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Choosing an optimal data fusion technique is essential when performing machine

learning with multimodal data. In this study, we examined deep learning-based

multimodal fusion techniques for the combined classification of radiological images and

associated text reports. In our analysis, we (1) compared the classification performance

of three prototypical multimodal fusion techniques: Early, Late, and Model fusion, (2)

assessed the performance of multimodal compared to unimodal learning; and finally (3)

investigated the amount of labeled data needed by multimodal vs. unimodal models to

yield comparable classification performance. Our experiments demonstrate the potential

of multimodal fusion methods to yield competitive results using less training data (labeled

data) than their unimodal counterparts. This was more pronounced using the Early and

less so using the Model and Late fusion approaches. With increasing amount of training

data, unimodal models achieved comparable results to multimodal models. Overall, our

results suggest the potential of multimodal learning to decrease the need for labeled

training data resulting in a lower annotation burden for domain experts.
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INTRODUCTION

There is an abundance of multimodal data in the biomedical domain. For example, in electronic
health record systems, patients are characterized by multimodal data derived from imaging,
genetic, electrophysiological, and many other examinations. Data scientists capitalize on this fact
by constructing machine learning models built on two or more data modalities. Examples include
the linking of histopathological with proteomic features in the pathology domain (Krishnamurthy
et al., 2018; Liu et al., 2018; Yin et al., 2018) or the pairing of text and images modalities derived
from biomedical publications (Fodeh et al., 2012, 2013; Andrearczyk and Müller, 2018). In our
work, we are interested in both the performance gain and the amount of labeled data needed when
comparing unimodal vs. multimodal machine learning approaches. We hypothesize that building
machine learning models that exploit the multimodal nature of the data in the biomedical domain
offers an advantage in reducing the number of labeled examples required for training such models.
Annotating images is an expensive task as it requires fine knowledge about the different types of
cancer and consumes extended periods of time from experts. As discussed in Rozenberg et al.
(2019) the cost of annotation plagues many different computer vision tasks, which depend on vast
amount of training data. This is exaggerated in medical imaging as the labeler is usually a physician,
resulting in much higher labeling costs (Rozenberg et al., 2019). Our studies thus investigate the
question whether multimodal learning may reduce the cost of annotation by reducing the amount

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2020.00019
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2020.00019&domain=pdf&date_stamp=2020-06-02
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kevin.lopez@yale.edu
https://doi.org/10.3389/fdata.2020.00019
https://www.frontiersin.org/articles/10.3389/fdata.2020.00019/full
http://loop.frontiersin.org/people/845617/overview
http://loop.frontiersin.org/people/868310/overview


Lopez et al. Reducing Burden Through Multimodal Learning

of labeled images needed to reach competitive image
classification performance.We constructedmultiple experiments
to compare three different multimodal fusion strategies (Early,
Late, and Model-based fusion techniques) and investigated how
the models perform at varying dataset sizes (varying the number
of training examples).

MATERIALS AND METHODS

Data Description
To test or models we used two publicly available chest X-ray
datasets—the PadChest and Indiana Chest X-Ray datasets. Both
datasets have image and text data modalities. Figure 1 shows
example images and their corresponding labels and text from the
two datasets.

PadChest Dataset (Bustos et al., 2019)
Contains over 160,000 images from 67,000 patients. Most
samples contain frontal and lateral images with associated
radiology reports. All images are of size 224 × 224. The reports
are in Spanish and labeled with 174 different radiographic
findings and 19 differential diagnoses, 27% of which were labeled
by trained physicians. The remaining were labeled by a recurrent
neural network. Following earlier work, we simplified image
annotations by only using top-level PadChest label categories and
restricted experiments to frontal images only. Lateral images have
been reported to not provide much benefit and to be difficult
to interpret (Gaber et al., 2005; Kluthke et al., 2016; Bertrand
et al., 2019). Following the experiments done by Bertrand et al.
(2019) we applied class weights to the positive labels to counteract
the label imbalance. This left us with a dataset containing 8,192
images with a total of 11 different image labels.

