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Purpose:Our work introduces a highly accurate, safe, and sufficiently explicable machine-
learning (artificial intelligence) model of intraocular lens power (IOL) translating into better
post-surgical outcomes for patients with cataracts. We also demonstrate its improved
predictive accuracy over previous formulas.

Methods: We collected retrospective eye measurement data on 5,331 eyes from 3,276
patients across multiple centers who received a lens implantation during cataract surgery.
The dependent measure is the post-operative manifest spherical equivalent error from
intended and the independent variables are the patient- and eye-specific characteristics.
This dataset was split so that one subset was for formula construction and the other for
validating our new formula. Data excluded fellow eyes, so as not to confound the prediction
with bilateral eyes.

Results: Our formula is three times more precise than reported studies with a median
absolute IOL error of 0.204 diopters (D). When converted to absolute predictive refraction
errors on the cornea, the median error is 0.137 D which is close to the IOL manufacturer
tolerance. These estimates are validated out-of-sample and thus are expected to reflect
the future performance of our prediction formula, especially since our data were collected
from a wide variety of patients, clinics, and manufacturers.

Conclusion: The increased precision of IOL power calculations has the potential to
optimize patient positive refractive outcomes. Our model also provides uncertainty plots
that can be used in tandem with the clinician’s expertise and previous formula output,
further enhancing the safety.

Translational relavance: Our new machine learning process has the potential to
significantly improve patient IOL refractive outcomes safely.
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INTRODUCTION

Pre-operative intraocular lens (IOL) power predictions are
essential to patient refractive outcomes on implanted lenses in
cataract surgery and thus ophthalmologists have been interested
in accurate predictions for a long time. Before the introduction of
mathematical prediction formulas, IOL power was inferred from
patient history using educated guesses. This changed in 1981 with
the first known formula, the SRK equation, IOL power � A – 2.5L
– 0.9K, where L is the axial length in mm, K is the average
keratometry in diopters, and A is a constant dependent on
properties of the manufactured lens being implanted. This
formula is highly interpretable and explainable but due to its
simplicity and inaccuracy (especially on eyes that are not of
average axial length), an updated formula, the SRK II published in
1989, added a correction for longer- and shorter-than-average
axial length eyes, allowing predictions for a greater proportion of
the population. Further accuracy was obtained in the SRK/T
formula in 1990 which added corrections based on anterior
chamber depth.

The trend has continued where each new generation of
formula provides higher accuracy by (1) incorporating new
measurements on the patient’s eye and (2) employing more
complex mathematical expressions to model the relationship.
Substantial improvements have only occurred in the last
15 years where (1) we now collect more ocular biometry
measurements with greater precision and (2) we use more
advanced modeling due to advances in computing power and
artificial intelligence algorithms. For (1) we now have many
non-traditional IOL biometry variables, such as anterior
chamber depth (ACD, also known as “epithelium to
anterior lens”), corneal diameter, and corneal shape all
feature complex unknown relationships with IOL power
that are difficult to model with traditional regression and
Gaussian optics (Holladay et al., 1988; Hoffer, 1993; Haigis
et al., 2000). For (2), Clarke and Burmeister, (1997) first
proposed using neural networks to predict lens powers.
This led to a significant increase in predictive accuracy,
even before the advent of modern optical biometry.
Recently, Hill et al. designed a radial basis function neural
net that extracts features and relationships from a large dataset
to predict the optimal emmetropic IOL power (hence forward
termed “RBF 1.0 calculator”). This computational process is
available on the ASCRS website and commercially at
RBFcalculator.com. For the state of the art, standard
deviation of prediction error in refraction is between 0.361
and 0.433 (Cooke and Cooke, 2016).

Herein, we present a more advanced formula that not only
improves prediction accuracy, but offers additional practical
advantages. Our contribution can be summarized by four points.

First, we begin with a large training dataset compiled from
several surgeons over approximately three years of implanting
many different IOLs (see Table 1 for a list of lenses). We then
collected more information about each patient than has been
considered in previous research, i.e., advancing accuracy via (1).

Second, our formula is machine-learned using the state-of-
the-art algorithm that sums decision trees. This model called

“Bayesian Additive Regression Trees” (BART), an out-of-the-box
predictive modeling algorithm that is known for high
predictability (Chipman et al., 2010; Kapelner and Bleich,
2016). BART has several advantages over other computational
algorithms: it allows for highly accurate fitting of non-linear
relationships of the patient measurements and interaction of
these measurements to our predictive target, i.e., improving
accuracy via (2). Additionally, BART allows for measurement
“missingness” to be incorporated naturally without the need for
imputation. Also, BART uses Monte Carlo simulations to gauge
its own accuracy and outputs an interval of possible lens powers
with a probability density.

Third, note that previous formulas predicted Effective Lens
Position (ELP) and then converted it to IOL power post facto.
This conversion can introduce another source of error. Thus, we
further improve accuracy in (2) by predicting IOL power directly,
obviating the need for the post facto correction.

Fourth, we use BART to predict the difference between the
back-calculated ideal implanted lens power and the standard
SRK/T calculation for lens power for the obtained refraction AL-
adjusted. This follows the approaches of Wang et al., (2011) and
Savini et al., (2015) who adjust the standard formulas for long AL
and corneal shape. We employ the AL adjustment of the former
herein. Thus, our statistical modeling intention is to correct the
error between the SRK/T theoretical-axial length (AL) adjusted
lens power calculation and what we observe post-operation. This
strategy to leverage the known physics allows us to further
improve accuracy via (2).

