gap. In this work, we

propose a new machine learning approach [Variational Autoencoder Modular Bayesian

Network (VAMBN)] to learn a generative model of longitudinal clinical study data. VAMBN

considers typical key aspects of such data, namely limited sample size coupled with

comparable many variables of different numerical scales and statistical properties, and

many missing values. We show that with VAMBN, we can simulate virtual patients in

a sufficiently realistic manner while making theoretical guarantees on data privacy. In

addition, VAMBN allows for simulating counterfactual scenarios. Hence, VAMBN could

facilitate data sharing as well as design of clinical trials.

Keywords: Bayesian Networks, autoencoders, clinical study simulation, longitudinal data, time series data

INTRODUCTION

Clinical studies are important to increasingly base medical decisions on statistical evidence rather
than on personal experience. Within a given area of disease, there can exist many studies,
and each of these studies has unavoidably certain biases due to inclusion/exclusion criteria or
overrepresentation of specific geographic regions and ethnicities. Moreover, usually, neither the
same clinical outcome measures nor the same molecular data are systematically collected in
different studies of the same disease. Accordingly, compilation of a comprehensive view of a
specific disease requires to analyze and compare multiple studies. However, legal and ethical
constraints typically do not allow for sharing sensitive patient data beyond summary statistics
outside the organization that is the owner, and even within one and the same organization, the
same reasons sometimes prevent data sharing. In consequence, there exist data “silos.” This is
increasingly becoming an issue, as medicine as a whole is becoming more and more driven by the
availability of Big Data and their analysis, including the increasing use of Artificial Intelligence (AI)
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and, in particular, machine learning methods in precision
medicine (Fröhlich et al., 2018). While recent developments
of federated machine learning techniques are certainly a major
step forward (McMahan et al., 2016; Ghosh et al., 2019), these
methods do not permit researchers to unbiasedly investigate,
mine, and understand data of differently designed clinical studies
located within separate organizations. In particular, it should
be noted that the usual assumption behind federated machine
learning is that data of the same type/format are spread over
different organizations. In contrast, clinical studies of patients
with one and the same disease conducted by different hospitals
or companies usually vary significantly in their design (including
study inclusion and exclusion criteria) and measured variables.

Sufficiently realistic simulations of virtual patient cohorts
based on AI models trained within each data-hosting
organization could not only be a mechanism to break data
“silos” but also to allow researchers to conduct counterfactual
experiments with patients, e.g., in the context of intensive care
units (Knab et al., 2016; Chase et al., 2018) or for better design of
clinical trials (Lim et al., 2017; Galbusera et al., 2018). Regarding
the latter, we should mention that most existing work on virtual
trial simulation focuses on modeling of mechanistically well-
understood pharmacokinetic and pharmacodynamic processes
(Holford et al., 2010; Pappalardo et al., 2018). In contrast,
our focus is here on data-driven, model-based simulations of
virtual patients across biological scales and modalities (e.g.,
clinical, imaging) where no or little mechanistic understanding
is available and required.

We suggest a generative modeling framework for simulation
of virtual patients, which is specifically designed to address the
following key features of clinical study data:

• Limited sample size in the order of a few hundred patients
• Highly heterogeneous data with many variables of different

distributions and numerical scales
• Longitudinal data with many missing values.

Our novel proposed method [Variational Autoencoder Modular
Bayesian Network (VAMBN)] is a combination of a Bayesian
Network (Heckerman, 1997) with modular architecture and
Variational Autoencoders (Kingma and Welling, 2013) encoding
defined groups of features in the data. Due to its specific design,
VAMBN does not only allow for generating virtual patients
under certain theoretical guarantees for data privacy (Dwork
et al., 2006a) but also for simulating counterfactual interventions
within them, e.g., a shift by age. Moreover, we demonstrate that
one can “learn” the conditional distribution of a feature in one
study to counterfactually add it to another one.

Abbreviations: VAMBN, Variational Autoencoder Modular Bayesian Network;

BN, Bayesian Network; MBN, Modular Bayesian Network; VAE, Variational

Autoencoder; HI-VAE, Heterogenous and Incomplete Data Variational

Autoencoder; DAG, directed acyclic graph; MCAR, missing completely at

random; MAR, missing at random; MNAR, missing not at random; BIC,

Bayesian Information Score; PPMI, Parkinson’s Progression Marker Initiative;

PD, Parkinson’s disease; UPDRS, Unified Parkinson’s Disease Rating Scales;

ESS, Epworth Sleepiness Scale; RBD, REM sleep behavior disorder; CSF,

cerebrospinal fluid.

We evaluate our VAMBN on the basis of two Parkinson’s
disease (PD) studies, where we show that marginal distributions,
correlation structure, as well as expected effects (treatment effect
on motor symptoms and difference of clinical outcome
measures to healthy controls, respectively) are largely
preserved in simulated patients. Moreover, we demonstrate that
counterfactual simulation results match general expectations.
Finally, we show that VAMBN models capture expected causal
relationships in the data.

METHODS

Motivation and Conceptual Idea Behind
VAMBN
Our proposed approach rests on the idea of learning a generative
model of longitudinal clinical study data within the data-
hosting organization, which can then be used to simulate
virtual patients that can be shared with the outside world.
Our approach combines two classes of generative modeling
techniques: Bayesian Networks (BNs) (Heckerman, 1997) and
Variational Autoencoders (VAEs) (Kingma and Welling, 2013).
BNs are probabilistic graphical models, which represent a
joint statistical distribution of several random variables by
factorizing it according to a given directed acyclic graph into local
conditional statistical distributions. Attractive properties of BNs
are as follows:

• Efficient encoding of multivariate distributions
• Interpretability, because the graph structure can be used to

represent causal relationships
• A theoretical framework to simulate interventions via the “do”

calculus (Pearl, 2000).

