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Researchers and researched populations are actively involved in participatory

epidemiology. Such studies collect many details about an individual. Recent

developments in statistical inferences can lead to sensitive information leaks from

seemingly insensitive data about individuals. Typical safeguardingmechanisms are vetted

by ethics committees; however, the attack models are constantly evolving. Newly

discovered threats, change in applicable laws or an individual’s perception can raise

concerns that affect the study. Addressing these concerns is imperative to maintain

trust with the researched population. We are implementing Lohpi: an infrastructure for

building accountability in data processing for participatory epidemiology. We address

the challenge of data-ownership by allowing institutions to host data on their managed

servers while being part of Lohpi. We update data access policies using gossips. We

present Lohpi as a novel architecture for research data processing and evaluate the

dissemination, overhead, and fault-tolerance.

Keywords: compliance, privacy, big data processing, research data, privacy policies, gossip, data sharing, open

data

1. INTRODUCTION

Data-driven research on human subjects often requires informed consent from participating
individuals before data can be collected and processed (Schneider, 2019). A responsible data
scientist must therefore build on the notion of accountability where sensitive data of subjects are
meticulously handled (Litton, 2017; Shneiderman, 2020) in accordance with governing laws and
regulations. Although institutional ethics committees are tasked by theWorld Health Organization
(2009) to protect subjects from anticipated harm, they have few means to do so beyond the initial
project approval phase. Common mechanisms recommended for protecting data throughout a
project’s lifetime, such as anonymization and aggregation, have known limitations that have led
to privacy violations (Kroll et al., 2019; Cummings and Durfee, 2020; McGraw and Petersen,
2020). More advanced privacy-enhancing mechanisms, such as based on the notion of differential
privacy (Dwork et al., 2006) might protect data for the project duration, but are difficult to make
use of in many scenarios (Kroll et al., 2019) and are too restrictive. Yang et al. (2012) summarized
issues with differential privacy in data management involving large scale personal information. It
is difficult to design differential privacy protocols for handling updates. The existing differential
privacy studies assume a simple data model and centralized database. They are not feasible for
already collected research data that lies in federated databases at multiple trustworthy research
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environments. Recent works, such as Garfinkel et al. (2018)
and Suriyakumar et al. (2020) have raised the concerns,
such as limited access to micro-data, misunderstandings about
randomness and noise, and accuracy in using differentially
private machine learning on healthcare data.

Another aspect of data-driven research is growing
collaboration on the use of datasets. Goodman and Meslin
(2014) and Salerno et al. (2017) highlight the challenges and
goals for data sharing in epidemiology in particular. This includes
the problems we find in different areas of big-data computing
on human data, including informed consent, individual privacy,
harm, and data re-identification.

The reputation of a research institution encourages
individuals to participate in research (Conley and Pocs,
2018). Any unaddressed concerns or privacy incidents can
severely affect participation, which voluntary research on data
from human subjects relies heavily upon (Kelsey, 1981; Couper
et al., 2008).

Inspired by Shneiderman, we argue for auditing, independent
oversight, and trustworthy certification for data accesses.
Building accountability around the applicable laws and the
dynamic privacy risks landscape is the way forward (Kroll
et al., 2019; McGraw and Petersen, 2020). Subject’s perception of
privacy might change over time and depend upon the purpose
data is collected for (Sharma et al., 2020). Also, the interpretation
of sensitive data is a topic of debate among technologists and
lawyers. Data analysis techniques, such as statistical inferences can
blur the lines between personally identifiable information (PII)
and not-PII (Kroll et al., 2019).

In this paper, we present Lohpi: a safe and accountable
data processing infrastructure for participatory research projects,
designed specifically for medical and sport sciences that
handle sensitive personal data. We argue for a decentralized
approach where research institutions can process data on their
infrastructures and maintain control of data assets, rather than
a central one-fits-all service. Collaborations are facilitated using
a resilient metadata distribution substrate, implemented using
gossip-based data exchanges (Johansen et al., 2015b), which is
a probabilistic data dissemination scheme. The key contribution
of Lohpi is our compliant data analytic infrastructure that
encapsulates and manages distributed data assets. Data usage
policies reside as meta-code (Hurley and Johansen, 2014;
Johansen et al., 2015a), stored at the file system level, along with
the data they govern and updated via gossips. We present our
initial results of propagating policy updates as gossips (section 6)
with fault-tolerant behavior.