The result of these four improvements lead to an overall
estimate of median absolute lens power error of 0.204 D for
future patients. This is of the same order as IOL manufacturer
error tolerance (Savini et al., 2015) which we believe is the
highest accuracy to date. We also believe our approach
provides the highest applicability to non-standard patient
profiles to date.

Is there a downside in safety when using our advanced
formula? Sometimes yes and sometimes no. Our justification
for why the answer is “no” when using our formula can be found
in the discussion Our Formula’s Safety. Before doing so, we must
discuss our data, our formula, validating its accuracy, comparison
to other formulas as well as additional features of our approach
and use cases.

TABLE 1 |Manufacturers and lenses used in our dataset with the number of cases
with each lens. Some of these cases were excluded from the study due to
insufficient post-op data, less than 20/30 post-op best-corrected vision, and other
reasons.

Manufacturer Lens implant model
(number of cases
with each lens)

Alcon SN60WF (482), SN6-AT-toric (418), SN6AD (170)
Abbott med optics Tecnis ZCB00 (433), ZCT-toric (71), Z9002 (12), ZMB00 (433)
LensTec SofTec (300), SofTec HD (1576), SofTec HDO (26)
Bausch and lomb LI61AO (306), Crystalens Trulign (158), MI601Akreos (37)
Hoya PC60AD (30), H231/251 (22)

Frontiers in Big Data | www.frontiersin.org December 2020 | Volume 3 | Article 5721342

Clarke and Kapelner AI-based Intraocular Lens Formula

http://RBFcalculator.com
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


SUBJECTS AND METHODS

Data Collection and Inclusion Criteria
A total of 5,331 eyes from 3,276 patients implanted between
October 2013 and June 2016 were initially entered for analysis.
Patient data (pre-op and post-op) were retrieved anonymously
from 13 surgical practices who entered data into a HIPAA
compliant secure, encrypted website (www.fullmonteiol.com)
developed by Clarke.

Eyes were included if they had uneventful in-the-bag
placement of any of several lenses from the manufacturers
listed in Table 1. Eyes were excluded if pre-operative variables
exceeded the allowed ranges of the RBF 1.0 calculator.
Additionally, eyes with ocular pathology and pre-operative
corneal (refractive) surgery were excluded. Patients with best
corrected post-op vision worse than 20/30 were excluded. Post-
operative refractions were not cycloplegic, performed by
technicians or optometrists in the retrospective surgical
practices. Length of refractive lane was not known. Refractive
vertex was assumed to be 12 mm as standard.We ensured that if a
patient had surgery on both eyes, then only one of the two eyes at
random would belong to the dataset. This was to prevent possible
overly optimistic models due to “both eyes bias”.

This study conformed to ethics codes based on the tenets of the
Declaration of Helsinki and as the data are de-identified
retrospective data; thus our study is exempt from IRB review
under 45 CFR 46.104(d)(2) by any of the three options (1), (2),
or (3).

Individual Patient Measurements
We tried to collect many different types of measurements and
features. First, all patients were measured pre-operatively with
either the Lenstar LS 900 or the IOL Master (versions 3.02 and
5.4, respectively). All surgeons recorded the eye (OD/OS),
measured flat keratometry and steep keratometry at 2 mm,
3 mm, and 5 mm, anterior chamber depth (ACD –
endothelium to anterior lens), and axial length (AL). Biometry
supplied corneal radii, flat and steep, with steep axis, central
cornel thickness, retinal thickness, refractive sphere, cylinder,
axis, and capsulorhexis. Surgeons also supplied pre-operative
target refraction, patient age, whether there was post-refractive
surgery, and the lens implant model. Recording the implant
model was important as we found there are lens-to-lens
idiosyncrasies that affect IOL power (see Explainability:
Variable Importance on the variable importance section).

Other variables were supplied on a surgeon-by-surgeon basis.
Several surgeons used the LenStar OLCR biometer, which
measures central corneal thickness and lens thickness in
addition to other variables. Surgeons using Zeiss IOL Master
measured corneal diameter (formerly known as “white-to-
white”). In addition, Clarke and one of the data contributors
(Zudans), measured an ultrasonic biometry variable similar to the
external corneal diameter, but measured this internally as sulcus-
to-sulcus diameter (857 or 16% cases), and then perpendicular
from this line to the corneal epithelial apex, the sulcus-to-sulcus
depth similar to the anterior chamber depth (details available on
request). Clarke also routinely measured corneal shape as the

keratometric Q-factor, recently reported by Savini et al., (2015) to
be significant. The total count of patient- and eye-specific
characteristics comes to 29. Under no circumstances were
post-op measurements included.

We augment these physical measurements by computing 15
theoretical variables from the pre-op measurements. First of these
are the optimized SRK/T A-Constant, Holladay Surgeon Factor,
Hoffer ACD, and the three Haigis constants, which were
calculated for each lens and surgeon using the Haigis linear
regression (Haigis et al., 2000). However, many lenses and
surgeons did not have enough data to calculate all Haigis
constants, hence the Haigis formula performed poorly when
separately computed. These subjects’ Haigis constants were
then considered missing. The A-Constant, Holladay SF, and
Hoffer ACD optimization were calculated with regression for
each surgeon/lens to yield emmetropia on average for the
respective formulas. Other calculated variables included the
SRK/T IOL, Wang-Koch Adjusted (Wang et al., 2011), SRK/T
calculated expected refraction, SRK/T ELP, Haigis ELP and IOL,
and Holladay calculated ELP and the Holladay IOL power, and
the Hoffer ELP and IOL power (Holladay et al., 1988).

