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As a highly sophisticated disease that humanity faces, cancer is known to be associated
with dysregulation of cellular mechanisms in different levels, which demands novel
paradigms to capture informative features from different omics modalities in an
integrated way. Successful stratification of patients with respect to their molecular
profiles is a key step in precision medicine and in tailoring personalized treatment for
critically ill patients. In this article, we use an integrated deep belief network to differentiate
high-risk cancer patients from the low-risk ones in terms of the overall survival. Our study
analyzes RNA, miRNA, and methylation molecular data modalities from both labeled and
unlabeled samples to predict cancer survival and subsequently to provide risk
stratification. To assess the robustness of our novel integrative analytics, we utilize
datasets of three cancer types with 836 patients and show that our approach
outperforms the most successful supervised and semi-supervised classification
techniques applied to the same cancer prediction problems. In addition, despite the
preconception that deep learning techniques require large size datasets for proper training,
we have illustrated that our model can achieve better results for moderately sized cancer
datasets.

Keywords: deep belief networks, integrated cancer survival analysis, RNA-seq, precision medicine, deep learning,
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INTRODUCTION

Advances in big data and high-throughput technologies during the past decade have led to massive
accumulation of high-dimensional omics data, which enables the data-driven prediction of disease
prognosis using molecular profiles. However, this data-driven prognosis remains challenging
because of the interplay of mostly unknown molecular factors from a haystack of millions of
molecular features. The general practice in prognosis of most of the malign diseases has been based
on the traditional methods without a comprehensive analysis of genetic and molecular profiles. This
is primarily due to the lack of reliable clinical decision support systems (CDSSs) that can efficiently
model and integrate information into actionable knowledge.

The association of molecular profiles with the onset of chronic diseases and their sub-types and
prognoses has been extensively reviewed and reported during the past years (Hsieh et al., 2018;
Collisson et al., 2019; Sicklick et al., 2019). Despite the success of a number of these approaches,
majority of them utilize the so-called shallow-learners, which often fall short in learning higher-order
abstract representations of the data and fail to capture complex inter-modality or intra-modality
interactions of features or their relationship with respect to clinical endpoints of interest. Often,
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shallow learners use a limited set of features derived from the
expert knowledge or feature reduction techniques, such as the
principal component analysis (PCA). Thus, they are limited in
their ability to learn non-linear higher-level informative features.
In contrast, deep learning (LeCun et al., 2015) is revolutionizing
the field of feature learning (also known as representation
learning) in biomedicine (Alipanahi et al., 2015; Fan et al.,
2015; Park and Kellis, 2015; Spencer et al., 2015; Wang S.
et al., 2016). Inspired by neuroscience, the power of deep
learning is its ability to represent high-dimensional data by
multiple levels of non-linearity abstractions and to train DL
models with more effective optimizations and regularization
techniques. Once such a representation is derived, any
classifier for the prediction task can use it.

To date, some studies have designed deep methods for
prediction and prognosis of cancer using different types of
modalities. Fakoor et al. (2020) used a stack of sparse auto-
encoders along with an augmenting dimensionality reduction
step using PCA, to learn features from gene expression data that
can help classify cancer types. They developed three variants of
their proposed paradigm and showed that they perform
reasonably well across different datasets in some of their
devised experiments, but not all. The addition of PCA to
extract new features from randomly selected probes is a
necessary step in their pipeline as the sparse stacked auto-
encoder is not enough by itself to predict informative features.
Moreover, their approach uses only a single data modality,
i.e., gene expression data, for prediction of cancer type. In
another study, Kumar et al. (2015) used a similar approach to
Fakoor et al. (2020), in their own domain of interest, to create
useful features from CT images to classify benign vs. malignant
lung nodules. They showed that their approach resulted in a
performance boost compared to the state-of-the-art approaches.
Azizi (2020) developed a supervised pipeline, based on the deep
belief network (DBN), for detection of prostate cancer given
ultrasound temporal data. The author used deep belief networks
to learn useful features, which are then fed into a support vector
machine classifier to predict cancer. In another study, Liang et al.
(2015) integrated several restricted Boltzmann machines (RBMs)
for an unsupervised task of grouping cancer tumors into different
clusters using cross-platform but same-type molecular data. They
showed that patients grouped in different clusters exhibit
differentiable Kaplan–Meier survival curves, which is an
indication of the soundness of their proposed clustering
approach. More recently, Zeng et al. (2020) used a supervised
learning approach based on the convolutional neural network for
subtyping of breast cancer. Besides the supervised nature of the
proposed model there, CNNs are severely restricted in capturing
long distance relations, due to their short receptive fields,
especially when the number of input features is orders of
magnitude larger than the utilized kernel width.