Unfortunately, under general conditions, inference within a
BN and learning of the graph structure from data are both
NP-hard computational problems (Koller and Friedman, 2009).
Computationally efficient parameter and structure learning can
only be achieved if all random variables follow multinomial
or Gaussian distributions. However, this scenario is, in reality,
too restrictive for many applications, including clinical study
data, where many variables do not follow any known parametric
distribution. In addition, the NP hardness of BN structure
learning raises severe concerns because clinical study data have
often dozens of variables (measured over time). However, the
number of patients is typically only in the order of a few
hundreds. Hence, the chance to identify the correct graph from
these limited data is questionable.

VAEs are a neural-network-based approach that maps input
data to a low dimensional latent distribution (typically a
Gaussian) through several sequential encoding steps. VAEs are
typically trained via stochastic gradient descent to optimize an
evidence/variational lower bound (ELBO) on the log-likelihood
of the data. VAEs have recently been extended to deal with
heterogeneous multimodal and missing data (Nazabal et al.,
2018), which is the common situation in clinical studies. VAEs
are generative because drawings from the latent distribution can
be decoded again. A limitation of VAEs is that in a situation with
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comparably small data a dense VAE model with several hidden
layers could easily overfit. Moreover, interpretation of the neural
network models is far more challenging than for BNs.

Our suggested approach aims to combine the advantages
of BNs and VAEs while mitigating their limitations (Figure 1):
Following the idea of module networks (Segal et al., 2003, 2005),
we first definemodules of variables that group together according
the design of the study. For example, demographic features,
clinical assessment scores, medical history, and treatment might
each form such a module. This means that we assume the
grouping of variables into modules to be known and defined
upfront. Our aim is then to learn a BN between low a
dimensional representation of variables in these modules. We
call such a structure as Modular Bayesian Network (MBN).
In contrast to Segal et al., we do not use regression trees to
represent conditional joint distributions of variables within each
module, but Variational Autoencoders for Heterogeneous and
Incomplete Data (HI-VAEs) (Nazabal et al., 2018) because they
are generative. Each HI-VAE is thus only trained on a small
subset of variables, hence significantly reducing the number of
network weights compared to a full HI-VAE model for the
entire dataset and allowing for applying the well-established “do”
calculus for simulating interventions (Pearl, 2000). We call our
approach Variational Autoencoder Modular Bayesian Network
(VAMBN). Due to its generative nature, VAMBN allows for
simulating virtual subjects by first drawing a sample from the
BN and second by decoding it through the VAE representing the
corresponding module.

We validate virtual patient cohorts by comparing against
original patients:

• Marginal distributions of individual variables
• Correlation structures
• Expected differences between patient subgroups, e.g., treated

vs. placebo patients.

In the following, we explain the individual steps of our method
in more detail, and we discuss how data privacy can be
theoretically guaranteed.

Modular Bayesian Networks
The starting point of our proposed approach is a BN describing
in a longitudinal manner statistical dependencies between low
dimensional representations of groups/modules of variables: We
assume that each low dimensional representation is the result of a
HI-VAE encoding. We identify low dimensional representations
with random variables X = (Xυ )υǫV indexed by nodes in a
directed acyclic graph (DAG) G = (V,E). This means that there
is a DAG between low dimensional representations of modules.
According to the definition of a BN, the joint distribution
p (X1,X2, . . . ,Xn) factorizes according to:

p (X1 = x1,X2 = x2, . . . ,Xn = xn) =
∏

υ∈V

p
[
Xυ = xυ |Xpa(υ) = xpa(υ)

]

where pa(υ) denotes the parents of node υ and xpa(υ) their joint
configuration (Koller and Friedman, 2009). For a given node
υ , we summarize the set of associated conditional probabilities

into a parameter vector θυ , and these parameter vectors are
assumed to be statistically independent for different nodes υ ,
υ ′. Since the BN in our case is defined over low dimensional
representations of groups of variables, we here call the structure
Modular Bayesian Network (MBN). We use this terminology to
discriminate against a BN defined over original input variables
(which is more conventional).

In our situation, there exists a subset X̃ ⊂ X that is
time dependent, i.e., x̃ = (̃x (1) , . . . , x̃ (T)) with T being the
number of visits. Dynamic Bayesian Networks (Ghahramani,
1998) usually deal with this situation by implicitly unfolding the
BN structure over time, i.e., introducing for each visit t a separate
copy X̃ (t) of X̃ while requiring that edges always point from
time slice t to time slice t + 1 (corresponding to a first order
Markov process). This implicit unfolding assumes a stationary
Markov process, i.e., parameters θ do not change with time. In
our setting, this assumption is most likely wrong because patients
change in their disease outcome during the course of a study,
i.e., p

(
X̃ (t) |X̃ (t − 1)

)
6= p

(
X̃ (t + 1) |X̃ (t)

)
. Hence, we here

use an unfolding strategy, in which we explicitly use different
copies X̃ (t) for each time point. In addition, unfolding of the
BN structure saves us from modeling the dynamical behavior
of the data within the VAE framework [e.g., via LSTM units
(Hochreiter and Schmidhuber, 1997)], which would require far
more parameters.

