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Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique used for
mapping the functioning human cortex. fNIRS can be widely used in population
studies due to the technology’s economic, non-invasive, and portable nature. fNIRS
can be used for task classification, a crucial part of functioning with Brain-Computer
Interfaces (BCIs). fNIRS data are multidimensional and complex, making them ideal for
deep learning algorithms for classification. Deep Learning classifiers typically need a large
amount of data to be appropriately trained without over-fitting. Generative networks can be
used in such cases where a substantial amount of data is required. Still, the collection is
complex due to various constraints. Conditional Generative Adversarial Networks (CGAN)
can generate artificial samples of a specific category to improve the accuracy of the deep
learning classifier when the sample size is insufficient. The proposed system uses a CGAN
with a CNN classifier to enhance the accuracy through data augmentation. The system can
determine whether the subject’s task is a Left Finger Tap, Right Finger Tap, or Foot Tap
based on the fNIRS data patterns. The authors obtained a task classification accuracy of
96.67% for the CGAN-CNN combination.
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1 INTRODUCTION

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technology for mapping the
functioning of the human cortex, which exploits near-infrared spectroscopy (Ferrari and
Quaresima, 2012). This mapping is done by measurements and images of local brain changes
caused by the modulation of cerebral blood flow and oxygen metabolism by neural activity (Yücel
et al., 2017). fNIRS is a non-invasive, repeatable, portable, high temporal resolution, and
economical technology with widespread use. Advances in technology and hardware have
allowed fNIRS researchers to non-invasively probe neurovascular physiology, increasing
resolution and signal quality (Hocke et al., 2018). However, technologies such as EEG have
the limitations of imprecise localization and inaccessibility of sub-cortical areas (Naseer and Hong,
2015). Other techniques such as fMRI can be used to measure hemodynamic activities yet, due to
cost and portability, may not be suitable for population studies. Further, fNIRS has a better
temporal resolution than fMRI in most cases (Huppert et al., 2006). fNIRS is more suited for the
population studies for which other imaging modalities are of limited use. Such studies can include
infants and children, procedures involving mobility and interactivity, and clinical environments
(Yücel et al., 2017).
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With the popularity of brain-computer interfaces, task
classification using neural imaging technologies has become
more critical. When it comes to neuroimaging techniques used
for BCI, both EEG and fNIRS have emerged to be the most
widespread for task classification (Hong et al., 2018; Saadati
et al., 2019; Shin et al., 2016). Although there are much more
sophisticated and accurate neuroimaging techniques that can be
used for medical diagnosis, EEG and fNIRS are much suitable in
studies with population since it is inexpensive and not harmful to
repeated use. Most of the existing task classification systems use
conventional machine learning methods for classification. The
traditional machine learning methods are used frequently due
to their simplicity of implementation. On the drawbacks, these
traditional methods require a significant amount of data
preprocessing and a feature extraction phase.

Additionally, traditional machine learning methods may not
capture all the valuable information in complex neural signal
patterns. The accuracy of the conventional classifiers depends
predominantly on the features selected for training the model.
The extraction and selection of optimal features can be a
challenge with neural signals. The complexity and multi-
dimensionality of neuroimaging data make it much more
suitable for deep learning methods.

There are currently some successful deep learning classifiers
with neuroimaging modalities such as EEG and fNIRS (Hennrich
et al., 2015; Chiarelli et al., 2018). One of the main issues with
implementing deep learning-based classifiers is the sample size.
The models tend to overfit with small sample sizes, create
difficulty generalizing the model, and underperform testing
data. Data augmentation is a method that enables researchers
to increase the diversity of training data available for models
without additional data collection. In the health field, obtaining
high-quality labeled data for deep learning algorithms can be
costly and time-consuming. This is a situation where generative
networks can be helpful. Traditional data augmentation methods
include operations such as zooming, cropping and rotating, etc.
These methods can be very successful in object classification. In
cases where there is no single object to focus on classification,
such time-series data represented in images, using traditional data
augmentation methods makes little sense. The traditional data
augmentation methods may not be suitable for medical data
generation, where a strict format is adhered to on many
occasions. One way which can be used for data augmentation
with a deep learning algorithm is known as General Adversarial
Networks (GAN). Researchers have found that data augmentation
with GAN networks has improved the classification accuracy
(Antoniou et al., 2017).

The authors propose a classification system based on a hybrid
CGAN-CNN network to classify images derived from fNIRS
signals. The system can determine whether the task performed
by the subject is a Left Finger Tap, Right Finger Tap, or Foot Tap.
The proposed deep learning system will not be affected by the
relatively smaller number of samples due to the ability of the
CGANs to augment the data. This proposed can be used when
training a deep learning classifier with a relatively smaller number of
samples. The proposed system can both generate artificial samples
and classify real data as well. The proposed system obtained a

classification accuracy of 96.67% and an average AUROC of 0.98.
This proposed system exceeded the accuracy obtained for the same
dataset using the traditional machine learning classifiers.