Indiana Chest X-Ray Dataset (Demner-Fushman

et al., 2016)
Contains 7470 images (frontal and lateral) of 3955 patients with
their corresponding MeSH term-annotated radiology reports. As
the images in this dataset are of different sizes, we normalized the
images by resizing them to 256× 256 pixels and center cropping
them to 224 × 224 pixels. While we made use of all available
lateral and frontal images of the Indiana dataset, our model was
able to accommodate situations in which a patient had only one
of the two images or had more than 2 images. We labeled images
as “normal” or “abnormal,” respectively, based on the MeSH
terms, resulting in 2,696 “normal” and 4,774 “abnormal” images.
We measured a slight label imbalance for abnormal to normal
images of 1:1.77.

Models Framework
We used convolutional neural networks (CNN) (Lecun et al.,
1998) and neural word embeddings as the foundation to
investigate multimodal learning using Early, Late, and Model-
based fusion techniques.

Convolutional Neural Networks
A convolutional neural network (CNN) is a feed-forward neural
network consisting of multiple layers such as convolutional,
pooling, and fully-connected (FC) layers.

Convolutional Layer
Convolutional layer is composed of kernels (i.e., a 2D
arrangement of weights in a matrix form) that are convolved
with the features of the previous layer (such as the input
layer) to produce feature maps. Every entry in the resulting
feature map is computed by taking the sum of element-wise
multiplication (Hadamard product) of the weights in the kernel
and the corresponding input of previous layer where the kernel
overlaps. After the convolution operation is done (i.e., convolving
the kernel with the input/previous layer), a bias term is added
followed by a non-linear operation to obtain a feature map.
Multiple kernels are applied, and the resulting feature maps are
stacked and processed in the next layers.

Pooling Layer
Pooling layer includes kernels/filter but with no trainable
weights, that slides over the feature maps (as input) based on
a defined horizontal and vertical stride size and computes a
summary score such as a maximum or average score for every
region of overlap. As a result, in the pooling layer we can change
the size of the generated feature maps by specifying the stride and
padding values such that the size of the feature maps decreases as
we progress into subsequent layers in the network (i.e., equivalent
to subsampling).

Fully-Connected Layer (FC)
Fully-connected layer (FC) takes an input vector
from the reshaped feature maps generated in the last
convolutional/pooling layers and applies an affine transformation
followed by non-linear element-wise operation.

Output Layer
Output layer wherein the computed vector of activations in the
penultimate layer is passed to generate a probability distribution
over the outcome labels (i.e., the 2 classes in case of the Indiana
CXR dataset, and 11 classes for the frontal images in the
PadChest dataset).

In our experiments, we implemented CNN using the Keras
abstraction of the Tensorflow framework. For both the PadChest
and the Indiana CXR datasets, we used the DenseNet121 (Huang
et al., 2018) architecture as a base CNN model, which has a
mixture of convolutional layers and dense layers that have been
shown to be successful in many image processing/classification
competitions (i.e., Large Scale Visual Recognition Challenge
(ILSVRC2014). It has been shown that the short connections
between CNNs layers in the DenseNet121 architecture can be
more efficient to train. In addition, DenseNet121 can mitigate
the vanishing gradient problem, reduce the parameter count, and
strengthen feature propagation (Huang et al., 2018).

Data Modalities (Image and Text
Modalities)
In this section we describe the preprocessing steps on the
two data modalities (images and text reports/labels) used in
our models.
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FIGURE 1 | (Left) Sample image from PadChest with findings. (Right) Sample image from the Indiana Chest X-Ray dataset with MeSH annotation.

Images
All images were processed to have uniform size of 224 × 224
pixels and one channel. To this end, the Indiana CXR dataset’s
images we resized, and center cropped to yield an image size of
224× 224.

Text
Words were represented using the one-hot encoding (commonly
known by 1-of-K encoding, where K is the size of the vocabulary).
To process the text describing the images, we used Word2Vec
(Mikolov et al., 2013) to generate neural word embeddings,
with embeddings being defined as continuous representations
(i.e., vectors with real number components ∈ Rd where d is
the embedding dimension) (Lebret and Collobert, 2013). Of
the two available Word2Vec models (1) continuous bag of
words (CBOW) and (2) skip-gram, we used the latter for its
better performance on infrequent words. We converted the text
associated with images into embeddings using a model that was
trained on the text corpus itself. We limited the number of
words in the text to 200 words, each represented by a vector
of 224 dimensions. The whole report is then represented by

a matrix Xtext ∈R200x224 (200 tokens, each represented as an
embedding vector).