In our case nodes (i.e., random variable), either follow a
Gaussian distribution (we explain the reasons later), or they could
be of categorical nature, i.e., follow a multinomial distribution
and not be autoencoded. A restriction we impose at this point is
that a discrete node cannot be the child of a Gaussian one. Under
this assumption, the conditional log-likelihood of the training
data D = {xvi | i = 1, ...,N, v ∈ V} given G can be calculated
analytically (Andrews et al., 2018):

log p (D|G) =
∑

υ∈V

log p
(
Xυ |Xpa(υ)

)

log p
(
Xυ |Xpa(υ)

)
=

∑

c∈C

ℓc (Yc)

ℓc (Yc) =
nc

2

(
log |6c| + k log 2π + 1

)
+ nc log

nc

N

where C is the set of possible partitionings of Gaussian variable
Xυ according to the configuration of its discrete parents,
and nc is the number of patients in partition c. Note that
modeling a Gaussian distribution conditional on discrete parents
corresponds to a local ANOVA model. The associated design
matrix is denoted as Yc, and k is the number of columns of that
matrix. 6c is the covariance matrix. In a similar way, the local
log-likelihood for a discrete node Xυ with only discrete parents
can be computed. We refer to Andrews et al. (2018) for more
details. By considering, in addition, the number of parameters
of the MBN, we can use the Bayesian Information Criterion
(BIC) to score G with respect to data D. In practice, we make
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FIGURE 1 | Conceptual overview about Variational Autoencoder Modular Bayesian Network VAMBN) approach: In a first step, a low dimensional representation of

known modules of variables is learned via HI-VAEs. The same group of variables (e.g., module 2) may have been assessed at different visits of the study, for example

visits 1 and 2. Accordingly, we get a low dimensional representation of module 2 at visit 1 and module 2 at visit 2. In a second step, a Bayesian Network is learned

between low dimensional representations of modules, such that the temporal ordering of visits is considered and further constraints explained later are fulfilled. We call

the resulting structure a Module Bayesian Network (MBN). The MBN explicitly models missing data at specific visits. Virtual patients can be generated by sampling

from the MBN and the HI-VAEs for each module. The “do” calculus allows for simulation of counterfactual interventions into virtual cohorts, such as adding features

from another dataset. We carefully validate virtual cohorts by comparison against real patients.

use of the corresponding implementation in R-package bnlearn
(Scutari, 2010).

Modeling Missing Data in MBNs
One of the key challenges with longitudinal patient data is
missing values, which can result due to different reasons: (a)
patients drop out of a study, e.g., due to worsening of symptoms;
(b) a certain diagnostic test is not taken at a particular visit (e.g.,
due to lack of patient agreement), potentially resulting in missing
information for entire variable groups; and (c) unclear further
reasons, e.g., time constraints, data quality issues, etc. From a
statistical point of view, these reasons manifest into different
mechanisms of missing data (Rubin, 1976; Kang, 2013):

• Missing completely at random (MCAR): The probability of
missing information is not related to either the specific value
that is supposed to be obtained or other observed data. Hence,
entire patient records could be skipped without introducing
any bias. However, this type of missing data mechanism is
probably rare in clinical studies.

• Missing at random (MAR): The probability of missing
information depends on other observed data but is not related
to the specific missing value, which is expected to be obtained.
An example would be patient dropout due to worsening of
certain symptoms, which are at the same time recorded during
the study.

• Missing not at random (MNAR): any reason for missing
data, which is neither MCAR or MAR. MNAR is problematic

because the only way to obtain unbiased estimates is to model
missing data.

Missing values in clinical study data are most likely a
combination of MAR and MNAR mechanisms. In general,
multiple imputation methods have been proposed to deal
with missing data in longitudinal patient data (Kang, 2013).
Specifically for MNAR, it has been suggested to explicitly
encode systematic missingness of variables or variable groups
via dedicated indicator variables (Mustillo and Kwon, 2015).
The missing value itself can technically then be filled in by any
arbitrary value, e.g., zero.

In our MBN framework, auxiliary variables are fixed parents
of all nodes, which contain missing values in a non-random
way. There also exist higher level missing data nodes that show
whether a participant does not have any data for the entire visit.
If the auxiliary variable of a node representing an autoencoded
variable group is identical to the missing visit node, the auxiliary
variable itself is removed from the network and the node is
directly connected to the missing visit node instead. These higher
level nodes account for the high correlation between the different
auxiliary nodes at a visit. Note that to facilitate modeling in the
MBN, auxiliary and missing visit nodes were only introduced for
nodes and visits with more than 5 missing data points in total.

MBN Structure and Parameter Learning
Structure Learning
Most edges in the MBN structure are not known and hence
need to be deduced from data. Unfortunately, MBN structure
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learning is an NP hard problem because the number of possible
DAGs grows superexponentially with the number of nodes
(Chickering et al., 2004). Hence, the search space of possible
network structures should a priori be restricted as much as
possible. We follow two essential strategies for this purpose:

1. We group variables in the raw data into autoencoded
modules, as explained above.

2. We impose causal constraints on possible edges
between modules.

More specifically, we imposed the following type of constraints:

• Modules of demographic and other clinical baseline features
(e.g., age, gender, ethnicity) can only have outgoing edges.

• Modules representing medical history can only depend on the
modules mentioned in 1 and biomarkers.

• Modules of imaging features can be related to each other, but
they do not influence other modules.

• Modules of clinical outcome measures (e.g., UPDRS) can
influence imaging, and they can be mutually correlated with
assessment of non-motor symptoms.

• Biomarker modules can influence all modules, except for
modules of clinical baseline features.

• Longitudinal measures must follow the right temporal order,
i.e., there are no edges pointing backwards in time.

• Empirically proven edges (e.g., the treatment effect on the
first maintenance visit in SP513 data) must be reflected in the
network structure.

• Auxiliary and missing visit nodes were connected to their
respective counterparts at the next time point, accounting for
a correlation between these measures over time, e.g., through
study dropout.