2. BACKGROUND

Salerno et al. discuss the ethics in computing in the context of
big data, epidemiology, and public health. They discuss concerns
where multiple data sources can be linked without a subject’s
informed consent, which can result in re-identification of the
subject. Protecting data shared on a global scale is identified as
one of the key challenges. Since healthcare research projects need
an ethics committee approval, we collected data from annual
reports of the Norwegian ethics committee (REK, 2020). Figure 1
shows the growing number of changes to existing projects. We

contacted them over e-mail to clarify what constitutes as a
project change. It includes changes to people who have access
to the collected data (new researchers), newly discovered risks
for subjects (new threats), and even changes in conditions for
dispensation from professional secrecy requirements (new laws).
These changes need to be approved by an ethics committee. To
the best of our knowledge, we are not aware of mechanisms
that an ethics committee can use to verify compliant data
processing by researchers. Also, anonymized data available in
repositories, such as Dataverse (King, 2007) can be re-identified
and misused (Dāvida, 2020). We are building Lohpi as a
platform for compliant data usage among researchers, which
might identify a rogue researcher (Camden, 2005).

Data collected in research studies is often used beyond
its initially specified goals (Cheung, 2018). We introduce one
example from an epidemiological study known as the Tromsø
Study (Thelle et al., 1976), which involves 10-fold thousands
of subjects (Nilssen et al., 1990; Brækkan et al., 2010; Jacobsen
et al., 2012). For such studies, statistical inferences can produce
correlations that are novel. For instance, Svartberg et al.
(2004) analyzed correlations between waist circumference and
testosterone levels in men from the Tromsø Study data collected
from 1994 to 1995. They found that the correlation with waist
circumference was stronger compared to other indicators, such
as BMI or waist-hip ratio. Similar novel correlations can be
exploited for commercial interests (Dāvida, 2020). Kroll et al.
(2019) argue that it is difficult to differentiate sensitive data.
Perceived sensitivity of some data object can also change from
the time it is collected to the time it is analyzed. For instance,
knowledge of correlations as found by Svartberg et al. and
its coverage in media can change the perception of subjects
toward their privacy. Kroll et al. and Shneiderman argue for
building oversight to better understand data usage and build a
complete picture.

Lohpi is designed to promote collaboration among
researchers, not limit it, by including accountability on
research-data processing as a core feature. We conjecture that by
building accountability into the system, we can improve the trust
between researchers and the public. That may lead to improved
participation in fields, such as epidemiology, which rely heavily
on public participation (Couper et al., 2008).

2.1. Regulatory Requirements
Data-driven healthcare research requires scrutiny of and
compliance with data protection laws, such as the European
General Data Protection Regulation (GDPR). GDPR
Article 89(1) provides important research exemptions, provided
that adequate technical and organizational safeguards for the
rights and freedoms of the data subject are put in place. And
GDPR Article 4(7) stipulates that data controllers are obliged to
determine the purposes and means of the processing of personal
data, which can be subject to exceptions in Article 14(5)(b).
Also, the data protection instrument allows for broad consent
only in specific research areas and subject to recognized ethical
standards in Recital 33 of the GDPR. The exact implications of
GDPR on research is still a subject of academic debate (Norval
and Henderson, 2020). Data-driven healthcare research raises
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FIGURE 1 | Different types of applications processed annually at Norwegian ethics committee (REK, 2020).

both legal and ethical questions to maintain data subjects’ rights
(van Veen, 2018).

The exemptions provided in GDPR for research projects
entrust the responsibility on ethics committees. An ethics
committee, also known as Research Ethics Committee (REC),
Institutional Review Board (IRB), or Data Protection Officer
(DPO), is charged with the task of checking that a research
project complies with applicable laws, regulations, and ethical
standards. Therefore, throughout this paper, we show the
functions of Lohpi in context of an ethics committee concerning
research data processing. In this paper, we assume that an
ethics committee safeguards the privacy of individuals that
contribute personal data to a research project. Therefore, the
ethics committee provides updates for an existing project in
Lohpi, either as consent changes or data-access policy changes.

2.2. FAIR and FAIR-Health
The FAIR Guiding Principles (Wilkinson et al., 2016) are
becoming an established standard for research data. The
principles can be applied to data assets to make them Findable,
Accessible, Interoperable, and Reusable.Wilkinson et al. provides
a detailed guideline on how these principles can be applied
to data and non-data assets. Holub et al. (2018) proposed an
extension to the FAIR data management principles by accounting
for the privacy risks associated with research data. Their work
maps the flow of data from participants to research data
repositories and highlights the trust and privacy aspects. Their
work considers a research project compliant if the consents
are obtained either by the participants or an ethics committee.
They highlight the competing interests in human data use in

research. These are (a) protection of privacy of individuals (b)
reuse of data, and (c) complex ownership and economic interests.
Anonymization cannot always protect individuals’ privacy in
shared data (Holub et al., 2018).