In total, we have 44 possible variables per eye (29 physical
measurements plus 15 theoretical metrics) denoted x1, x2, . . ., x44.
Each patient’s refraction and implanted IOL power was recorded
post-op after a minimum of six weeks (denoted yIOL). Modern
machine learning techniques can construct formulas from large
input datasets with many variables and we turn to this now.

Development of Our Formula
The data, consisting of 3,276 eyes (all fellow eyes were dropped at
random from the 5,331 eye surgeries) were loaded into a data
frame in R Core Team, (2018). Before we began to fit a model, we
acknowledged that data-driven methods making use of a vast
number of patient characteristics (as in our situation) have a
tendency to “over-fit” the data and thus give an unrealistically
optimistic estimate of future predictive accuracy (Hastie and
Tibshirani, 2001). Thus, before beginning any modeling, we
split the 3,276 eyes randomly into two sets: a training data set
of 80% (2,621 eyes) and a test data set of 20% (655 eyes). The test
data are set aside and used for validation which will be addressed
in the next section.

We define our prediction target (the dependent variable
denoted y) as the difference between the true implanted IOL
and the theoretical (AL adjusted) SRK/T IOL power that gives the
same post-operative refraction (i.e., y � yIOL - ySRK/T). Thus, our
statistical modeling intention is to correct the error between the
SRK/T theoretical lens power calculation and what we observe
post-operation; this leverages the prediction potential of the
optical model of the eye. Our procedure thus refines our
knowledge of optics by correcting its systematic errors.

To create our formula, we must accurately fit the functional
relationship (denoted f) in the model y � f (x1, x2, . . ., x44) + ε
where ε is considered a catch-all for irreducible noise such as
relevant patient characteristics we failed to assess (unknown
unknowns) and pre- and post-operative measurement error.
To fit the relationship f, we make no assumptions on its
structure (e.g., linearity or additivity) and thus we wish to
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employ a non-parametric statistical learning procedure, i.e., the
hallmark of “machine learning.” Note that this is the modeling
philosophy also taken by the RBF 1.0 calculator who employ the
machine learning method called “kernel regression.”

Here we use the algorithm Bayesian Additive Regression
Trees (BART) to create our formula (synonymously refered to
as our “BART model”). BART is the sum of a binary decision
trees model. Decision trees are sets of rules that look like “if AL
< 24, follow the rule on left, otherwise the rule on the right.” If
the rule does not point to another nested rule, it will reveal a
predicted value. Summing trees together provides higher
accuracy since the resultant model is less coarse in its fit of
a high-dimensional space such as our 44-variable space. Each
crevice of the 44-dimensional space defined by the many trees’
binary rules has IOL powers that are considered Gaussian-
distributed, an idea that goes back to Laplace in the late 1700s
and is the standard assumption in statistical modeling (e.g.,
linear regression). The rules and predicted values are
considered parameters in a statistical model and these
parameters are then estimated with our data from Data
Collection and Inclusion Criteria. Further, since BART’s
perspective is Bayesian, our model can provide confidence
of its estimates from its parameters’ posterior distributions
(Chipman et al., 2010).

To fit a BART model to our data, we use the R package
bartMachine (Kapelner and Bleich, 2016) which includes
native missingness handling (Kapelner and Bleich, 2015).
We define “missingness” as an attempt to both fit a model
on eyes and/or predict on eyes where not all the 29 patient-
specific measurements and/or the 15 theoretical pre-op
variables are available. “Native missingness handling”
means the algorithm allows for (1) constructing models

from data that contains missingness and (2) predicting IOL
power for patients’ eyes where not all variables were measured.
The algorithm does both without the need for a preliminary
imputation step, i.e., providing guesses for the missing
patient- and eye-specific measurements. Feature (1) is
especially advantageous because a model built with a
certain subset of the eye measurements may be very
different than a model with a different subset of the data.
BART combines these multiple models together automatically.
Figure 1 shows a schematic of our model fitting and prediction
procedure.

It is important to stress that non-parametric function
estimation has a great practical disadvantage. Although we can
predict very accurately, it is atheoretical; we do not know exactly
how the patient measurements are combined to produce an IOL
power estimate (Breiman, 2001). These methods are often
referred to as “black box” methods, as the inner mechanics are
not apparent and the assessment of the statistical significance
level of a variable’s contribution (as in a linear regression) is
elusive.

Even though they are more accurate, these black box methods
such as BART do not produce a model fit that corresponds to the
“true” function f in any absolute sense. As famously stated by Box
and Draper, “all models are wrong, but some are useful” (Box and
Draper, 2001). Our model is quite accurate and thereby useful for
helping surgeons improve their patients’ outcomes even though
in an absolute sense it is not a true physical model nor do we
know precisely how it works.

Validation of Our Formula
The training data were inputted into the BART algorithm to
create a BARTmodel. To validate this BARTmodel, we employ it

FIGURE 1 | Flowchart of (A) BART model creation in the left circle and (B) patient lens power prediction in the right circle. Training data enables the creation of a
Bayesian Additive Regression Trees (BART) model which can then be used to predict lens power for future patients.
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to predict on the “out-of-sample” test data. These results are an
honest estimate of how a practitioner will see our model perform
on an arbitrary future patient as our algorithm was blind to the
test data.

Since our training data/test data split may have been
idiosyncratic, we perform this procedure multiple times using
5-fold cross-validation (Hastie and Tibshirani, 2001). This means
that several sets of trials were performed, as follows: 20% of the
data were randomly excluded as a test set, and the algorithm was
trained over the remaining 80%. This was repeated for five runs,
rotating the 20%-sized test set until each eye was out-of-
sample once.