Despite many DL applications in different biomedical areas,
their success in cancer prediction and prognosis is still limited.
This is because deep architectures require high volumes of labeled
data samples (due to their expressiveness, Hastie et al., 2009) to
train DL models without data overfitting, which is a requirement
not always met in cancer-related domains. In this study, we

develop an integrated semi-supervised deep learning for risk
prediction in cancer cohorts with patients’ molecular profiles.
We present an integrated deep architecture to predict cancer
survival given the molecular profiles of cancer tumors. We show
that our integrated deep model can leverage the available
unlabeled data to enhance learning our deep model, a task
that is often achieved using semi-supervised learning
frameworks. Furthermore, we illustrate that the proposed
pipeline outperforms the support vector machine (SVM), a
supervised learner that has been successfully used in cancer-
related domains (Kim et al., 2012a; Ahmad, 2013; Tseng et al.,
2014) as well as the Laplacian SVM, an important graph-based
semi-supervised learning paradigm that is promising in solving
similar problems (Kim et al., 2012b; Kim and Shin, 2013; Park
et al., 2013).

DATASETS

The Cancer Genome Atlas (TCGA) (Weinstein et al., 2013) data
portal in the NCI/NIH (Cerami et al., 2012; Wang Z. et al., 2016)
hosts multi-modality data of thousands of patients. In this study,
we used data from kidney renal clear cell carcinoma (KIRC) and
head and neck squamous cell carcinoma (HNSC) diseases from
the TCGA data bank. We selected KIRC and HNSC because they
are moderately sized. On the one hand, they are not too small1 in
the number of specimens profiled, and on the other hand, we did
not intend to select a cancer type with a relatively large number of
samples, such as the invasive breast carcinoma, to showcase the
efficacy of the utilized architecture in learning generalizable
models. Furthermore, we downloaded RNA-seq expression
profiles of patients suffering from neuroblastoma (NB)
pediatric cancer from a previously published study (Zhang
et al., 2015). For the RNA-seq expression profiles, we used
three data modalities per sample, namely, the gene, the
isoform, and the junction. For the KIRC and HNSC datasets,
these were produced by Illumina HiSeq 2000 platforms and
quantified by RSEM (Li and Dewey, 2011). In case of the NB
dataset, we selected the results of mapping the reads to the
AceView (Thierry-Mieg and Thierry-Mieg, 2006) annotation
through the Magic alignment tool (Thierry-Mieg and Thierry-
Mieg, 2006). We also used the miRNA expression profiles for the
KIRC and HNSC datasets, which were generated by the Illumina
GAIIx platform, and finally, the Illumina Infinium
HumanMethylation27 platform produced the DNA
methylation data for the KIRC disease only. Table 1 lists the
available modalities and their statistics for each dataset.

MATERIALS AND METHODS

Recent years have witnessed a surge of interest in deep learning
(DL) and its successful applications in different domains (see

1Even though DBNs partially alleviate data scarcity in training, when the dataset is
too small, they cause data overfitting.
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promising examples in Hassanzadeh and Wang 2016; Esteva
et al., 2017; Hassanzadeh et al., 2017; Miotto et al., 2017), such
as image processing, speech recognition, computer vision, and
more recently in biology. Despite its success in a wide range of
areas, there are only a handful of studies reporting success stories
about the application of DL in cancer-related domains. In fact,
several attempts to deploy DL in biomedical domains have failed
to outperform other classical methods (Fakoor et al., 2020; Ditzler
et al., 2015). This is due to the selection of wrong components and
the DL architectures for the selected tasks. Moreover, these
pipelines are often designed for supervised tasks, which are
inefficient when dealing with censored data that are prevalent
in cancer databases. In this study, we developed a deep learning
model to deal with the dataset size limitation. This strategy is
equivalent to the semi-supervised learning (SSL) strategy, where
we leverage unlabeled samples to guide the training process of
network weights. Until recently, semi-supervised learning (SSL)
(Chapelle et al., 2009) approaches have been the dominant
practice to learn models that use both labeled and unlabeled
data. This is mainly due to their higher performance compared to
the purely supervised or unsupervised techniques. Different SSL
paradigms try to take advantage of unlabeled data in different
ways, but they all capture the probability distribution of the input
samples either directly or indirectly. In other words, what gives
SSL techniques an advantage over the supervised methods is their
ability to exploit all data, irrespective of the labels, to model a
more realistic marginal distribution of the input.