Fusion Models
We experimented with three types of multimodal fusion
methods: (1) Early, (2) Late, and (3) Model fusion. The following
sections detail the models’ inputs and formulations.

Early Fusion
The Early fusion method concatenates features from each
modality into a single input to the model (Atrey et al., 2010;
Baltrušaitis et al., 2019). In this case, we were concatenating
the image input with the text input. The concatenation for
both datasets was done by stacking the reshaped image
matrix Ximage ∈R224x224xC with a text matrix Xtext ∈R200x224xC

representing the transformed text from the word embedding
model to obtain a final input representation Xinput ∈R424x224xC,
where C is the number of channels. Figure 2 depicts the model
architecture with the concatenated input.

A CNN model was used to process the concatenated input.
For both the PadChest and Indiana CXR datasets we used a
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FIGURE 2 | Early fusion model architecture with the concatenated input image and text for both datasets. This model takes images and the embedding matrix for the

associated text and concatenates them together. This new matrix is then passed to a CNN as an augmented “image”.

DenseNet121 model and the feature extractor to process the
concatenated input. Then two fully-connected (FC) layers were
used followed by an output layer with softmax/sigmoid activation
to predict the probability of each of the outcome classes as shown
in Figure 2.

Late Fusion
The Late fusion method used two separate models (i.e., two
unimodal architectures for processing the images and text
separately) with subsequent aggregation of the model decisions
using averaging of the results from each architecture. The
Image Only model had the same architecture as described in
the Early Fusion section (see Figures 2, 3 for comparison).
The Text Only model used convolutional layers with “wide”
kernels (i.e., rectangular kernels that span the whole embedding
dimension such as 2×d and 3×d where d is the embedding
dimension). Using CNN for processing word embeddings with
“wide” kernels has shown competitive results in text classification
problems (Kim, 2014). Each of the Image Only and Text Only
trainedmodels generated a probability distribution for the classes
(two for Indiana Chest X-Ray, 11 for the PadChest dataset)
representing their outcome decision. The fusion mechanism
was done by aggregating the outcome decision of each model
(i.e., averaging both distributions) to obtain a final decision
(Atrey et al., 2010; Baltrušaitis et al., 2019). Figure 3 displays the
architecture of the Late fusion model.

Model Fusion
The Model fusion introduces a latent layer to combine the
image and text data modalities. It combines outputs of the last
convolutional layers from each model. The combined vector

from the introduced latent layer is subsequently fed as an input
to further layers (i.e., two FC layers and an output layer—softmax
or sigmoid), resulting in a single probability distribution. This
approach represents an “end-to-end” fusion model that is trained
using both modalities where the fusion mechanism is part of the
model training process.

Unlike the Late fusion model, this approach takes the
generated feature maps in the last convolutional layers from
both modalities and concatenates them as one input to the fully
connected layer (see Figure 4 for model architecture).

Experiments
Comparing Performances of Unimodal and

Multimodal Models by Varying Size of Labeled Data
We compared performance of unimodal and multimodal models
at different values of n where n is the number of splits of labeled
data. The rational of this experiment is to check whether we can
reduce the burden of manual annotation by using multimodal
models. Specifically, we compare the performance of unimodal
models trained using all labeled data (n = 1) to multimodal
models when trained on half the data (n= 2) or one-fourth of the
data (n= 4). That is, we partitioned the data into n chunks where
n varies for every experiment such that n∈ 4, 2, 1. For example,
when n = 1, the whole dataset was used in the experiment,
while n = 4 means we had 4 partitions of the dataset, each was
used separately in the training/testing of the models. Within each
partition, we split the data into 80% training, 10% validation,
and 10% testing subsets. We repeated all experiments 5 times
and averaged the results. We used the average performance of
each of the partitions/chunks to get the scores across all the
partitions (see Figure 5 for illustration). Additionally, given that
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FIGURE 3 | Late fusion model architecture, showing individual unimodal CNN models for images and text along with the averaging fusion mechanism. This method

takes independent models and aggregates their results giving a final probability distribution. For both datasets we used the CNN architecture as shown above.