Holub et al. use GDPR Article 9 as a reference for sensitivity
of data. They introduce additional requirements on data sharing
as part of FAIR-Health principles. They advocate for checking
compliance to research data before it is shared. They do not
discuss who is responsible for compliance when sharing data.
Lohpi allows checking for compliance with approved policies at
any stage of a project that can be initiated by an ethics committee.
The purpose of auditing is to discover non-compliant behavior,
its cause, and a possible fix. Additionally, audit reports can be
useful for subjects to understand what their data is being used
for and by whom. Providing control over one’s data is crucial
for building trust (Hoffman et al., 1999). Kroll et al. argue for
a global view of data usage that puts a REC in a better position
to evaluate privacy risks and mitigate them. Additionally, having
such auditing mechanisms can be used to evaluate and verify the
ethical contracts between the subjects and researchers (Lynch,
2011). Therefore a non-compliant data use by a researcher can be
detected and avoided before it causes any serious privacy harm.

Interoperability and collaboration are often required in large
projects where collaborators join at a later stage (Conley and
Pocs, 2018). Often subjects are not aware of these future
collaborators. In line with the WHO’s definition, an ethics
committee must protect the subjects from any harm (World
Health Organization, 2009). As argued earlier, an ethics
committee is in a better position to have a global view of data
usage by various researchers. Since Lohpi supports dynamic

Frontiers in Big Data | www.frontiersin.org 3 May 2021 | Volume 4 | Article 624424

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Sharma et al. Lohpi

FIGURE 2 | Overview of Lohpi and interaction with Ethics committee and Researchers.

policies, an ethics committee can issue policy changes, which
reflects a consent, changes to existing consent, or even revocation
of an existing consent. Additionally, newly enforced laws or
recommendations from a Data Protection Agency for sensitive
data can be enforced by the ethics committee. Lohpi can
ensure enforcement of up-to-date data-access policies which are
designed to protect against newly discovered vulnerabilities.

3. LOHPI OVERVIEW

In Lohpi, one or more subjects contribute data for use in one
or more research projects. Researchers analyze this data in the
context of research projects. The output is to be used for the
common good, outside the constraint of the project, for instance
in a public medical journal.

Each project is owned and hosted by a single research
institution, but might be accessed by researchers across multiple
institutions. The research data is hosted on storage nodes owned
by institutions. These storage nodes form a data storage network
in Lohpi. Lohpi does not use a centralized storage or processing,
so researchers can work on and process data on their own
computing infrastructure. This is a key design principle, as
centralized processing does not scale well with the increasing
complexity in big-data analytics methods.

The primary function of Lohpi is to manage, distribute, and
coordinate metadata related to access control and data usage,
and to enforce data usage policies based on that metadata.
Participating institutions host one or more nodes in the Lohpi
network: a peer-to-peer like substrate wheremembers collaborate
to disseminate up-to-date metadata about the projects, datasets,
data usages, and subjects’ consents to participation in various
projects. Compliance with law, regulations, and subjects’ wishes

is enforced by a combination of data provenance, file system
monitoring, auditing, and container isolation. This data-
processing model is summarized in Figure 2.

The research data is stored in a federated manner at multiple
nodes forming a data storage network (section 3.4). These nodes
and other key components, such as policy store and directory
server communicate over a secure protocol. The security aspects
are discussed later in this section. Data-access policies that may
arise from ethics committees or subjects themselves as consent,
reside at the policy store. The policies and any changes to
them are handled by the policy store (section 3.2). The policy
store disseminates these changes through gossips. Any egress
of data is checked against the applicable policy and may get
logged at various components. These generated logs are used
by the compliance engine (section 3.5) to determine compliant
behavior. An ethics committee can also request compliance
checks on data-accesses, projects, or nodes.

Lohpi is not intended to replace existing data collection
and storage infrastructure and tools. Instead, Lohpi integrates
and federates existing data hosting services to implement
global access policies for datasets and data consumers across
institutional and administrative domains. These nodes are owned
and administered by different institutions that act as the
data providers. They communicate over the secure Transport
Layer Security (TLS) protocol with each other (section 3.1).
As such, Lohpi enables compliant data use in the age of
open-data access and collaboration among researchers and
interested third-parties.

3.1. Security Aspects
Lohpi is intended to operate as a permissioned peer-to-peer-
like system for research organizations that want to cooperate
on sharing a potential large portfolio of research projects and
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datasets. Storage Nodes or simply nodes that are to participate in
the network are admitted by possessing a valid X.509 certificate,
signed by a trusted Certificate Authority (CA). Secure and
mutually authenticated communication channels are established
between nodes using the TLS protocol in combination with the
obtained X.509 certificates. A correct node will reject connection
attempts from nodes that do not have a valid X.509 certificate
signed by a trusted CA.