Data Description
Among all SSL techniques, Laplacian support vector machine
(LapSVM) is an outstanding recent technique that falls under the
category of graph-based SSL paradigms, which builds a graph
representation of the data (labeled and unlabeled) based on
domain knowledge or the similarity among samples. It has
shown the state-of-the-art performance in semi-supervised
classification problems (Belkin et al., 2006; Melacci and Belkin,
2011). The underlying assumption in LapSVM is that the
marginal distribution of the data can be represented in a low-
dimensional manifold that is representable by a similarity graph.

Formally speaking, if the marginal distribution of the data can be
supported on a low-dimensional Riemannian manifold, then by
exploiting its intrinsic geometry through enforcing a smoothness
constraint, one can introduce a preferential bias in the learning
process to yield a more accurate model. Thus, by adding a new
regularizer term for the smoothness on the manifold, one can
expand the framework of supervised learning methods that are
fully described by a cost function and regularizers such as SVM
and ridge regression to exploit the structure of the data using both
the labeled and the unlabeled data. Consequently, the Laplacian
SVM solution is defined as

f p � argmin
f ∈HK

1
l
∑l

i�1cA
����f ����2K + cI + ∫

x∈M

����∇Mf
����2dPX(x) (1)

whereV is the cost function, cA, cI are the regularizer coefficients
in the so-called ambient and the manifold spaces, respectively,
PX(x) is the marginal distribution of the data, and HK is the
corresponding reproducing kernel space. Belkin et al. (2006)
showed that, under certain conditions, the term corresponding
to the manifold regularization can be approximated with cI

N2f
TLf ,

whereN is the number of samples, f � [f (x1), . . . , f (xN )]T , and L
is the Laplacian of the graph underlying the data. As a result,
solvers that optimize the supervised SVMproblems efficiently can
be readily used to find the solution to the semi-supervised
LapSVM problem too.

Restricted Boltzmann Machines
RBMs (Hinton and Salakhutdinov, 2006) are the most common
building blocks in deep probabilistic models such as DBNs
(Goodfellow et al., 2016). These are undirected probabilistic
graphical models with a fully bipartite graphical structure (see
Figure 1A) that contains a layer of visible units, v, and a layer
of latent variables, h. Due to the expressiveness of these
models, they have become popular techniques in learning
features that are represented by the latent layers. RBMs can
also be stacked on top of each other to make deeper
architectures. Each unit in an RBM is a binary random
variable, and the visible layer of the first RBM in the stack

TABLE 1 | Data description.

Data modality (platform) Dataset # of features # of available samples

Labeled Unlabeled

Pos. Neg.

RNA-seq (Illumina HiSeq 2000) Gene KIRC 20533 110 141 281
HNSC 20533 115 128 276
NB 60780 115 104 279

Isoform KIRC 73601 110 141 281
HNSC 73601 115 128 276
NB 263546 115 104 279

Junction KIRC 249579 110 141 281
HNSC 249579 115 128 276
NB 340416 115 104 279

miRNA (Illumina GAIIx 2000) KIRC 1048 106 150 269
HNSC 1048 116 130 276

Methylation (Illumina Infinium HumanMethylation27) KIRC 21403 111 142 520
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represents the input data. The joint probability distribution in
an RBM is modeled as

P(v, h) � 1
Z
exp(−E(v, h)), (2)

where E(v, h) � −bTv − cTh − vTWh is the energy function, Z is
the partition function that normalizes the energy, and W is the
weight matrix that characterizes the underlying model. Despite
the intractable nature of the joint distribution due to the partition
function in Eq. 2, P(v, h) � 1

Z exp(−E(v, h)), the conditional
distributions are factorial in nature, that is,

P(hj � 1
∣∣∣∣v) � σ(cj + vTW :,j),

P(vj � 1
∣∣∣∣h) � σ(bj + hTW j,:),

where σ is the logistic sigmoid function. This makes the overall
distribution amenable to sampling, and hence, efficient
estimation of the joint probability distribution under the
model can be made.