Accordingly, we blacklisted possible edges that could violate
any of these constraints. Structure learning was then conducted
via a tabu search (Hong et al., 2016), which is essentially
a modified hill climber that is designed to better escape
local optima. Each state in the search space represents a
candidate MBN structure, which can be scored according to
the BIC. This choice was made because score-based search
algorithms have empirically found to show a more robust
behavior in terms of network reconstruction accuracy than
constraint-based methods for mixed discrete/continuous data,
specifically for smaller sample sizes (Raghu et al., 2018). In
addition, it should be noted that due to the typical small
number, variables in the MBN runtime were not a major
concern here.

Parameter Learning
Given a graph structure G of a MBN parameters (i.e., conditional
probability tables and conditional densities) can be estimated via
maximum likelihood. Note that estimation of the conditional
Gaussian density for a node V amounts to fitting a linear
regression function with parents of V being predictor variables.
Conditional probability tables, on the other hand, can be
estimated by counting relative frequencies of V taking on a
particular value υ .

Variational Autoencoders
VAEs were introduced by Kingma and Welling (2013) and
can be interpreted as a special type of Bayesian Network,
which has the form Z → X, where Z is a latent, usually
multivariate standard Gaussian, and X a multivariate random
variable describing the input data. Moreover, for any sample
(x, z), we have p(x | z) = N

(
µ(z), σ (z)

)
. One of the key ideas

behind VAEs is to variationally approximate

log q (z|x) = logN (z|µ (x) , σ (x))

This means that µ(x) and σ (x) are the mean and standard
deviation of the approximate posterior and are outputs of a
multilayer perceptron neural network that is trained to minimize
for each data point x the ELBO criterion

log (x) ≥
1

2

D∑

j=1

(
1+ log σj(x)

2 − µj(x)
2 − σj(x)

2
)
+

∑

l

log p
(
x|z(l)

)

where z = µ (x) + σ (x) ⊙ ∈(l) with ∈(l) ∼ N (0, I). Here, ⊙
denotes an element-wise multiplication.

Variational Autoencoders for
Heterogeneous and Incomplete Data
VAEs were originally developed for homogeneous data without
missing values. However, clinical data within one and the same
module (e.g., demographics) could contain continuous as well as
discrete features of various distributions and numerical ranges,
i.e., the data are highly heterogeneous. Moreover, there could be
missing values. Recently, Nazabal et al. (2018) extended VAEs
to address this situation. Their HI-VAE approach starts from a
factorization of the VAE decoder according to

p (x, z) = p(z)
∏

j

p
(
xj|z

)

where x ∈ R
D denotes a D-dimensional data vector, and z ∈

R
K is its K-dimensional latent representation. Furthermore, xj

indicates the jth feature in x. In the factorization, it is further
possible to separate observed (O) from missing features (M):

p (x|z) =
∏

j∈O

p
(
xj|z

) ∏

j∈M

p
(
xj|z

)

A similar separation is possible in the decoder step. Accordingly,
VAE network weights can be optimized by solely considering
observed data (input dropout model). Note that the input
dropout model is essentially identical to the approach we
described earlier for MBNs.

To account for heterogeneous data types, Nazabal et al. suggest
to set

p
(
xj|z

)
= p

(
xj|γj = hj (z)

)

where hj (·) is a function learned by the neural network, and γj
accordingly models data modality specific parameters (e.g., for
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real-valued data γj =
(
µj (z) , σ

2
j (z)

)
). Moreover, the authors

use batch normalization to account for differences in numerical
ranges between different data modalities. Finally, Nazabal et al.
do not use a single Gaussian distribution as a prior for z, but a
mixture of Gaussians, i.e.:

s ∼ Categorical (π)

z|s ∼ N (µ (s) , IK)

where s is K-dimensional. We refer to Nazabal et al. (2018) for
more details about their VAE extension. Importantly, categorical
variables s are added to the MBN graph G as parents of
variables encoding modules. In practice, we kept K at 1 for all
modules, resulting in a single normal distribution for z, with
the exception of the demographic data in both studies and the
neurological examination in SP513 data. For these modules, K
was set to 2. This choice was made after visual inspection of the
embeddings for each of the individual variable groups, indicating
that for modules containing demographic data and neurological
examination, K = 2 was the minimal value for which a sufficient
fit to the data was possible. This was likely due to the existence of
many categorical features among these variables.

VAMBN: Bringing MBNs and HI-VAEs
Together
Let v ∈ V be a node in our MBN and Xv the
corresponding random variable. Note that Xυ is a low
dimensional embedding/encoding of certain variables in the
original input space, Av. The total likelihood p(X, A | G, 2)
given graph G and model parameters 2 can be written as:

p (X,A|G,2) =
∏

υ∈V

p
(
Xυ |pa (Xυ) ,2υ

)
p (Aυ |Xυ ,2υ)

where p(Av | Xv, 2v) is the generative model of the data
represented byHI-VAE (it is the decoder distribution).Moreover,
pa (Xυ) denotes all module nodes plus (in our case, one-
dimensional) categorical δ variables, see last section. Hence,
p
(
Xυ |pa (Xυ) ,2υ

)
is a normal distribution with mean

mυ = 2(0)
υ +

∑

p∈pa(Xυ )

2(ρ)
υ ρ

[i.e., modeled via a linear regression with intercept2
(0)
υ and slope

coefficients 2
(ρ)
υ ], and residual variance νυ = Var (Xυ −mυ).

Our aim is to find parameters 2 maximizing
log p(X,A | G, 2). Using the factorization of this quantity
and the typical assumption of node-wise statistical independence
of parameters (Koller and Friedman, 2009), we can optimize the
total log-likelihood by the following two steps:

1. For all υ ∈ V : 2̂∗
υ = argmax log p

(
Aυ |Xυ , 2̂υ

)
. This is

achieved via training an HI-VAE model for each module Xυ ,
i.e., optimizing associated network weights 2̂υ .