Formula Comparison and Statistical
Analysis
We perform this same split-data procedure (model creation on
the training data and validation on the test data) for the same
specific splits for five comparison models: the RBF 1.0
calculator, the SRK/T formula, Holladay 1 formula, Hoffer-
Q formula, and Haigis formula. Note that because the actual
test data were not planned emmetropic, the RBF 1.0
calculator’s emmetropic IOL power was adjusted using
Gaussian optics to yield the IOL power that produced the actual
post-operative spherical equivalent refraction. The correction used is

IOL � 1336 / (AL − ELP)
− (1336 /(1336 /(1000 /(1000 /Ref − Vtx) + K) − ELP))

where “Ref” is the desired post-op refraction (plano in this
conversion), “Vtx” is the vertex distance assumed to be 12 mm, K
is the average keratometry, and AL is the axial length as in
Holladay et al. (1988). For each of the five comparison formulas,
the ELP was calculated as in their published formulas.

To compare results with Cooke and Cooke, (2016) and other
studies, the prediction errors (the difference between yIOL and the
predictions from the three models) was adjusted to the refraction
at the corneal plane using a standard vertex distance of 12 mm,
yielding the post-operative prediction error. We compare the
models using the test data differences of 1) median absolute error
via the Wilcoxon rank test, 2) mean absolute error via the t-test,
and 3) differences of variances via Levene’s test for non-normal
data. Since the same data splits were used for both our BART
formula and five competing strategies, the differences in
predictive ability are directly comparable.

RESULTS

The BART model outperformed all five competing formulas.
Over the 5-fold cross validation, the overall averages of five error
metrics are shown in Table 2.

The overall out-of-sample median absolute IOL error for the
BARTmethod was 0.204 D, compared with 0.416 D in Holladay I,
0.676 D in the RBF 1.0 calculator, 0.714 D in the SRK/T formula,
0.936 D for Hoffer-Q, and 1.204 D for Haigis. The standard
deviation of the errors for the IOL powers was 0.361 D, 0.463 D,
0.849 D, 0.858 D, 1.458 D, and 1.608 D, respectively. Converting
this to the refractive error using Gaussian optics at a vertex of
12 mm yields a standard deviation of 0.242 D (BART), 0.416 D
(Holladay I), 0.569 D (RBF 1.0 calculator), 0.575 D (SRK/T),
0.936 D (Hoffer-Q), and 1.48 D (Haigis). The median absolute

TABLE 2 | Results of five random out-of-sample validations with 20% of the data
held out.

Algorithm SD of
IOL

Mean
IOL

Median
IOL
error

SD
refractive

error

Median
absolute
refractive

error

BART 0.361 0.009 0.204 0.242 0.137
RBF 1.0
Calculator

0.849 −0.155 0.676 0.569 0.453

SRK/T 0.858 −0.132 0.714 0.575 0.478
Hoffer 1.458 −0.017 0.936 0.968 0.586
Holladay 0.697 −0.016 0.416 0.463 0.278

FIGURE 2 | A regression error characteristic curve for the absolute error of intraocular lens (IOL) power (in D) for BART (green), the RBF 1.0 calculator (blue), and the
SRK/T formula (red) for 1,000 eyes out-of-sample. To interpret this illustration, consider the example of eyes with 0.5 D or less absolute error in their predictions for IOL
power. Approximately 90% of BART’s predictions have this level of precision, while approximately 60% of the RBF 1.0 calculator’s predictions and 55% of predictions
with the SRK/T formula have such precision. The vertical lines represent the maximum absolute error for 95% of predictions in all three compared approaches.

Frontiers in Big Data | www.frontiersin.org December 2020 | Volume 3 | Article 5721345

Clarke and Kapelner AI-based Intraocular Lens Formula

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


error (MAE) of refraction were 0.137 D (BART), 0.278 D
(Holladay I), 0.45 3D (RBF 1.0 calculator), 0.478 D (SRK/T),
0.586 D (Hoffer-Q), and 1.268 D (Haigis). The Haigis formula
performed very poorly in our series probably due to incorrect or
missing Haigis constants 1 and 2. Hence, it will not be considered
further.

Comparing BART’s absolute error precision to the other five
formulas using a one-sample sign test yielded a significant
difference (p < 2.2e-16) while there was no significant
difference in precision between the RBF 1.0 calculator and
SRK/T (p � 0.9). The Holladay 1 calculator was significantly
better than the others (p < 0.0004), but still less accurate than the
BART MAE. Levene’s tests of the variance for each distribution
show BART to be significantly more precise (smaller variance)
than all other methods (p < 2.2e-16).

In Figure 2 we plot a regression error curve (Bij et al., 2003)
which is a visual performance comparison of BART, the RBF
1.0 calculator, and the SRK/T formula relating cumulative
percentages of predictions to levels of absolute prediction
error. The plot shows that 95% of the BART predicted IOL
power calculations were within approximately ± 0.7 D of the
ideal IOL power. This translates with Gaussian optics to 95% of
refractions within approximately ± 0.47 D of target refraction.

This improvement is seen over the entire range of AL
measurements with no systematic error among eyes with
short or long AL (see flat trend line in Figure 3). The
regression error curve of Figure 2 also shows that 97.4% of
BART’s predictions, 87.0% of the RBF 1.0 calculator’s
predictions, and 82.9% of the SRK/T formula’s predictions
were within ± 1.00 D; 89.5% of BART’s predictions, 61.4% of
the RBF 1.0 calculator’s predictions, and 52.0% of the SRK/T
formula’s predictions were within ± 0.50 D; and 66.2% of
BART’s predictions, 33.4% of the RBF 1.0 calculator
predictions, and 27.7% of the SRK/T formula’s predictions
were within ± 0.25 D.