Lohpi relies on gossips to exchange updates between
its member nodes. Gossip protocols provide robust scalable
communication for a large-scale distributed system (Vogels et al.,
2003). The other advantages of gossip protocols are bounded load
on participants, topology independence, convergent consistency,
and simplicity (Birman, 2007). The gossip messages are issued
by the policy store (see section 3.2), which signs them for
authenticity. Upon receiving an update, either directly from
the policy store or other nodes, messages are cryptographically
verified before any further processing can take place. The
underlying Fireflies network (Johansen et al., 2015b) maintains
membership in a verifiable structure that is resilient toward
intruder nodes. The Fireflies overlay manages the membership
of nodes for our large gossip network.

To authenticate users, we integrated Lohpi with existing
authentication services, such as OpenID (Recordon and Reed,
2006). We assume that institutions can verify the identity of
their affiliated researchers through their existing authentication
framework. Researchers accessing the system must be affiliated
with a participating institution already known to Lohpi. In
our current implementation of Lohpi, we rely on OpenID for
institutional authenticated identities. We use JSON Web Tokens
(JWTs) to transfer authentication claims between parties.

3.2. Policy Store
The policy store provides mechanisms to update data-access
policies inside Lohpi. As seen in Figure 2, an ethics committee
can issue policy changes. These changes may reflect various
changes, such as consent withdrawal, added collaborators, etc.
Policy changes are then verified for authorization based on the
issuer and disseminated as gossips (see section 4.1). Each policy
is version controlled in a git-like fashion and each change to a
policy has additional details for enhanced accountability. These
details are stored and periodically backed up for failure-recovery.

The core functions of the policy store include identifying
and issuing policy updates. An ethics committee can view
research projects and associated policies. Through Application
Programming Interfaces (APIs) the policy store facilitates
viewing and changing policies. These APIs can also be used to
evaluate policies using a third-party or the compliance engine.
When a committee issues changes to a policy, the policy store
uses the last state of the policy and processes changes to issue
relevant updates. It might happen that a change does not issue
a policy update if the existing policy is broad enough to allow
such access. All updates issued by the policy store have unique
identifiers, issuer’s reference, and timestamps. They are digitally
signed by the policy store. The signing allows the data storage
nodes to verify the authenticity of updates.

3.3. Directory Server
The Lohpi Directory Server (LDS) interfaces between the policy
store and data storage network (see Figure 3) and is a key
element of the underlying Fireflies network. The directory server
maintains an in-memory collection of the nodes’ references,
which are used for different functions, such as gossiping (see
section 4.1), probing (see section 4.2), etc. The directory server
can collect metrics for system’s state and performance evaluation.

The directory server is one of the first components to boot
up when starting a Lohpi network. Once it is online, storage
nodes can join the network. When a new storage node joins
the network, it performs a handshake to exchange message
authentication keys with the directory server. A node must
present a valid certificate to join the network. It exchanges meta-
information about itself and the research data it stores with the
directory server.

3.4. Data Storage Network
The data storage network comprises of multiple nodes that
store and process data in compliance with recent data-access
policies. Lohpi is designed to be agnostic about data format,
and therefore handles datasets as opaque objects. A metadata file
is supplied along with the data to identify different data types
and file structures. The metadata is stored to facilitate analytical
processing, identifying sensitive data, and compliance queries
by an ethics committee. A node is owned and maintained by
a research institution. A contact email address is required for
receiving operational emails associated with a node, in case of
failures or compliance issues. A node needs to be aware of only
the CA, directory server, and the policy store to join the network.
The set of data storage nodes in Lohpi is represented by N.

Each node is also part of the underlying Fireflies
network (Johansen et al., 2015b). As per the design of Fireflies,
each node gossips a received gossip message to its neighbors (see
section 4.1). Every gossip may not contain relevant updates for a
node. Upon receiving the updates, we classify parts of updates as
relevant or not. The relevant are the ones that are applicable to
the data stored at a node. The irrelevant updates are not applied,
however, their object identifiers and version number are stored
in a local table for lookup later. A node can share the observed
information about received gossip messages with the compliance
engine. They can then be utilized by the compliance engine
along with other information to detect and identify the source of
compliance failures.