Deep Belief Networks
The DBN was one of the first attempts that outperformed the
state-of-the-art shallow learners in image processing and marks
the beginning of the deep learning revolution. Even though this
class of deep models do not perform as well as the more advanced
deepmodels when a large body of labeled data is available, they do
surprisingly well in circumstances with less data.

Figure 1B shows a schematic representation of a deep belief
network. DBNs are generative models formed by stacking several
directed belief networks trying to capture causal relations and an
RBM layer on the top that acts as an associative model. The joint
probability distribution for a DBN with l layers is given by

P(x � h(0), h(1), . . . , h(l)) � ⎛⎝∏l−2
k�0

P(hk∣∣∣∣hk+1)⎞⎠P(h(l), h(l−1)),
P(h(l), h(l−1))∝ exp(b(l)h(l) + b (l−1)Th(l−1) + h(l−1)

T

Wh(l) ),
P(hk

∣∣∣∣hk+1) � σ(b(k)i +W(k+1)T
:,i h(k+1))∀i, k ∈ 1, . . . , l − 2,

where b(l),W(l) are the bias vector and the weight vector for the lth
layer, respectively.

Thus, DBNs providemulti-layer probabilistic representations of
data in an unsupervised way, and as a result, latent representation
of the low-level features can be obtained using several levels of
abstraction. Training and inference in deep belief nets is not a
tractable task. We adopt a heuristic approach called the contrastive
divergence (CD-k) proposed by Hinton and Salakhutdinov (2006)
to do the training and inference in our model. In summary,
this approach begins with training an RBM to maximize
Ev ∼ pdata and then another RBM to approximately maximize
Ev ∼ pdataEh(1) ∼ p(1)(h(1)|v) log p(2)(h(1)), where p(1)and p(2) are the
probability distributions characterized by the first and the second
RBMs, respectively. In other words, the second RBM is trained to
model the distribution over its input derived from sampling the
first RBM. This process can be repeated for as many layers as
needed and increases the variational lower bound on the log-
likelihood of the data each time a new layer is added. The DBN
initializes the weights of multi-layer perceptrons (MLPs), a
procedure dubbed as pre-training (Hinton and Salakhutdinov,
2006), to set the stage for the fine-tuning phase in the next
step. Specifically, by adding a sigmoid layer on top of a DBN
and reusing the generatively trained weights as the initial weights,
we can discriminatively train the underlying MLP (Bengio, 2007)
via conventional back-propagation–based techniques to converge
to a more accurate local optimum. Pre-training differentiates itself
from the SSL techniques by finding a proper initial point within the
complex search space in an informed way, without modifying the
objective function (Erhan, 2010).

Model Architecture
Figure 2 depicts the architecture of the proposed model. First, the
patients’ overall survival statuses are retrieved from the clinical
data in TCGA. Patients in the KIRC, HNSC, and NB datasets who
at the time of their last follow-up had survived for at least 5, 2.5,
and 9 years, respectively, were assigned to the positive survival
class. Similarly, patients who did not survive for the
corresponding period of time were assigned to the negative
(deceased) class, and the rest, i.e., patients whose latest
statuses were known to be alive and who yet did not live with
their disease long enough to pass the selected threshold, were put
into the unlabeled set. Table 1 demonstrates the number of
positive, negative, and, unlabeled patients. With each of the

FIGURE 1 | RBM (A) and DBN (B) model architectures.
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datasets, 15% of the labeled samples randomly selected to be a
validation dataset. The remaining 85% samples in the labeled set
are put into five-folds to conduct a five-fold cross-validation for
later analysis of our proposed pipeline.Next, we usemRMR(Peng et al.,
2005) to reduce the dimensionality of input modalities so that the
uninformative features are removed. mRMR is an incremental search
algorithm that looks for a subset of featureswith the highest relevance to
the class labels and lowest redundancy compared to each other. To
select the most relevant and yet least redundant probes from the
underlying molecular profiles, we discretized the scores pertaining to
each probe into three bins, based on its standard deviation across
samples (i.e., (−∞,−0.7σ], (−0.7σ, 0.7σ), and [0.7σ,∞)). We then
picked the set of top 50 mRMR selected probes (in a non-discretized
form) from all modalities combined, excluding the microRNA, as well
as the top 20 probes from the microRNA profiles. Subsequently, we
computed the per-probe z-score of the resulting subset of features
before feeding them into our models. It is worth noting that as our
DBN-based models are theoretically capable of extracting higher-order
informative features from a pool of raw input features, selecting an
optimal number of features from themolecular profiles is not a concern
here, as long as we choose a proportionate number of input features.