2. For all υ ∈ V : 2̃∗
υ = argmax log p

(
Xυ |pa (Xυ) , 2̃υ

)
. This

is achieved by learning the MBN structure G and associated
parameters 2̃υ based on HI-VAE-encoded modules.

Overall, the training of the proposed VAMBN approach thus
consists of the following steps:

1. Definition of modules of variable
2. Training of HI-VAEs for eachmodule. In practice, the training

procedure included a hyperparameter optimization over

a. Learning rate ∈ {0.01, 0.001}
b. Minibatch size ∈ {16, 32}

Each candidate parameter set was evaluated via a 3-
fold cross-validation using the reconstruction loss as
objective function.

3. Definition of constraints for possible edges in the MBN
4. Structure and parameter learning of the MBN using encoded

values for each module: Note that by construction of our
model each variable, Xυ follows a mixture of Gaussian
distributions. Let s ∼ Categorical(π) indicate the mixture
component. Hence, Xv | s is Gaussian. Introducing s into the
MBN thus yields a network with only Gaussian and discrete
nodes, and parameter and structure learning can accordingly
performed computationally efficiently, as explained before.

We also considered to use N(mυ , νυ) as a prior for Xυ instead
of the original Gaussian mixture prior for training of HI-VAE
models in a second iteration of the entire VAMBN training
procedure. In reality, we could not observe a significant increase
in the total model likelihood p(X,A | G, 2) due to this
computationally more costly procedure, see Section A of the
Supplementary Materials. Reported results hence only refer to
the original VAMBN approach without any further continued
training using a modified prior.

Simulating Virtual Patients and
Counterfactual Scenarios
The trained VAMBNmodel can be used to create a virtual patient
cohort. Virtual patients are simulated as follows:

1. Draw samples from the MBN. This can be achieved by
following the topological order of nodes in the DAG. This
means that we first sample from the conditional distribution
of parent nodes before we do the same for their children while
conditioning on the already drawn values each of the parents.

2. Decode MBN samples through HI-VAE. Note that a sample
drawn from the MBN represents a vector of latent codes.
Decoding maps these codes back into the original input space.

To perform a simulation of a counterfactual situation, we rely
on the ideal intervention scheme established by Pearl (2000)
via the “do” calculus: This means that rather than sampling
from a joint distribution p (X1,X2, . . .Xn) we draw from
p
(
X1,X2, . . . ,Xp−1,Xp+1, . . . ,Xn|do

(
Xp = x

))
where do(Xp =

x) denotes the scenario that variable Xp in the MBN has
been (counterfactually) fixed to value x. Practically, this can
be achieved by deleting all incoming edges to Xp in the MBN
structure, setting Xp = x and then drawing from the modified
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MBN. Subsequently, the variables can be decoded through the
HI-VAE, as described before.

Using VAMBN for Counterfactually Adding
Features to a Dataset
A special case of the counterfactual simulation described in
the last section is the addition of features to a dataset, which
have not been observed within a particular study A, but within
another study B: Let Y be a (module of) variables in study
B not observed in A. We assume the existence of MBNs BA
and BB for both datasets. Moreover, we suppose pa (Y) ⊂ BA,
i.e., parents of Y are also in A. Hence, we can draw from the
interventional distribution

p
(
Y|do

(
pa (Y) = a

))

where a denotes a configuration of parent nodes of Y observed in
dataset A. Therefore, we can counterfactually add for any patient
in dataset A possible values for Y by considering his/her observed
features that may impact Y.

Differential Privacy Respecting Model
Training
One of our motivations for developing VAMBN was to
enable a mechanism for sharing data across organizations
that addresses data privacy concerns. Practically, this could
be achieved by sharing either simulated datasets or ready
trained VAMBN models. However, specifically in the latter case,
there is the concern that by systematically feeding inputs and
observing corresponding model outputs, it might be possible
to reidentify patients that were used to train VAMBN models.
This is particularly true for HI-VAEs, which encode groups of
raw features.

Differential privacy is a concept developed in cryptography
that poses guarantees on the probability to compromise a person’s
privacy by a release of aggregate statistics from a dataset (Dwork
et al., 2006b): Let A be a randomized algorithm and 0 < ε, 0 <

δ < 1. According to Dwork et al. (2006a) A: D→ R is said to
respect (ε, δ) differential privacy, if for any two datasets D1, D2 ε

D that differ only in one single patient and for any output of the
randomized algorithm Sj R, we have

Pr (A (D1) ∈ S) ≤ e∈ Pr (A (D2) ∈ S) + δ

Abadi et al. (2016) showed that it is possible to directly
incorporate (∈, δ) differential privacy guarantees into the training
of a neural network by clipping the norm of the gradient and
adding a defined amount of noise to it.

It is straightforward to incorporate this approach into the
training of each of the VAE models within VAMBN. Hence,
we are able to provide guarantees on (∈, δ) differential privacy
for the entire VAMBN model because (∈, δ) differential privacy
is composable. This means that the property for a system of
several components is fulfilled if all of its components fulfill (∈,
δ) differential privacy (Dwork et al., 2006a).

DATA

SP513
SP513 was a randomized, double-blinded, and placebo-
controlled study to compare two PD drugs within an early
disease population (Giladi et al., 2007). We here examine 557
patients of the final analysis set, which had received treatment.
Out of these patients, 117 received placebo, 227 ropinirole, and
213 another dopamine agonist. Both drugs were first uptitrated
within a 13 week time period and then followed up for 24 weeks.
We model the screening and baseline visits as well as three visits
in the maintenance phase. Clinical variables captured during
the trial comprised baseline demographics, disease duration,
UPDRS scores, Epworth Sleepiness Scale (ESS), Hoehn and Yahr
stage, and standard blood biomarkers for safety assessment (e.g.,
hemoglobin, creatinine, etc.).