3.5. Compliance Engine
The compliance engine facilitates compliance checks in the
Lohpi system. Compliance can be requested or configured
automatically in Lohpi. For each data egress query, the
corresponding node stores immutable logs about the current
state of policies available at the node. A node verifies a data-
request based on the policies available at the node. There might
be cases where the current data-access policies are available
at the node or a misconfiguration has lead to unwarranted
access. During a compliance check, the compliance engine asks
for the state of various objects, such as policy information
or recently seen gossips from a node. The compliance engine
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FIGURE 3 | Disseminating a policy update as a gossip in Lohpi.

also collects such information from one or more neighbors
of a node. The neighbors are randomly selected to avoid any
collusion. The compliance engine then determines based on the
information if the node’s behavior is compliant or not. There
can be communication issues in the system’s gossip network
that can be identified by these checks. Upon investigation,
concerned parties can be notified along with remedial actions.
The compliance engine can also send reports to the node owner.
Subsequent actions can then be taken by the node administrator
to fix trivial issues, whichmay include re-syncing policies directly
from the policy store. Such methods are supported by the policy
store but are designed to use very rarely to recover from stale
policies. Lohpi can be configured to perform such compliance
checks periodically.

Alternatively, an ethics committee can investigate data-
processing on a research project to find non-compliant behaviors.
With Lohpi, an ethics committee can define custom-compliance
checks and run them against the research projects that it has
approved. We argue that through regular compliance checks, an
ethics committee can identify and mitigate privacy risks that may
exist in some projects.

4. COMMUNICATION SUBSTRATE

Lohpi nodes collaborate to provide a secure and reliable
communication substrate. In this section we describe the two
core functions of this substrate: update dissemination and
probing. A policy change is disseminated by the policy store
as a gossip message. The nodes in the data storage network

(section 3.4) then gossip the message among themselves. As
nodes join and leave the network, the dissemination of gossips
may not be optimal. Probing is used to tweak the performance
of the data storage network. The protocol is described later in
this section.

4.1. Update Dissemination
We assume that multiple nodes in the data storage network
(section 3.4) have stored data along with their policies. A
policy change has been approved by the ethics committee that
limits sharing of medical data stored at one of the nodes. The
policy change is propagated to the target node using gossips in
the network. Upon receiving a policy change, the policy store
validates the authenticity of the issuer (ethics committee). An
ethics committee can be responsible for handling many projects
and subjects. The policy store compiles these changes in a two-
part gossip message. The first part contains meta-information
about the update, in the form of a map of object identifiers
and their version numbers. This map identifies objects that are
affected by the updates contained in the message. At a node,
an approach similar to Sharma (2016) is used to determine if
the update is relevant or not. The second part of the message
contains the complete policy for objects contained in the first
part. This includes more information about the update, such as
date, issuer, and reference. After preparing a message, each gossip
message is signed by the policy store to protect the integrity of
the system. Additional details, such as message identifier and
timestamp are also added before sending the message to the data
storage network.
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When at least φ percent of the data storage network receives a
message sent by the policy store, we consider it successful. Once a
gossip message has been prepared, the policy store multicasts the
message to a set of nodes denoted by S.

S ⊂ N (1)

By multicasting the same message to a subset of the network,
the system can reach the threshold φ faster without creating a
significant overhead at the policy store. After the initial multicast
to S, the policy store relies on the nodes to gossip the message
throughout the network. The nodes in S, begin gossiping the
message to their neighbors and then their neighbors and so
on (see Figure 3). This process keeps on until a new gossip
message is introduced to the system. If no new gossip message is
introduced to the system, the system continues to gossip at fixed
intervals. The nodes ignore duplicate messages by using message
identifiers. The number of nodes in S is represented by σ i.e.,

σ = |S| (2)

Gossiping depends largely on the pseudo-random network
topology (Johansen et al., 2015b). We set the goal to reach φ

percent of the data storage network in τ time. τ can also be
seen as the time interval between two subsequent gossipmessages
introduced by the policy store. A large value of τ will reduce
the number of gossip messages that can be introduced. We have
additionally built a probing mechanism in the Lohpi network,
which can periodically fine-tune the parameters σ and τ . We
consider the parameter φ to be defined by system administrators
and not be changed frequently. Additionally, we apply an upper
limit for σ (see Equation 5) to prevent a bottleneck at the policy
store and offload the message passing to the data storage network
as gossips.

4.2. Probing Protocol
Distributed systems can have unpredictable behavior due to node
failures and transient network outages. We therefore include a
probing and recovery mechanism that detects and mitigates such
problems. The performance tuning parameters described above
allow Lohpi to batch policy updates efficiently while reaching the
predefined acceptable coverage among the nodes. We will next
explain the probing mechanism.