Next, we built a network with two hidden layers (the first layer
being a belief net comprising 15 neurons and the second layer is a
restricted Boltzmann machine with another 15 neurons). We
trained the model corresponding to each modality using the
contrastive divergence algorithm with k set to one, i.e., CD-1,
used the stochastic gradient descent with a batch size of 25 and a
weight decay of 0.001, and continued pre-training for 3,000
epochs to train the network. Subsequently, we augmented our
probabilistic DBN model with an additional fully connected
sigmoid layer followed by a softmax layer and initialized the
weights of the previous layers with those found by the CD-1
algorithm, as this has been shown to be a valuable initialization
for such networks. Furthermore, we used our labeled data in the
training set to fine-tune themodel with amaximum of 500 epochs
according to an early-stopping training strategy.

Because cancer has been known to be the outcome of
dysregulation of cellular mechanisms in different levels, a

single molecular data modality may not adequately explain the
sophisticated underlying mechanisms. To account for the
interactions, or otherwise correlations between molecular
factors with respect to the endpoint we are exploring (which is
the risk category of patients), we formed a hybrid model by fusing
the intermediate-level features (i.e., features that were generated
before the softmax layers) for pairs2 of single-modality models
and stacked a softmax layer on top of them (see Figure 2). We
also explored different model spaces by addingmore layers on top
of the fusion layer as it theoretically could result in capturing
more intricate interactions and hence better performance gains,
and we found that such architectures do not bring about further
improvements, which can be explained by the limited size of our
training sets and the complexity of the task. Finally, we trained the
overall model end-to-end, using the cross-entropy loss and the
stochastic gradient descent optimizer.

RESULTS

In this study, we investigate two major questions. First, would a
deep classifier help improving the performance of single-modality
models in predicting survivals? Second, would the integrated deep
belief net outperform the single-modalitymodels? Positive answers
to these questions would support the applicability of deep
networks in predicting survival and the feasibility of DBNs in
utilizing the redundant intermediate features to boost the
prediction performance. We compared the performance of the
proposedmodel with two baselines: 1) when we substitute the deep
belief parts with the supervised support vector machine (SVM)
classifiers and 2) when we use semi-supervised graph-based
Laplacian SVMs as a surrogate method. To address the

FIGURE 2 | The proposed model RBM. A set of features are first selected for each molecular profile, using mRMR. Then, for each molecular profile, latent features
are derived using deep belief nets, which are then fed into a sigmoid layer for downstream prediction.

2We tried the fusion of more than two data modalities as well; however, this led to
model overfitting and a drop in accuracy, due to the small size of datasets. We
hypothesize that adding more modalities can lead to a synergistic boost in the
prediction performance if more data become available.
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overfitting and underfitting problems due to the inappropriate
number of selected input features for the baselines, we use a
validation set to choose the best number of features output by
the mRMR feature selector. The validation sets are also used to
tune baselines’ hyper-parameters in Eq. 1. For the support vector
machines, we used the linear kernel as it resulted in the best
performance, in which case the performance remains robust with
respect to variations in the only model’s hyper-parameter, C. We

performed a grid search to find an appropriate number of input
probes, trying all numbers in the range (Belkin et al., 2006;
Alipanahi et al., 2015) with increments of five.3 Furthermore, to
make an unbiased comparison between the baselines, for SVM, we

FIGURE 3 | Kaplan–Meier curves and the log-rank p-values for the predictions made by the proposed work for different diseases (KIRC, HNSC, and NB) per
different modalities (gene, junction, and isoform). (A)RNA-seq gene, (B) RNA-seq junction, and (C)RNA-seq isoform for kidney cancer; (D)RNA-seq gene, (E) RNA-seq
junction, and (F) RNA-seq isoform for head and neck cancer; (G) RNA-seq gene, (H) RNA-seq junction, and (I) RNA-seq isoform for neuroblastoma. The curves show a
clear separation between the two predicted groups.