PPMI
The Parkinson’s Progression Markers Initiative (PPMI)
(www.ppmi-info.org/data) consists of multiple cohorts from
a network of clinical sites with the aim to identify and verify
progression markers in PD. It is a multimodal, longitudinal
observation study with data collected using standardized
protocols (Parkinson Progression Marker Initiative, 2011).
PPMI comprises of eight cohorts with different clinical and
genetic characteristics. Here, we used data of 362 de novo
PD patients and 198 healthy controls. All PD patients were
initially untreated and diagnosed with the disease for 2 years
or less. They showed signs of resting tremor, bradykinesia, and
rigidity. We used 266 clinical variables measured at 11 visits
during 96 months comprising demographics, patient PD history,
DaTSCAN imaging, non-motor symptoms, cerebrospinal fluid
(CSF) biomarkers (A–β , α-synuclein, dopamine, phospho-tau,
total tau) and UPDRS scores.

RESULTS

VAMBN Reflects Expected Causal
Relationships in Data
As outlined in Methods, our proposed VAMBN approach results
into a Modular Bayesian Network that describes conditional
statistical dependencies between groups of variables that are
encoded via HI-VAEs. An obvious initial question is whether
learned dependencies between modules reflect expected causal
relationships and, if yes, how statistically stable these can be
detected. To address this point, we performed a non-parametric
bootstrap of the MBN structure learning (Davison and Hinkley,
1997). This means that, for each study, we resampled the existing
N patients 1,000 times with replacement. For each bootstrap
dataset, we ran a complete MBN structure learning, and we
counted the fraction of times that each edge was included in the
model. We overlayed this bootstrapped network with the MBN
learned from the complete data to get an overall impression of
the learned VAMBN model as well as the stability of inferred
conditional statistical dependencies.

Figure 2 highlight that, in both SP513 as well as PPMI,
inferred edges agree well with expected causal dependencies: For
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FIGURE 2 | Final Modular Bayesian Networks (MBNs) learned by Variational Autoencoder MBN (VAMBN) based on SP513 and PPMI data. The edges are labeled

with the bootstrap frequencies of each connection. For readability, auxiliary variables and missing visit nodes were removed for the visualization. Figures are also

available as Cytoscape files in the Supplements for better convenience.
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example, in SP513 (Figure 2), UPDRS scores of subsequent visits
are connected with each other and impact sleepiness (ESS). ESS
itself is dependent on medical history. UPDRS scores are, during
the titration phase, influenced by Hoehn and Yahr stages and the
illness severity score defined in SP513. Safety biomarkers depend
on gender, but otherwise have no impact.

In PPMI (Figure 2), the RBD sleepiness score and non-motor
symptomsmutually influence each other, and the same holds true
for UPDRS. UPDRS is dependent on age, medical history, and
α-synuclein levels in CSF.

Altogether, these examples underline that VAMBN models
permit a certain level of interpretation.

Simulated Patients are Realistic
Simulated patient trajectories generated by VAMBN are only
useful if they are sufficiently similar to real ones. On the other
hand, we clearly do not want VAMBN to simply regenerate the
data it was trained on (which would trivially maximize similarity
to real patients). It is therefore not straightforward to come up
with a criterion or interpretable index to measure the quality of a
virtual patient simulation.

From our point of view, simulated patients should mainly
fulfill the following criteria:

(a) Summary statistics (e.g., mean, variance, median, lower
quartile, upper quartile) over individual variables should look
similar to real ones.

(b) Correlations between variables in simulated patients should
be close to the ones observed in real ones.

(c) MBN structures learned from simulated patients should be
close to the ones learned from real one.

(d) Treatment effects or other expected outcomes should be
similar in simulations, also in terms of effect size.

To assess VAMBN with respect to these criteria, we simulated
the same number of virtual patients as real ones in each
of the two PD studies. Figure 3 demonstrates that marginal
distributions for individual variables were, in general, sufficiently
similar (but not identical) to the empirical distributions of
real data in both PD studies. For additional plots, see Section
B of the Supplementary Materials. In addition, the empirical
distributions of Pearson correlations in simulated and real data
were close to each other (Figure 4). Interestingly, in both cases
(marginal distributions and correlations), largest differences were
observed between HI-VAE-decoded features of real patients and
original features of the same patients. Hence, the majority of
the “simulation error” can be attributed to an imperfect fit of
HI-VAE models.

As further assessment of the quality of the sampled data, we
compared the edges in the graph of the real PPMI patients’ data
(RP graph) with the edges in graphs of different virtual patient
sets (VP graphs). Since the virtual patients are sampled using
the RP graph, we would expect to see strong overlap between
the graphs, but we would also expect the sample size (in this
case, the number of virtual patients used to train the different
VP graphs) to affect this similarity. If an edge is present in the
RP graph and also a given VP graph, we consider this a hit; if
an edge is only present in the VP graph, it is a false positive and

so on. Using this logic, we can compute and plot the sensitivity
and specificity of the RP-VP comparisons at different VP sample
sizes (Figure 5). This indicated an overall rapid convergence of
sensitivity and specificity of MBNs learned from simulated data
toward 1. Hence, simulated data reflect the same or at least very
similar patterns than real data.

As a final assessment for the quality of virtual patients,
we compared known patient subgroups in simulated and real
data. Figure 6 (right) demonstrates that, in PPMI, UPDRS3
scores of simulated PD patients showed similar differences
to healthy controls than in real PD patients. Moreover,
the ropinirole treatment effect in simulated and real SP513
patients demonstrated a comparable effect size and p-value
(Figure 6, left).