FIGURE 4 | Model fusion model architecture, showing individual unimodal CNN feature extractors for images and text along with the concatenation fusion

mechanism, a terminal network consisting of three dense layers.

both datasets had multiple images per patient, we took measures
to ensure that each sample (i.e., all data from a patient) is either in
the training or valid or testing sets. We report AUC (area under
curve), precision, recall and the F1 score. To calculate the latter,
we used the following formula: F1 = 2 ×

Precision × Recall
Precision + Recall

. All

models were trained for 80 epochs with a batch size of 8 using
the “ADAM” optimizer.

We use the ModelName(text kernel, image kernel,

pretraining) convention for describing the models used in
the paper, where
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FIGURE 5 | Experiment setup showing 4 splits wherein each split we divide it into training, valid, and testing sets.

• ModelName: corresponds to the type of model used (i.e.,
unimodal vs. multimodal along with the fusion method used),

• Text kernel: refers to the type of kernel used for the text
channel (Square vs. Wide).

• Image kernel: refers to the type of kernel used for the image
channel (i.e., Square vs. Wide) and

• Pretrained: signifies whether pretraining was performed or
not (i.e., using unimodal pretrained weights as initialization
to the multimodal weight matrices).

Comparing Performance of Unimodal and Multimodal

Models
To investigate the added value of our three multimodal models,
we compared their performance to unimodal models. In this
experiment, we used the same number of labeled training
data (n = 1). We used two unimodal models to conduct our
experiments: Image Only (Square) and Text Only (Wide). The
Image Only (Square) model is a CNN trained on images using
a “square” kernel to extract image features. The Text Only (Wide)
model is a CNN with a “wide” kernel trained on text features.

Models’ Setup and Parameters
All models used the same hyperparameters and splits into
training/validation and testing data. Batch normalization layers
were part of the models’ architecture and ReLU (Krizhevsky
et al., 2012) was used as an activation function for the hidden
layers. We used a scheduled learning rate with “ADAM” as an
optimizer (Kingma and Ba, 2014). As a loss function, we used
categorical cross-entropy for the Indiana CXR dataset and binary
cross entropy for the PadChest dataset. Model regularization
dropouts (Srivastava et al., 2014) were set to prob. = 0.5 in the
fully connected layers. In the case of the PadChest dataset, we
used the sigmoid activation for the output layer and softmax for
the Indiana dataset. While training, we augmented the input
images using horizontal flips (prob. = 0.5) and converting them
to grayscale for the Indiana CXR dataset to stabilize training.

For the PadChest dataset, we followed a similar setup to
Bertrand et al. (2019) using only frontal images and trained on
DenseNet121 (Huang et al., 2018). However, instead of having
a Global Average Pooling (Lin et al., 2014) layer followed by a
fully connected layer, we flattened the featuremaps and appended

two fully connected layers (ReLU activation) followed by a batch
normalization layer, a dropout layer (prob. = 0.5) and finally a
fully connected layer as output.

RESULTS

Comparing Performances of Unimodal and
Multimodal Models to Reduce Annotation
Burden
Table 1 shows the AUC, F1, precision, and recall scores for the
PadChest dataset. All measures are reported at varying sizes of
the training set: n ε {1,2,4}. For each n, we ran the model 5 times
and calculated an average performance. We find that for or n
> 1 multimodal fusion approaches exhibited less performance
degradation compared to unimodal models. At n = 2, Early
Fusion (Square) model scored 0.96 AUC which is comparable
to its performance at n = 1 (0.98 AUC)—a degradation of
2%. Also, at ¼ of the dataset, the AUC dropped by only 5.1%
(0.98 vs. 0.93 AUC, Table 1). For unimodal models, which were
outperformed by multimodal models for all values of n, the
performance degradation was worse: at n = 4 (¼ of the dataset),
the best performing unimodal model Text Only (Wide) exhibited
a performance degradation of 10.4% (0.96 vs. 0.86 AUC).