3We observed consistent performance drops due to model overfitting if more than
35 probes are selected.

Frontiers in Big Data | www.frontiersin.org July 2021 | Volume 4 | Article 5683526

Hassanzadeh and Wang Cancer Survival Prediction Using Omics Data

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


used the same implementation and solver as used in the LapSVM
method. For our LapSVM model, on the contrary, we performed a grid
search on the set of model’s hyper-parameters4 in addition to the size of
selected input probes. We found that the degree of 1, for the Laplacian
graph, and the sigma of 3.0 for the model’s RBF kernel remain the same
across all the sets of parameter configurations. For the extrinsic and
intrinsic regularization parameters, we searched the logarithmic search
spaces [1e−2,1e2] and [0,1e2], respectively.

Single-Modality Models
We first used only one modality as input (hence the single-
modality model) to show how deep belief networks can be
trained on relatively small cancer datasets to predict the
survival. Figure 3 depicts the Kaplan–Meier (KM) curves along
with the corresponding log-rank p-values for the predictions made

by our deep predictor for the three RNA-seq modalities (i.e., gene,
junction, and isoform). For each labeled sample, we trained the
model once on all but that sample and made a prediction on it,
repeated this process for all samples, and plotted the KM curves for
the combined predictions. According to the figure, our approach
produces meaningful clusters of high-risk and low-risk patients.
Furthermore, we benchmarked the proposed predictor against the
SVM and the Laplacian SVM (LapSVM). Specifically, we randomly
split cancer datasets into the train, test, and validation sets
100 times and subsequently trained deep models and baselines
once for each input modality listed in Table 1. Figure 4 illustrates
the boxplots of accuracies achieved during this experiment.
According to this figure, the trends observed in the prognostic
power of individual molecular datasets correlate and strongly
depend on the cancer type. Furthermore, the DBN is doing
consistently better than baseline methods on average.
Importantly, this improvement comes with a tighter confidence
interval, as illustrated in Table 2. Interestingly, despite the relative
success of the semi-supervised LapSVM in leveraging the unlabeled
data, it is unable to surpass the supervised SVM for some input

FIGURE 4 | Benchmarking support vector machines, Laplacian SVM, and deep belief networks.

4Sigma for the RBF kernel, the number of neighbors, the extrinsic and intrinsic
regularization parameters, and the power (degree) of the graph Laplacian to use as
the graph regularizer.
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modalities. This is because semi-supervised methods need a
significant amount of unlabeled data to learn the distribution of
input space efficiently, which does not hold for most cancer
datasets. DBN models, however, are more immune to this
shortcoming as evidenced by the results presented here.

The Multi-Modality Pipeline
Cancer is known to be a disease associated with dysregulation of
cellular mechanisms in different levels. Hence, no single molecular
modality is sufficient to predict cancer-related endpoints, such as the
survival (Chin and Gray, 2008). Therefore, changes in biological
pathways may be captured more accurately if different modalities
are integrated together seamlessly. Figure 4 suggests that the most
effective molecular modality regarding the prediction performance is
different across different cancer types. For instance, for the kidney
cancer dataset, the model trained over the RNA-seq: gene modality
results in the most accurate predictor, whereas in case of
neuroblastoma, RNA-seq: junction modality leads to the most
accurate model. Ideally, we would like to have an integrated
pipeline that is more accurate than each of the single modality
models individually. Our goal in this section is to examine whether
adding another molecular data modality can provide more prognostic

power given the proposed integration paradigm through an additional
sigmoid layer that is stacked on top of the RBM layer.

Figure 5 shows the heat map of accuracy improvements when
pairs of different inputmodalities are combined according to the final
pipeline design. Our results suggest that integration of latent features
generated by deep belief networks from different modalities leads to
improvements for majority of the cases. This improvement, however,
is not significant in case of integration of two RNA-seq modalities.
This is because they are different representations of the same source
of information and combining them will add little additional
predictive value. On the contrary, combining data of different
molecular levels can lead to more substantial improvements as is
the case with the integration of methylation/miRNA and the RNA-
seq data modality. Note that, for the HNSC dataset, miRNA does not
provide additional improvement, which is in agreement with recent
findings that miRNA is not directly related to the disease prognosis
(Hess et al., 2019), as also indicated by its poor prediction accuracy5 in

TABLE 2 | Mean (SD) of accuracies for 100 randomly initialized runs. The DBN has the smallest variance for the majority of datasets/modalities.