Altogether, we thus concluded that VAMBN allows for a
sufficiently realistic simulation of virtual subjects with respect
to our three defined criteria. At the same time, we could
confirm that indeed none of the simulated patients were a simple
regeneration of one of the patients in the training data.

Generalizability of VAMBN Models
A relevant question is how generalizable VAMBNmodels are, i.e.,
whether they are purely overfitted or whether they can sufficiently
describe data in an independent test set. To address this point,
we randomly split data in SP513 and PPMI into 80% training and
20% test. VAMBNmodels were only fitted to the training set. We
then recorded the log-likelihood of patients in the training and
test sets, indicating a sufficiently good agreement (Figure 7). We
thus concluded that VAMBNmodels are generally not overfitted.
This means that the previously reported agreement of virtual and
real patients cannot just be the result of overfitting the data with
an overly complex model.

Simulation of Counterfactual Scenarios
Match Expectations
Due to its nature as a hybrid of a BN and a generative
neural network, VAMBN allows for simulation of counterfactual
scenarios via the “do” calculus, as explained in Methods.
Figure 8A demonstrates the effect of counterfactually altering
UPDRS2 and UPDRS3 baseline scores of all patients in
SP513 to the mean observed in PPMI, i.e., toward lower
disease severity. As expected, this resulted into a likewise
shift of UPDRS3 scores (reflecting motor symptoms) at end
of study.

In PPMI, making all patients 20 years younger shifts
the distribution of UPDRS3 scores to the left (fewer
motor symptoms), whereas making them 20 years older
has the opposite effect (Figure 8B). Again, this effect
matches expectations.

As a final example, we demonstrate the possibility to
counterfactually add a feature to PPMI via the approach
described in Methods: We used the VAMBN model for SP513
to simulate the shift of the UPDRS3 scores at visit 15
under ropinirole treatment conditional on age, gender, height,
weight, as well as UPDRS2 and UPDRS3 baseline scores of
patients observed in PPMI. This means that there was only
a simulated intervention into these features. By subtracting
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FIGURE 3 | Examples of real and simulated/virtual patients for (A) SP513 and (B) Parkinson’s Progression Markers Initiative (PPMI) datasets. The figure compares the

marginal distributions of selected variables for real patients (red), virtual patients (blue), and real patients decoded via the Variational Autoencoders for Heterogeneous

and Incomplete Data (HI-VAE) model (green). Tables show summary statistics of the distributions. Plots and tables of further variables can be found in Section B of the

Supplementary Materials.

FIGURE 4 | Distribution of Pearson correlation coefficients between variables in real patients (red), virtual patients (blue), and decoded real patients (green). Tables

show the Frobenius norm of the correlation matrices as well as the relative error, which consists of the norm of the matrix that is the difference between the decoded

real or virtual correlation matrix divided by the norm of the original correlation matrix.

the simulated shift from the observed UPDRS3 off scores
in PPMI, we obtained a counterfactual treatment simulation
with ropinirole. Figure 8C compares the observed UPDRS3 off
and on scores (under L-DOPA treatment) to those simulated
by VAMBN for ropinirole treatment. Further plots showing
the effect at different PPMI visits are shown in Section D
of the Supplementary Materials. As expected, UPDRS3 scores
simulated for ropinirole treatment are significantly shifted

compared to observed UPDRS3 off scores but are slightly higher
than UPDRS3 on scores under L-DOPA. Indeed, it has been
suggested that efficacy of ropinirole is slightly lower than that of
L-DOPA (Zhuo et al., 2017).

Overall, these counterfactual simulations exemplify the
possibilities of VAMBN and at the same time reconfirm that the
model has learned the expected variable dependencies from data
because the simulation effects match expectations.
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FIGURE 5 | Illustration of the sensitivity (top panel) and specificity (bottom panel) achieved when comparing Modular Bayesian Network (MBN) structures learned from

real Parkinson’s Progression Markers Initiative (PPMI) data with the ones learned from virtual patients. The x-axis shows an increasing number of sampled virtual

patients (with increments of 1). For each of those virtual cohorts, one MBN structure was learned and compared against the MBN learned from real PPMI data. The

cases where sensitivity is 50% and specificity is 100% correspond to networks that have no false positives and no true positives except whitelisted edges, which we

did not count as true positives here. Note that a corresponding situation can always occur by chance (specifically for small sample sizes) because synthetic data are

randomly generated by the VAMBN learned model.

FIGURE 6 | Distribution of UPDRS3 scores in SP513 (left) and Parkinson’s Progression Markers Initiative (PPMI) (right). (Left) The plot depicts in red UPDRS3

scores of real SP513 patients under placebo and ropinirole at visit 15 (i.e., during treatment phase), respectively. In blue, the distribution of the UPDRS3 score in the

same number of virtual patients is shown. Effect sizes and corresponding p-values obtained from two one-way ANOVAs comparing placebo and drug treatment in the

real and virtual patients are shown in the tables at the bottom. Similar plots at other visits can be found in Section C of the Supplementary Materials (Right)

Distribution of original (purple) and decoded (red) UPDRS3 scores of real PPMI de novo Parkinson’s disease (PD) patients at visit 4 in comparison to PPMI healthy

controls (blue). UPDRS3 scores of virtual PD patients are shown in yellow. The table at the bottom shows differences in UPDRS3 scores between original PD,

decoded real PD, and virtual PD patients compared to PPMI healthy controls, showing p-value and effect size from three Mann-Whitney U-tests. Similar plots at other

visits can be found in Section C of the Supplementary Materials.
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FIGURE 7 | This figure compares the log-likelihoods of real patients in a training set (red) and a test set (blue) of the SP513 (top row) and Parkinson’s Progression

Markers Initiative (PPMI) datasets (bottom row) for the Modular Bayesian Network (MBN) and the Variational Autoencoders for Heterogeneous and Incomplete Data

(HI-VAE) models. The HI-VAE log-likelihoods are based on the participants included in the respective sets after averaging across all separate HI-VAE models (9 for

SP513, 34 for PPMI).