Similar experiments were performed on the Indiana dataset.
All unimodal and multimodal models were run 5 times for each
n and the average AUC, F1, precision, and recall scores calculated.
We observed similar results (Table 2) as above, with Early Fusion
(Wide) achieving a 0.93 AUC value at n= 1, compared to an AUC
= 0.90 at n = 2, a drop of 3.2%. While unimodal models showed
competitive performances, multimodal models still resulted in
higher AUCs values across all ns.

Comparing Performance of Unimodal and
Multimodal Models
For the PadChest dataset, Early Fusion (Square) showed the
highest performance across all ns, besting the highest performing
unimodal model Text Only (Wide) (Table 1). For the multimodal
models, Early Fusion (Square) yielded an average AUC of 0.98,
while Model Fusion (Wide, Square, Pretrained) scored 0.96. Late
and Model fusion without pretraining resulted in a slightly
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TABLE 1 | Average F1, precision, recall, and AUC scores of every model for each n performed 5 times and averaged together for the PadChest dataset.

Model N = 1 N = 2 N = 4

F1 Precision Recall AUC F1 Precision Recall AUC F1 Precision Recall AUC

Image Only (Square) 0.28 0.40 0.22 0.72 0.24 0.40 0.18 0.71 0.21 0.34 0.15 0.69

Text Only (Wide) 0.70 0.80 0.62 0.96 0.52 0.69 0.42 0.92 0.34 0.51 0.26 0.86

Early Fusion (Square) 0.84 0.89 0.79 0.98 0.75 0.83 0.67 0.96 0.62 0.75 0.53 0.93

Early Fusion (Wide) 0.63 0.77 0.53 0.95 0.43 0.67 0.32 0.90 0.25 0.40 0.19 0.83

Late Fusion (Wide, Square) 0.64 0.86 0.51 0.95 0.46 0.72 0.34 0.90 0.32 0.44 0.25 0.80

Late Fusion (Wide, Square, Pretrained) 0.71 0.91 0.58 0.96 0.55 0.78 0.42 0.92 0.37 0.53 0.28 0.84

Model Fusion (Wide, Square) 0.70 0.80 0.63 0.95 0.56 0.71 0.46 0.92 0.38 0.56 0.28 0.85

Model Fusion (Wide, Square, Pretrained) 0.79 0.85 0.74 0.96 0.64 0.75 0.55 0.93 0.43 0.61 0.34 0.87

TABLE 2 | Average F1, precision, recall, and AUC scores of every model for each n performed 5 times and averaged together for the Indiana Chest X-Ray dataset.

Model N = 1 N = 2 N = 4

F1 Precision Recall AUC F1 Precision Recall AUC F1 Precision Recall AUC

Image Only (Square) 0.46 0.52 0.42 0.61 0.38 0.53 0.30 0.57 0.38 0.49 0.30 0.56

Text Only (Wide) 0.88 0.80 0.97 0.92 0.86 0.77 0.97 0.90 0.79 0.72 0.87 0.84

Early Fusion (Square) 0.89 0.87 0.90 0.92 0.86 0.85 0.87 0.89 0.82 0.80 0.85 0.86

Early Fusion (Wide) 0.91 0.90 0.92 0.93 0.86 0.79 0.94 0.90 0.79 0.69 0.91 0.84

Late Fusion (Wide, Square) 0.89 0.82 0.96 0.93 0.84 0.75 0.95 0.88 0.79 0.7 0.89 0.84

Late Fusion (Wide, Square, Pretrained) 0.89 0.83 0.96 0.93 0.86 0.78 0.96 0.90 0.82 0.74 0.91 0.86

Model Fusion (Wide, Square) 0.86 0.76 0.97 0.91 0.84 0.74 0.97 0.89 0.80 0.69 0.95 0.85

Model Fusion (Wide, Square, Pretrained) 0.86 0.78 0.97 0.91 0.85 0.76 0.97 0.89 0.81 0.71 0.94 0.86

lower performance, with Model Fusion (Wide, Square, randomly
initialized) achieving an AUC of 0.95 at n = 1, for example.
Looking at the unimodal models in Table 1, the Text Only (Wide)
model outperformed the Image Only (Square) model at every
value of n. At n = 1, the Text Only (Wide) model scored an
average AUC of 0.96 while the Image Only (Square) scored an
AUC of 0.72.