Modality

Gene Junction Isoform miRNA Methylation

Disease KIRC 63.27 (2.64) 65.13 (2.80) 64.52 (2.53) 54.43 (3.38) 63.39 (3.08)
64.62 (2.76) 62.65 (3.23) 65.0 (2.99) 55.71 (2.79) 62.88 (3.59)
67.48 (2.19) 66.97 (2.50) 66.49 (2.24) 62.9 (2.47) 65.71 (3.0)

HNSC 59.15 (2.78) 56.94 (3.57) 58.33 (3.12) 54.43 (3.38)
57.61 (3.13) 55.99 (3.79) 56.96 (3.19) 55.72 (2.79)
61.04 (3.2) 59.22 (3.1) 61.14 (2.85) 61.14 (2.85)

NB 83.39 (1.88) 84.94 (2.12) 83.81 (1.96)
85.86 (2.04) 87.15 (1.86) 85.96 (1.97)
87.18 (1.6) 87.78 (1.49) 86.97 (1.49)

FIGURE 5 | Improvement achieved after integrating pairs of modalities. Columns show the additionalmodality added to the single-modalitymodel (denoted by rows). Cell values
show the difference in accuracy between the integrated model and the single-modality model. Tables (A)–(C) correspond to KIRC, HNSC, and NB, respectively.

5The low accuracies reported for HNSC can be attributed to the biological
variability of samples, as this cancer type includes cancer of the oral cavity,
pharynx, larynx, nasal cavity, and salivary glands.
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Figure 4. Hence, its addition does not result in any improvement.
Interestingly, despite the large difference in the model’s
performance when trained on miRNA vs. other profiles, the
drop in performance of the integrated model is negligible,
suggesting that the integrated model can offer robustness as
well as synergistic gains in performance.

CONCLUSION

In this study, we developed a deep learning–based pipeline to
predict cancer survival. Because of the unsupervised nature of the
pre-training stage, we were able to leverage the unlabeled and
censored data to arrive at a better initialization of the model
parameters. Such an initialization is a critical step that drives the
final fine-tuned model to a more biologically relevant point in the
parameter space particularly when the number of layers in the
model increases. Our results showed that the proposed model
architecture can indeed achieve this goal by successfully
exploiting the information that is available in such data and
subsequently integrating derived features from different
molecular profiles. This is corroborated by the fact that our
trained models consistently outperformed the semi-supervised
baseline. Moreover, we showed that the most informative data
modality can be different across different cancer types, which
justifies the need for an integrated decision support system that
has the ability to generate synergistic improvements from
multiple available modalities. It is worth noting that the focus
and scope of this study was on presenting the merits of deep
models for extracting informative features from molecular
profiles of cancer tumors in an integrated manner. Needless to
say that including more modalities such as clinical and proteomic
data can enhance the prediction performance even further, as
shown in other studies (Liu et al., 2014; Yuan et al., 2014), and can
be considered a future work for a more comprehensive decision
support system. Another direction that requires further

exploration and attention is to evaluate the robustness of such
models in light of data scarcity and data variation. The presented
approach was an effort to address this challenge by exploiting
unlabeled data; however, an important question would be how
models trained on data from one study are generalizable and
applicable to the data acquired for the same disease but from
another study. Finally, it is desirable to know the strengths
and limitations of deep belief networks with other pre-
training frameworks used for training deep models, such
as the variational auto-encoders (An and Cho, 2015) and
the more recent contrastive learning (Falcon and Cho, 2020)
framework.

Despite all their success in extracting informative latent
features from data, deep models are considered black boxes
that learn by simple associations and co-occurrences
(Mamoshina et al., 2016). This obviates the need for human
intervention to generate hand-crafted features or to use the expert
knowledge but comes at cost of lacking transparency and
interpretability in such models. Making deep interpretable
models is currently an active research that has caught
attention of researches in the machine learning community
and is another dimension where this work can be expanded as
a future work.
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