Let φ be the percent of the data storage network that must
receive a gossip message to consider it successful. The value is in
the range

0 < φ ≤ 1 (3)

In gossip-based systems, it can be challenging for a gossip to reach
all nodes in a limited time. Instead of waiting for all the nodes to
acknowledge, we wait for a threshold value derived from φ and
N. We call it k and it is calculated as

k = max (⌈φ × |N|⌉,φ × |N| + 1) (4)

τ represents the time interval between two messages sent by the
policy store, typically in seconds. σ represents the number of

nodes to which the policy store multicasts the update directly.
For example, if the policy store multicasts the message to one
node, σ = 1.

In a default configuration, σ starts with value 1. The policy
store creates and marks gossips as probing messages, such
that the nodes acknowledge back to the policy store. In a
typical manner, the gossip message is composed and sent (see
section 4.1). The policy store gossips the probe message and waits
for at least k acknowledgments from unique nodes. Duplicate
acknowledgments are handled by the policy store. After τ

seconds have passed and the threshold is not met, the system
assumes that the probing has failed. This causes the system
to assume that the current configuration is not optimal. To
overcome this, the system increases the value of σ by an order
of 2. After that, the policy store starts a new probing run. The
new probing run is highlighted in the messsageID field, which is
returned in the acknowledgment by the nodes. Then the policy
store selects the remaining number of nodes required to match
the increased value of σ . The selection of nodes can be random
or based on algorithms, such as Least Recently Used (LRU),
depending on the configuration. After selecting, the policy store
starts over and multicasts a new probe message to these nodes.
Then, the policy store waits for τ time to receive at least k
acknowledgments. This continues until σ reaches the limit,
which is defined as

σ ≤
φ × |N|

2
(5)

We define this arbitrary limit to maximize the utilization of
gossiping within the network. We argue that a high value of σ

can lead to a bottleneck at the policy store. Once this limit for
σ is reached, the system begins increasing the value of τ . The
values are only modified if the acceptable number of nodes are
not reached in the given time limit. Like previously, the system
begins probing again with modified τ and this continues until
three consecutive probing requests are successful.

After three successful probing requests, the new parameters
are applied to the system. The new values for σ and τ are logged
and subsequent gossips by the policy store use them. In case
the system cannot obtain a configuration even after multiple
attempts, the value of φ may need to be changed. For example, if
φ ≈ 1, it might be difficult to find appropriate values of σ and τ .
If the system fails to obtain a configuration within limits through
probing, it generates an alert message for the administration. The
results of probing requests are logged regardless. Probing may
lead to an intervention by a system administrator, if necessary.

5. EVALUATION

A key property of Lohpi is reliable dissemination of policy
updates. We therefore evaluate the propagation of the updates as
gossips, issued by an ethics committee and introduced to Lohpi
by the policy store. Jenkins et al. (2001) evaluated gossip-based
propagation and provided a mathematical model for message
dissemination. Their model calculates dissemination probability
based on number of gossip-rounds. Unlike Jenkins et al., we
measure the time (in seconds) for propagating an update. We
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evaluate multiple scenarios, which are detailed in section 5.1.
Later in section 5.2, we describe our evaluation of the access
controls’ overhead of reading operations.

5.1. Update Dissemination
As described earlier, Lohpi facilitates updating a project’s data-
access policy. We designed a set of micro-benchmarks to evaluate
the time it takes to propagate a data-access policy change. These
experiments evaluate the time required to propagate an update
under different conditions. Additionally, we demonstrate the
fault-tolerance of the system, by introducing synthetic node-
failures in the system.

We begin by simulating the growth of the total number of
nodes N in Lohpi. We define static values for φ and begin
introducing updates in the system using the policy store. Similar
to probing (section 4.2), we configure the data storage network
to acknowledge receiving an update. Duplicate acknowledgments
are ignored by the policy store. To consider a policy update
successful, the policy store must receive k acknowledgments
(see Equation 4). We measure the time elapsed after the policy
store multicasts the message to σ set of nodes and waits to receive
k acknowledgments. We arbitrarily chose the message size to
512KB. We take measurements at least three times to calculate
uncertainty and plot them using error bars. After recording the
first set of readings, we increase the value of σ , by doubling it
and take a further set of readings. Note that the upper limit of
σ is bounded by Equation (5). Since the value of φ is static, we
evaluated the whole set of experiments again with a higher value
of φ.