Differential Privacy Respecting Modeling
Training
As a last point, we investigated differential privacy respecting
model training of VAMBN. As indicated in Methods, this can
be realized by defining a certain privacy loss via constants (ǫ, δ)
for each HI-VAE model trained within VAMBN. Smaller values
for these constants generally impose stronger privacy guarantees
but make model training harder. To investigate this effect more
quantitatively, Figure 9 shows the reconstruction errors of the
HI-VAE models for the SP513 laboratory data at the first visit
as a function of number of training epochs and in dependence
on different values for ǫ, δ. For similar figures of the other visits,
see Section E of the Supplementary Materials. It can be observed
that in dependence on these constants, longer trainings andmore
data are required to achieve the same level of reconstruction error
than for conventionalmodel training without differential privacy.

CONCLUSION

Sensitive patient data require high standards for protection as,
e.g., reinforced by the European Union through the General
Data Protection Regulation (GDPR—https://eur-lex.europa.eu/
eli/reg/2016/679/oj). However, at the same time, these data are
instrumental for biomedical research in the entire healthcare
sector. Establishing a mechanism for sharing data across
organizations without violating data privacy is therefore of
utmost relevance for scientific progress. In this paper, we build

on the idea of developing generative models to simulate virtual
patients based on data from clinical studies. A recent publication
proposed to train Generative Adversarial Networks (GANs)
based on few variables recorded from more than 6,000 patients
in the Systolic Blood Pressure Trial (Beaulieu-Jones et al.,
2018). In contrast, our work focuses on the realistic situation
regarding much smaller sample size coupled with significantly
higher number of variables, which is common in many other
medical fields, such as neurology. Our results demonstrate
that VAMBN models generally do not overfit and allow for a
sufficiently realistic simulation of virtual patients. In contrast to
GANs, our VAMBN method relies on an explicit modeling of
time dependencies, as well as missing and heterogenous data.
Moreover, VAMBN models can be interpreted via the MBN
structure. As demonstrated in this work, Bayesian Networks also
open the door to simulating counterfactual scenarios (including
treatments with drugs) within a well-established theoretical
framework, which could, e.g., help in the design of clinical trials.
Moreover, we have shown that simulated data could themselves
be used to learn complex AI models, such as a Bayesian Network
structure, which can subsequently be compared to real data. In
addition, we demonstrated that data privacy respecting model
training is in principle possible with VAMBN.

From a user perspective, we see two important aspects for the
successful application of our approach:

1. A careful understanding of the data and its structure,
including the ability to define variable groups
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FIGURE 8 | Counterfactual simulation of (A) lower disease severity in SP513 (shift of UPDRS3 scores at baseline to mean observed in Parkinson’s Progression

Markers Initiative (PPMI) at baseline), (B) shift of age 20 years up and down, and (C) treatment effect of ropinirole in PPMI.

FIGURE 9 | This figure shows the effects of differentially privacy respecting (DP) Variational Autoencoders for Heterogeneous and Incomplete Data (HI-VAE) training on

the HI-VAE step of the model. (Left) reconstruction loss change between DP and conventional model training for laboratory data at visit 1 for the SP513 study;

(middle) epsilon plotted against reconstruction loss for different delta values; (right) epsilon over 500 epochs, given different deltas. A noise multiplier of 1.1, norm

clipping at 1.6, and a learning rate of 0.01 were used. Further plots can be found in Section E of the Supplementary Materials.

2. A careful check of the quality of synthetic data, using the
approaches suggested in this paper.

Taken together, VAMBN is a new method for simulation of
virtual cohorts for which we see a number of interesting future
use cases in healthcare:

• Simulation of counterfactual scenarios to help the design of

clinical trials
• Privacy preserving sharing of data across organizations to help

data scientists understand the structure of sensitive patient

data, judge their utility for modeling purposes, and derive
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statistical hypotheses that can be verified or falsified with
available real data

• Training of AI models that can subsequently be tested with
available real data

• Merging of different virtual cohorts from the same indication
area into a global virtual meta-cohort based on overlapping
variables. This global virtual meta-cohort could be used to

◦ identify for a specific real patient within the overall
distribution a best matching virtual avatar

◦ efficiently generate control arms for clinical trials.

Of course, our work is not without limitations: Building VAMBN
models requires (in contrast to GANs) a relatively detailed
understanding of data and careful handling of missing values in
particular. Our examples have shown that VAMBNmodels can in
practice already be learned from datasets with comparably small
sample size and many variables. Nonetheless, our method, as any
AI-based approach, is principally dependent on sample size and
signal-to-noise ratio in data. In the extreme case ofmore variables
than samples (high dimensional setting), we expect VAMBN
to become statistically unstable and overfit. From a technical
side, VAMBN implies to train multiple neural networks, which
usually requires amodern parallel computing architecture. It thus
remains a subject of future research to investigate how VAMBN
models could be made better accessible to practitioners in order
to facilitate their use in a widespread manner. In the meantime,
we have made our python and R code available as part of the
Supplementary Material.

Overall, we see our work as a useful complement to federated
machine learning techniques, which, together with virtual patient
simulation tools, could help to break data silos and thus enhance
progress in biomedical research.
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