To compare these result to those of Cooke and Cooke, (2016), we
compute the errors in refraction at a vertex of 12 mm. Cooke and
Cooke found the standard deviation of post-op refractive prediction
error of the highest ranking formula, Olsen (OLCR) on the LenStar
machine to be 0.402 D, compared with 0.242 D with our BART
method, and median absolute error 0.225 D in post-op refraction,
compared to 0.135 D with the BART method. The SRK/T and RBF
1.0 calculator yielded a MAE of refraction of 0.466 D and 0.471 D.
The Holladay 1 MAE was 0.278, the second best in our series.

Explainability: Variable Importance
Since our approach is a “black box” formula common in machine
learning, a natural question to ask is “how does the formula
work?” and further “which measurements were important
contributors to our formula”? We discuss explainability in the
context of safety and effectiveness in Our Formula’s Safety.

Figure 4 answers the question of “which variables are
important?” by plotting the 15 variables with the highest metric
of “inclusion proportion”. BART is amodel that ultimately looks like
a tree whichmakes binary decisions at the internal nodes (e.g., “AL <
23.84?”). For each internal node in the tree (which could contain
hundreds of internal nodes), we tally the variable that defines the
decision. In the example of “AL < 23.84?,”we would tally one for the
variable AL. The tally of each variable across all nodes defines the
proportion of each variables’ inclusion. This inclusion proportion

FIGURE 3 | Prediction errors (y-axis) for 1,000 eyes out-of-sample
arranged by AL (x-axis). The red line fits a linear error trend. The slope of zero
implies the BART model’s errors are likely independent of AL.

FIGURE 4 | Top 15 most important variables for prediction ranked by inclusion proportion in the BART model. The remaining variables have similar inclusion
proportions to the least important shown below i.e., approximately 1%. The lines through each bar shows 95% confidence across the BART model’s Monte Carlo
simulations.
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metric is an accepted way to measure degree of variable importance
in BART (Kapelner and Bleich, 2016). It can be further used to
distinguish statistical significance (that a variable correlates with IOL
power) through permutation testing (Bleich et al., 2014) in
future work.

Figure 4 shows that the most important variable in our
predictions that correct the SKR/T formula was intended target
refraction. This is not a variable in the classical sense since the
clinician specifies it, but nevertheless it is obviously important in
the selection of IOL power. The second variable was pre-operative
spherical refraction – perhaps this variable encapsulates AL and
keratometry. One main observation is that the level of theoretical
IOL is absolutely critical to know when correcting the actual IOL
error. In other words, the errors in the SRK/T formula are
extremely heterogeneous across the gamut of theoretical IOLs.
Also, we have features of the SKR/T andHolladay formulas, such as
calculated ELP and calculated IOL. We would like to make note of
the 15th most important, the “Lenstec HD” implantation. This
means this specific implant has its own fitted “submodel” within
our overall model. This is likely due to this specific implantation
being different than the others in someway whenmaking use of the
patient- and eye-specific characteristics.

Additionally, since BART internally runs Monte Carlo
simulations to assess uncertainty (like the predictive
uncertainty discussed in the previous section), these variable
inclusion metrics are also reported with their degree of
uncertainty (95% intervals are illustrated in the middle of the
bars as horizontal lines in Figure 4).

DISCUSSION

IOL calculations have improved incrementally over the past twenty
years, due to improvements in optical measurements and the
incorporation of more IOL variables and lens variables in the
formulas. We have developed a new procedure for calculating
IOL power using the artificial intelligence technique, BART. Our
work is part of the growing trend to use artificial intelligence to
innovate in ophthalmology (Keel and Wijngaarden, 2018).

Our approach begins with the Wang-Koch modified SRK/T
formula and then we use a BART model to predict its systematic
inaccuracies. Our BART model is trained using a large number of
patients and with many more measurements than previously
considered. We also include previous formulas used as variables.

Using this procedure, we improve on the precision found in
calculations derived from the RBF 1.0 calculator and the SRK/T
formula by a factor of 2.3 when measured by absolute lens power
difference, an improvement that is robust across the gamut of AL
measurements.

Our model also produces estimates of the standard deviation of
its IOL predictions. On average, this was ± 0.36 D. At the time of
writing, manufacturers have an IOL power tolerance of ± 0.20 D.
This suggests that wemay be approaching the limits of patient ocular
variables that influence the lens power prediction, and the observed
variance might only be attributable to manufacturing tolerance or to
post-operative refractions (Norrby, 2008; Zudans et al., 2012).

Some potential criticisms of our models might include: (1) we
might be over-fitting data and thus our model may not generalize.
Since our data were randomly split into 80–20 sets andwe report our
prediction results on data not used duringmodel construction, we do
not believe that we overfit. (2) Using data from fellow eyes of a
patient would create over-optimistic results. We were careful during
data preprocessing to only retain data from one of each patients’ two
eyes at random, the other eye being dropped from the data set and
thus this is not a concern at all. (3) Our formula uses a black box
method with limited explainability and hence may not be safe. We
address this in Our Formula’s Safety. (4) We only compared our
formula against the modified SRK/T formula and the RBF 1.0
calculator. The latter is data-driven, and the version we used
online is different than the current one. We also compared with
the Holladay I, Hoffer-Q, and Haigis formulas. In our series
Holladay I (Wang-Koch adjusted) did quite well, with a MAE of
0.278. This is very good, and conforms to other recent studies
(Cooke and Cooke, 2016). Other formulas not readily available to
investigators such as Barrett Universal II (Barrett, 1993) or Olsen
(Olsen, 2006) might have performed better than ours. The Haigis
formula performed very poorly in our series. This is due to the
absence of reliable Haigis constants in many of our cases for IOLs in
our study. Kane et al., (2017) tested an earlier version of BART
developed by Clarke. In Kane’s series the earlier version of the BART
formula performed least well vs. Barrett Universal II and RBF 1.0.
This older version of the BART formula predicted ELP, not IOL
error as in the current version, did not use the rich patient-specific
and calculated variable set, and did not use as much data in the
model training step. These three features accounted for our
improved accuracy herein.