We evaluate the fault-tolerant nature of Lohpi as well.
As discussed in section 3.4, a data storage node is run and
maintained by an institution instead of a centralized server.
Many conditions, such as network failure, power loss, or natural
calamities can cause a node to fail or simply appear offline to
the network. By fail, we imply that a node is not able to receive
and/or gossip an update further into the data storage network.
Like earlier, we measure the propagation time of a message and
compare it with a network without failures. We used the same
values forN as earlier and simulate different sizes of the network.
We induce failure in the network, in terms of ǫ percentage of
nodes. The possible values for ǫ are

0 ≤ ǫ ≤ 1 (6)

where ǫ = 0 means no failures and ǫ = 1 means all the
nodes in the data storage network have failed. After introducing a
controlled amount of failures, we evaluate the effect of increasing
σ to mitigate the performance issues that might be induced by
failed nodes. We used an Intel Xeon E3-2370 cpu1-based blade
server with 64GB memory for running our simulations. We vary
the network size (N) from 2 until 64, doubling it in every step.
Other values, such as φ, σ , and ǫ are varied as well and discussed
in section 6.

1https://ark.intel.com/content/www/us/en/ark/products/97479/intel-xeon-

processor-e3-1270-v6-8m-cache-3-80-ghz.html.

5.2. Overhead
We also evaluate the overhead added by the access controls.
First, we measure the baseline by reading multiple files from
the file system without any access controls introduced by Lohpi.
After enabling the access controls, we perform the same read
operation and measure times. We measure the time required to
read a large chunk (1GB) of data. We have designed Lohpi to
facilitate different studies which may have different data file sizes.
Additionally, a subject’s data might be reflected as one row in a
large study’s data. Breaking down a study’s data into multiple files
which reflect individual subjects can lead to fine-grained controls
that might add additional overhead. We evaluate this by varying
the file sizes while keeping the total read data to be constant. For
example, if each file is of size 4KB, there will be 262,144 files to
read for ∼1GB of data. We present the results and discuss them
in section 6.2.

6. RESULTS

We examine the results obtained from our simulation of the
Lohpi network. We first focus on the propagation of messages
through the distributed storage network. Later in this section, we
present the overhead added by the access controls.

6.1. Update Dissemination
Earlier in Equation (4), we described the criteria to consider
a message successfully propagated through the network. In
Figure 4, we observe the time required for reaching at least
half of the data storage network. We can observe that the time
required to reach the acceptance level grows exponentially with
the number of nodes (N) in the network. We also observe that
by increasing the value of σ , we can propagate the message
faster through the network. However, the gains are not significant
at lower values of N. Only with N ≥ 32, we start to observe
significant gains. Also, the variability in the time increases with
the size of the network.

Similar to Figure 4, we can observe similar behavior in
Figure 5 with a slightly higher value of φ = 0.67. Interestingly
enough, the differences are also significant at N ≥ 32. Compared
to Figure 4, we observe that more time is required to reach the
acceptance level with a higher φ value in Figure 5. The differences
increase as the network becomes larger.

Next, we present our results with induced failures in the
network. Figures 6–8 plot the time to receive k acknowledgments
while nodes in the system have failed. We can observe that in
the case of 10% failures, the system corrects itself by re-forming
rings (Johansen et al., 2015b). The performance is comparable to
a system with no failures. As a result, the system does not cross
the baseline where ǫ = 0 (Figure 6). Only with higher values of
ǫ ≥ 0.15 (Figures 7, 8), we can observe a drift towards the right,
indicating more time required for a message to propagate with
failed nodes. It is important to note here that we did not lower the
value of k (Equation 4) while measuring the time with ǫ failures.
For example, let us assume that N = 64, φ = 0.5, and ǫ = 0.2.
From Equation (4), we can calculate k = 33. Even with 13 failed
nodes, resulting in N′ = 51, we measured the time to receive
33 acknowledgments. It is evident from Figures 7, 8 that by
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FIGURE 4 | Time to gossip a message with φ = 0.5.

FIGURE 5 | Time to gossip a message with φ = 0.67.

increasing the value of σ , we can overcome the additional delay in
propagating changes caused by nodes’ failure. However, we need
to keep in mind that there is an upper limit for σ (Equation 5).

In our experiments, we doubled the value of σ in each step. The
results illustrate that the updates can be propagated within an
expected time frame.

Frontiers in Big Data | www.frontiersin.org 9 May 2021 | Volume 4 | Article 624424

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Sharma et al. Lohpi

FIGURE 6 | Time to gossip a message with 10% failed nodes.

FIGURE 7 | Time to gossip a message with 15% failed nodes.

6.2. File Access Overhead
We added access controls based on the attributes of the
researchers. These attributes may reflect association, country, or

research groups. We evaluated the overhead added by our access
controls for a file read operation by reading a large chunk of
data. We repeated the experiment to observe the effect of file
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FIGURE 8 | Time to gossip a message with 20% failed nodes.