For the Indiana dataset (Table 2), the multimodal models
Early Fusion (Wide) and Late Fusion (Wide, Square) are among
the best performing models with an AUC of 0.93. Unlike
the results above, pretraining did not boost the performance
of fusion approaches. The unimodal model Text Only (Wide)
outperformed the Image Only (Square) model at every value of
n, with Text Only (Wide) scoring an average AUC of 0.92 and the
Image Only (Square) an average AUC of 0.61 at n= 1.

Figures 6, 7 provide a graphical summary of the AUC
performances across the models.

DISCUSSION AND CONCLUSION

Our experiments show that multimodal learning provides
advantages over unimodal learning when performing
classification of radiological images and their associated
text reports. With regard to the fusion technique, Early Fusion
achieved the highest performance across two independent
biomedical datasets. We suspect Early Fusion (Square) did
well on the PadChest dataset due to DenseNet121s’ ability to
propagate features deep into the network. On the Indiana dataset,

we believe Early Fusion (Wide) performed the best because
annotators used the text to assign the labels. Interestingly,
we find that—compared to their unimodal counterparts—
multimodal models have the potential to reduce the annotation
burden by reducing the number of training samples required
to train such models. For example, for the PadChest dataset,
performance decrease was half that of unimodal models when
training on a dataset comprised of ¼ of the total data (a decrease
of 5.1 vs. 10.4%). This is an important finding that can serve
toward reducing annotation burden, which usually comes
with high cost in terms of time and human labor. Instead of
annotating the entire dataset for building the classification
model, a smaller annotated dataset can be used to deliver
competitive classification performance. Other advantages are the
potential to shorten training time, reduce the cost of annotation,
and lessen fatigue and pressure exerted on annotators (Egleston
et al., 2011; Amgad et al., 2019). These advantages may reduce
the probability of having miss-annotations or low-quality
annotated datasets.

In general, Early Fusion did the best of the three fusion

methods. We suspect the square variant’s performance is due

to DenseNet121’s ability to strengthen both feature propagation

and the reuse of features, allowing the model to push features
deeper into the network. We also observed that—for the Indiana,
and less so for the PadChest dataset- the text modality (i.e.,
radiology reports) had a large influence on the performance of
the trained models, as reflected by an AUC of 0.92 of the text-
only compared to an AUC of 0.61 of the image-only model

Frontiers in Big Data | www.frontiersin.org 7 June 2020 | Volume 3 | Article 19

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Lopez et al. Reducing Burden Through Multimodal Learning

FIGURE 6 | Averaged AUC scores for the PadChest dataset for n ε {1,2,4}.

FIGURE 7 | Averaged AUC scores for the Indiana CXR dataset for n ε {1,2,4}.

at n = 1. We believe this result may reflect the process of
annotating the datasets. In the Indiana CXR case, annotators
focused on the text to assign the labels for the reports (Demner-
Fushman et al., 2016), with the results that discriminative
features are mostly found in the text modality of the dataset.
Finally, although wide kernels are known to work well when
classifying text (Kim, 2014), our results did not give a clear
picture when comparing square vs. wide kernels for the different
fusion approaches.

In the future, we plan to investigate several avenues. One is
the use of additional modalities, such as incorporating genomic
and clinical data, or apply our models to other types of medical
images, such as CTs or MRIs. We also plan to investigate
different neural architectures and models, such as recurrent

neural networks and transformer networks (Vaswani et al., 2017).
Moreover, we would like to incorporate “attention-mechanisms”
(Vaswani et al., 2017) to identify the feature contributions
across themodalities in addition to investigating semi-supervised
learning with multimodal learning.

In conclusion, we evaluated different fusion architectures
for classifying radiology exams from two data sets using both
image and text modalities. We found that fusion-based models
achieved slightly better performance compared to models using
a single modality and that they show robust performance
in experiments with reduced training set sizes. We conclude
that multimodal learning leads to competitive performance in
classifying radiology exams and may help to reduce annotation
burden on domain experts.
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