How does the BART model compare to some currently used
formulas? Our analysis shows there is little difference between the
precision of the RBF 1.0 to other formulas, save for the Holladay
1. The advantages of our approach include (1) robustness to
missing data and (2) it provides a visual assessment of prediction
accuracy which can be used in tandem with clinician expertise
(see next section).

There may be a “quantum” level of accuracy that cannot be
exceeded in a series like ours, in that the smallest step in
refractions is 0.25 D clinically. Perhaps digital post-op
refractions could exceed this level.

There are fruitful future extensions to what we have discussed.
Accuracy should improve with even larger patient datasets and
better post-operative measurement of refraction. One way to
incentivize the sharing of data is for future models to include a
variable indicating the specific surgeon. This would allow BART’s
predictions to be optimized on a surgeon-by-surgeon basis.

There are subsets of patients where our model underperforms
and where IOL predictions have historically been lacking (e.g.,
patients with post-refractive surgery, DS/MEK corneal transplant
patients, patients with long eyes (Wang et al., 2011), and eyes with
unusual corneal shapes (Wang et al., 2011)). To increase the
accuracy for these rare patients, we conjecture that measuring
posterior corneal parameters will help. Such measurements may
not improve accuracy for the average patient but since BART can
fit local models for special subsets of patients, these new
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measurements can increase accuracy locally, resulting in the
average error decreasing globally.

Future algorithmic work should include out-of-sample testing on
weakly influential variables to determine if the variables are needed.
But once again, the BART algorithm’s native missingness handling
allows a surgeon to use our system without measuring a complete
record of the 29 raw measurements we used to build the model.
Further work can also pare down the 29 variables to a more
parsimonious set yielding an even higher predictive performance.
A randomized prospective trial comparing formulas might be more
definitive in head-to-head comparison of these new computational
technologies.

An Example Use Case
We simulate a realistic future scenario of a surgeon using the BART
model where the surgeon enters the patient’s data into our system
(here, we pick one eye at random from the test data). The surgeon
then receives a single-valued prediction of IOL power coupled with
a sample histogram of possible predictions. This histogram is a
feature of BART’s internal Monte Carlo simulation which attempts

to estimate the prediction’s probability distribution; this is a feature
of the Bayesian inference paradigm (Gelman et al., 2003). Using this
histogram, the BART system computes a standard error and a 95%
posterior predictive interval of this patient’s possible IOLs
(Figure 5). Seeing an estimate along with the degree of certainty
is useful for a clinician.

To demonstrate the BARTmodel’s flexibility in the case where
the surgeon entered very little patient information, one of the
major practical assets of our approach, we compare the situation
where the outcome of this one eye is predicted with all
measurements intact (Figure 5A) to the same eye where we
deliberately omit some of the measurements and calculated
variables (Figure 5B). Since it is the same eye, both scenarios
share the real measured IOL power of 22.50 D in common.

With all measurements, the prediction is 22.76 ± 0.47 D
with a 95% interval of [21.91 D, 23.70 D]. Note the shape of the
posterior predictive distribution in Figure 5A: bell-like and
symmetric (but not necessarily Gaussian); this is the usual
scenario. This is a highly accurate estimate with a tight 95%
uncertainty interval.

FIGURE 5 |Histogram of posterior predictive samples for a random out-of-sample patient eye. The x-axis has the IOL values. The blue vertical line indicates the IOL
prediction (mean of probabilities). The two red lines indicate the 95% predictive interval for IOL. The green line indicates the true lens power for this patient. (A) Posterior
predictive sample for the eye with all measurements recorded. (B) Same as (A) except that many predictive variables were marked as missing.
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In the latter case, we consider the situation where the surgeon
only recorded OD/OS, patient age, flat keratometry, steep
keratometry, axial length, anterior chamber depth, SRK/T
A-constant, and target post-operative spherical equivalent
refraction. With many of our most predictive variables and
calculated variables missing (see Explainability: Variable
Importance), the BART model estimate of lens power is
now 25.03 ± 2.86 D which is six times less accurate (in
absolute deviation) than with all the measurements.
Figure 5B shows that the 95% posterior predictive interval
is now augmented to [20.69 D, 29.63 D], five times larger than
previously. There is also an interesting bimodal shape to the
posterior predictive distribution. This may signify that BART
is fitting a mixture of two models (as visualized in the left
hump and the right hump). As BART’s estimate is the mean of
this bimodal distribution, the estimate falls in the center of
these two humps, which is far from the true IOL power of 22.5,
the center of the left hump.

In such a case, there is room for a clinician’s input. With more
information, the ambiguity in which of the two models to select was
resolved, with BART “picking” the correct one --- the model on the
left (Figure 5A). The algorithm can thus advise the clinician to re-
check patient measurement data and/or obtainmeasurements for the
missing values among the 29 pre-op variables if applicable. In
practice, our system can be used interactively. Note that there are
no absolutely “required measurements” for our formula but there is
great incentive (i.e., prediction accuracy) to collect as many as
possible. In the case here, merely including variables from
commonly used calculations (SRK/T A constant, Haigis, Holladay
IOL, andHolladay ELP) disambiguates between these twomodels (in
practice, our model does the computations of the 15 theoretical
variables automatically). This reflects the fundamental target of our
predictive model: the error in the calculated SRK/T modified
IOL power.