FIGURE 9 | Reading 1GB of data with different file sizes.

sizes on the overhead as well. The results are shown in Figure 9.
We can report that the overhead is significantly large (≥15%)
when the file sizes are smaller than 64KB. As the file size grows,

the overhead becomes much smaller. At file size = 4MB, the
overhead is almost negligible. We can argue that if study data
is made available as a large archive in one file, the overhead for
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access control will be negligible. If the research data is made
available as many small files, with each having its own fine-
grained data access policy (reflecting each subject’s preferences),
the overhead can be significant.

7. DISCUSSION

As shown in the results (section 6), our proof-of-concept
demonstrates that it is possible to propagate updated policies
promptly. We conjecture that within a larger distributed storage
network, policy changes can be propagated within minutes.
We demonstrated that the system can sustain multiple node
failures. The probing mechanism can periodically tweak the
network. We also conjecture that transparency in research data
processing can increase public trust in research institutions
and their projects involving real end-users. Adapting protection
mechanisms to newly discovered threats to protect individuals in
research can help sustain public trust (Mastroianni, 2008). Lohpi
allows institutions to join the network and integrate with their
identity management.

Making research data available only through Lohpi may seem
against the FAIR principles (Wilkinson et al., 2016). Lohpi refers
to the FAIR-Health principles (Holub et al., 2018), which consider
privacy risks in research data. Lohpi facilitates compliant data
sharing and analytics on research data involving humans, which
may be from the fields of medical or sport sciences. Approaches
similar to Meyer et al. (2012) might suit one large epidemiology
project, such as the Tromsø, Study (Thelle et al., 1976), which
has been running since the 1970s. However, such approaches are
tied to project goals, which may change over time (Figure 1).
Project changes may result in changes to data access policies.
With Lohpi, we conjecture that an ethics committee can enforce
changes to data access policies quickly and address concerns
regarding data accountability.

Istvan et al. (2020) argue that GDPR support must be
built at hardware-level with software-defined abstractions. In-
storage computation using Trusted Execution Environments
(TEEs) can enforce policies close to the data (Istvan et al.,
2020). While Lohpi’s approach is not centralized, we conjecture
that the compliance engine can provide abstractions for an
ethics committee to encode different compliance checks and
run them on a data storage network. An expressive policy
language like Guardat (Vahldiek-Oberwagner et al., 2015) can
be realized using meta-code (Johansen et al., 2015a). We are
also interested in building a tool to express research data
usage protocol for streamlining REC approvals and verifying
compliance against an approved protocol. We are interested in
making existing research data in Norway available on Lohpi at
multiple institutions.

8. RELATED WORK

Many research institutions use Dataverse (King, 2007) to host
and share research data. Dataverse is a centralized repository
where researchers can deposit their data. By default, a dataset
added to Dataverse has CC0 license. Researchers can add custom

licenses. Users can accept such click-through licenses and access
research data. Once a dataset is downloaded from Dataverse,
there are no mechanisms to restrict sharing through any other
means, such as over FTP or a USB-drive. Woolley et al. (2018)
introduced the Automatable Discovery and AccessMatrix (ADA-
M) that allows stakeholders to confidently track, manage, and
interpret applicable legal and ethical requirements. The ADA-
M metadata profiles allow an ethics committee to evaluate
and approve information models linked to a dataset. ADA-M
facilitates responsible sharing outlined in the profile and allows
the custodian to check the accesses against regulatory parameters.
However, they do not mention any functionality about issuing
updates to the profile. Alter et al. (2019) presented Data Tags
Suite (DATS), which can be used to describe data access, use
conditions, and consent information. DATS provides a metadata
exchange format without any compliance checking mechanisms.
Havelange et al. (2019) present their preliminary work that uses a
blockchain-based smart contract to attach license requirements
to a dataset. The datasets are encrypted and ADA-M profiles
are attached with each dataset. A researcher accepts the contract
and receives a token to decrypt the dataset. The researcher’s
data accesses are checked against the profile for compliance.
They require each researcher, dataset provider, and a supervisory
authority to have a node on the Ethereum-blockchain network.
They do not provide any evaluation in their work.

9. CONCLUSION

We have presented Lohpi, a proof-of-concept distributed
infrastructure to support compliant data sharing and analytics
on research data. By leveraging a secure and scalable gossiping
network (Johansen et al., 2015b), we ensure that the policy
changes propagate in the network with minimum overhead at the
policy store. The Lohpi architecture allows us to scale the policy
store horizontally. When a research project spans multiple ethics
committees, each ethics committee can have their own trusted
policy store that enables a distributed set of data storage nodes to
work together. As per our design, data storage nodes can run in
the cloud or on campus hardware which allows different research
institutions to join the Lohpi network without moving their data.
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