Our Formula’s Safety
We have demonstrated our formula’s effectiveness in our validated
accuracy results which comes at the expense of low explainability
(Explainability: Variable Importance). We now return to the
question from the introduction: “Is there a downside in safety to
using our high-generation machine learning formulas?”

We first have to answer how safety is related to accuracy. In
cataract implant surgery, if the IOL power is predicted
sufficiently wrong, the patient may have poor eyesight
(“refractive surprise”) relative to the fellow eye. This can
require the exchange of the intraocular lens or laser surgery.
These post-operative fixes are not life-threatening and are
mostly an annoyance. And, errors of this magnitude even
when using lower-generation formulas are minimal, <0.1%.
Hence, the bar of safety in this clinical setting is pretty low.

An error can come from two sources: (1) a measurement error
i.e., an error in the measurement value of one of our inputs and (2) a
prediction error in our formula. Source (1) is a problem for every
single formula. Luckily, current biometry devices have self-correcting
algorithms to insure proper variable acquisition. Surgeons are
warned by the devices of values that are outside 3 standard
deviations from the means. Thus, these errors are rare.

The more interesting error is source (2) i.e., an error that is the
fault of our formula, the crux of our discussion. First, we never
advocate herein for the clinician to robotically use our formula
without their own input and other facts-on-the-ground that they
judge are important via their clinical experience. They should
consider our prediction formula within context of (1) a host of
previous explicable formulas e.g., SRK/T and (2) the output of our
uncertainty plots. If they judge our prediction to be sufficiently far
from previous formulas and our uncertainty plot (Figure 5) to have
large variance or multimodal shape, then they have to make their
own judgment call. We repeat that our formula is as safe or safer
than competing formulas in this context and that it meets current
accepted FDA standards (FDA, 2020).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation upon
request to Clarke.

ETHICS STATEMENT

This study conformed to ethics codes based on the tenets of The
Declaration of Helsinki and as the data are de-identified
retrospective data; thus our study is exempted from IRB review
under 45 CFR 46.101(b)(4). Written informed consent for
participation was not required for this study in accordance with
the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

GC had full access to all the data in the study and takes
responsibility for the integrity of the data collection. GC and
AK performed the study concept and design, the analysis and
interpretation of data, and the drafting of the manuscript.

FUNDING

Privately funded in a private clinic setting.

ACKNOWLEDGMENTS

In addition to GC, the following surgeons provided data for this
study: Dr. Jimmy K. Lee of the Albert Einstein College of
Medicine, Dr. Cynthia Matossian of Matossian Eye Associates,
Dr. Val Zudans and Dr. Karen Todd of the Florida Eye Institute,
Dr. Thomas Harvey of the Chippewa Valley Eye Clinic, Dr.
Stephen Dudley of OptiVision EyeCare, Dr. Paul Kang and
Dr. Thomas Clinch of Eye Doctors of Washington, Dr. Paul
(Butch) Harton of the Harbin Clinic, Dr. James Gills, Dr. Pitt
Gills, and Dr. Jeffrey Wipfli of St. Luke’s Cataract and Laser
Institute, and Dr. Ike Ahmed of the Prism Eye Institute.

Frontiers in Big Data | www.frontiersin.org December 2020 | Volume 3 | Article 5721349

Clarke and Kapelner AI-based Intraocular Lens Formula

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


REFERENCES

Barrett, G. D. (1993). An improved universal theoretical formula for intraocular
lens power prediction. J. Cataract Refract. Surg. 19 (6), 713–720. doi:10.1016/
s0886-3350(13)80339-2

Bij, J. B., Edu, R., and Bennek, K. P. B. (2003). “Regression error characteristic
curves,” in Proceedings of the Twentieth international conference on machine
learning (ICML-2003), Washington, DC, August 21–24, 2003

Bleich, J., Kapelner, A., George, E. I., and Jensen, S. T. (2014). Variable selection for
BART: an application to gene regulation. Ann. Appl. Stat. 8 (3), 1750–1781.
doi:10.1214/14-aoas755

Box, G. E. P. and Draper, N. R. (2001). Empirical model-building and response
surfaces. New York, NY: Wiley, Vol. 424.

Breiman, L. (2001). Statistical modeling: the two cultures (with comments and a
rejoinder by the author). Stat. Sci. 16 (3), 199–231. doi:10.1214/ss/1009213726

Chipman, H. A., George, E. I., and McCulloch, R. E. (2010). BART: Bayesian
additive regression trees. Ann. Appl. Stat. 4 (1), 266–298. doi:10.1214/09-
aoas285

Clarke, G. P. and Burmeister, J. (1997). Comparison of intraocular lens computations
using a neural network versus the Holladay formula. J. Cataract Refract. Surg. 23
(10), 1585–1589. doi:10.1016/s0886-3350(97)80034-x

Cooke, D. L. and Cooke, T. L. (2016). Comparison of 9 intraocular lens power
calculation formulas. J. Cataract Refract. Surg. 2 (8), 1157–1164. doi:10.1016/j.
jcrs.2016.06.029

FDA (2020). General principles of software validation. Available at: https://www.
fda.gov/media/73141/download. (Accessed 12 June 2020).

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). Bayesian data
analysis. Boca Raton, FL: Chapman & Hall/CRC, Vol. 2.

Haigis, W., Lege, B., Miller, N., and Schneider, B. (2000). Comparison of
immersion ultrasound biometry and partial coherence interferometry for
intraocular lens calculation according to Haigis. Graefes. Arch. Clin. Exp.
Ophthalmol. 238 (9), 765–773. doi:10.1007/s004170000188

Hastie, T. and Tibshirani, R. (2001). The elements of statistical learning. Berlin,
Germany: Springer.

Hoffer, K. J. (1993). The Hoffer Q formula: a comparison of theoretic and
regression formulas. J. Cataract Refract. Surg. 19 (6), 700–712. doi:10.1016/
s0886-3350(13)80338-0

Holladay, J. T., Musgrove, K. H., Prager, T. C., Lewis, J. W., Chandler, T. Y., and
Ruiz, R. S. (1988). A three-part system for refining intraocular lens power

calculations. J. Cataract Refract. Surg. 14 (1), 17–24. doi:10.1016/s0886-
3350(88)80059-2

Kane, J. X., Van Heerden, A., Atik, A., and Petsoglou, C. (2017). Accuracy of 3 new
methods for intraocular lens power selection. J. Cataract Refract. Surg. 43 (3),
333–339. doi:10.1016/j.jcrs.2016.12.021

Kapelner, A. and Bleich, J. (2015). Prediction with missing data via bayesian
additive regression trees. Can. J. Stat. 43 (2), 224–239. doi:10.1002/cjs.11248

Kapelner, A. and Bleich, J. (2016). BartMachine: machine learning with bayesian
additive regression trees. J. Stat. Software 70 (4), 1–40. doi:10.18637/jss.v070.i04

Keel, S. and van Wijngaarden, P. (2018). The eye in AI: artificial intelligence in
ophthalmology. Clin. Exp. Ophthalmol. 47 (1), 5–6. doi:10.1111/ceo.13435

Norrby, S. (2008). Sources of error in intraocular lens power calculation. J. Cataract
Refract. Surg. 34 (3), 368–376. doi:10.1016/j.jcrs.2007.10.031

Olsen, T. (2006). Prediction of the effective postoperative (intraocular lens)
anterior chamber depth. J. Cataract Refract. Surg. 32 (3), 419–424. doi:10.
1016/j.jcrs.2005.12.139

R Core Team (2018). R: A language and environment for statistical computing
[computer program]. Version 3.5.0. Vienna, Austria: R Foundation for
Statistical Computing.

Savini, G., Hoffer, K. J., and Barboni, P. (2015). Influence of corneal asphericity on
the refractive outcome of intraocular lens implantation in cataract surgery.
J. Cataract Refract. Surg. 41 (4), 785–789. doi:10.1016/j.jcrs.2014.07.035

Wang, L., Shirayama, M., Ma, X. J., Kohnen, T., and Koch, D. D. (2011).
Optimizing intraocular lens power calculations in eyes with axial lengths
above 25.0 mm. J. Cataract Refract. Surg. 37 (11), 2018–2027. doi:10.1016/j.
jcrs.2011.05.042

Zudans, V. J., Desai, N. R., and Trattler, W. B. (2012). Comparison of prediction
error: labeled versus unlabeled intraocular lens manufacturing tolerance.
J. Cataract Refract. Surg. 38 (3), 394–402. doi:10.1016/j.jcrs.2011.08.044

Conflict of Interest: GC owns copyright to the software described in this paper via
his company Fullmonte Data, LLC. AK reported receiving wages for consulting for
Fullmonte Data, LLC.

Copyright © 2020 Kapelner and Clarke. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org December 2020 | Volume 3 | Article 57213410

Clarke and Kapelner AI-based Intraocular Lens Formula

https://doi.org/10.1016/s0886-3350(13)80339-2
https://doi.org/10.1016/s0886-3350(13)80339-2
https://doi.org/10.1214/14-aoas755
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1214/09-aoas285
https://doi.org/10.1214/09-aoas285
https://doi.org/10.1016/s0886-3350(97)80034-x
https://doi.org/10.1016/j.jcrs.2016.06.029
https://doi.org/10.1016/j.jcrs.2016.06.029
https://www.fda.gov/media/73141/download
https://www.fda.gov/media/73141/download
https://doi.org/10.1007/s004170000188
https://doi.org/10.1016/s0886-3350(13)80338-0
https://doi.org/10.1016/s0886-3350(13)80338-0
https://doi.org/10.1016/s0886-3350(88)80059-2
https://doi.org/10.1016/s0886-3350(88)80059-2
https://doi.org/10.1016/j.jcrs.2016.12.021
https://doi.org/10.1002/cjs.11248
https://doi.org/10.18637/jss.v070.i04
https://doi.org/10.1111/ceo.13435
https://doi.org/10.1016/j.jcrs.2007.10.031
https://doi.org/10.1016/j.jcrs.2005.12.139
https://doi.org/10.1016/j.jcrs.2005.12.139
https://doi.org/10.1016/j.jcrs.2014.07.035
https://doi.org/10.1016/j.jcrs.2011.05.042
https://doi.org/10.1016/j.jcrs.2011.05.042
https://doi.org/10.1016/j.jcrs.2011.08.044
https://Creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	The Bayesian Additive Regression Trees Formula for Safe Machine Learning-Based Intraocular Lens Predictions
	Introduction
	Subjects and Methods
	Data Collection and Inclusion Criteria
	Individual Patient Measurements
	Development of Our Formula
	Validation of Our Formula
	Formula Comparison and Statistical Analysis

	Results
	Explainability: Variable Importance

	Discussion
	An Example Use Case
	Our Formula’s Safety

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