2 BACKGROUND

fNIRS use near-infrared rays to measure changes in cerebral
blood flow non-invasively. Its measurement principle is based on
the measurement of hemoglobin’s oxygenation in the cerebral
blood flow (Jobsis, 1977). fNIRS are actively used to classify tasks
in brain-computer interfaces. Due to its economic and portable
nature, it is widely used for population studies. Researchers can
visualize the cerebral blood flow using fNIRS signals to analyze
how different cortex parts are activated during certain tasks. As
an example, Figure 1 illustrates how brain activation patterns can
be visualized using fNIRS brain imaging when the subject is
performing tasks of varying intensity while driving (Tsunashima
and Yanagisawa, 2009). fNIRS data can be used to classify a wide
variety of tasks that include cognitive tasks such as mental
arithmetic and motor imagery tasks such as finger/foot
tapping (Shin et al., 2018; Bak et al., 2019).

Acquiring medical data present practical difficulties due to time,
money, labor, and economic cost. The deep learning-based model
can better perform medical image classification than hand-crafted
features when dealing with a large amount of data (Zhang et al.,
2019). Artificial data can be generated by using traditional image
augmentation methods. However, the images generated by
traditional augmentation methods have a similar distribution to
the original. This practice may not be suitable when the artificial
samples have to represent data distribution among different subjects.
GANs provide a method to augment the training data with
artificially generated samples. GANs have successfully performed
in many areas, including image and vision computing to speech and
language processing (Wang et al., 2017). GANs have been used in the
medical field where synthetic image generation has improved the
classification accuracy with CNN networks where collecting an
extensive amount of data is not feasible (Frid-Adar et al., 2018).

GANs are an innovative way of training a generative model by
framing the problem as a supervised learning problem using deep
learning models. GANs can automatically discover the pattern in
input data. The GAN architecture was first proposed in the 2014
paper by Goodfellow et al. (2014). GANs can generate new samples
that appear to belong to the original dataset (Hong et al., 2019).

FIGURE 1 | Functional brain imaging by fNIRS obtained while a subject
was performing low, medium and high difficulty tasks during driving
(Tsunashima and Yanagisawa, 2009).
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There are two sub-models in a GAN called the Generator (G)
and Discriminator (D). The generator model is used to train to
generate new examples and the discriminator model to classify
samples real or fake generated (Creswell et al., 2018). GANs are
the two models behind the training motivation trying to achieve
the Nash equilibrium of Game Theory (Nash, 1951). A non-
cooperative game solution must be reached between two
adversaries to achieve Nash equilibrium. Each player already
knows all the other player’s strategies. Therefore, no player gains
anything by modifying their strategy (Goodfellow et al., 2014).
Any function that can be differentiated can be used as the
function for equations of Generator and Discriminator.

The generator model takes a fixed-length random vector as
input and generates a sample in the domain. From a Gaussian
distribution, a random vector is drawn to initiate the generative
process. After training, points in this multidimensional vector
space will correspond to points in the problem domain to form a
compressed representation of the data distribution. This vector
space is known as a latent space. Latent variables though
necessary for the domain, are not directly observable.

In GANs, when the Discriminator successfully identifies real
and fake samples, it is rewarded, or no change is needed to the
model parameters (Goodfellow et al., 2014). In contrast, the
Generator is penalized with extensive updates to model
parameters. This process is analogous to a zero-sum game.
When the optimum solution is reached, the Generator can
generate perfect duplicates from the input domain every time.
In this case, the Discriminator cannot differentiate between real
and fake samples and predict their authenticity in every case.

An essential extension to the GAN is in their use of conditionally
generating an output (Mirza and Osindero, 2014). The generative
model can be trained to create new examples from the input
domain. Some additional input conditions the random vector
from the latent space. In a conditioned Discriminator, additional
input is given along with the input images. In the classification label
type conditional input, the Discriminator would expect the class’s
input. The Generator is taught to generate examples of that class to
fool the Discriminator. In this way, a conditional GAN can generate
samples from a domain of a given type.

One of themany significant advancements in using deep learning
methods in computer vision domains is data augmentation to
improve model performance. GANs have increasingly been used
for data augmentation (Douzas and Bacao, 2018). Further
augmentation can increase model skill, provide a regularizing
effect, and reduce generalization error. It works by creating
artificial but plausible examples from the input problem domain
on which the model is trained. Traditional augmentation methods
consist of simple transforms of existing images such as crops, flips,
etc. Generative models, if trained successfully, can provide a more
domain-specific approach to data augmentation.

3 MATERIALS AND METHODS

3.1 Overall System
Several analyzes were performed on the fNIRS to determine the
final configuration of the system design. Figure 2 illustrates the

Overview of the complete system. The acquired raw fNIRS data
were initially preprocessed to remove the disturbances. Neural
signals have highly correlated variables that should be removed
before being fed into the model. Therefore dimension reduction
techniques were performed on preprocessed data to remove the
highly correlated variables. Afterward, the data is sent to the
image generation phase. The Grammian Angular Summation
Field images are generated for the time series. The data set is then
divided into the test and training sets. The training set is sent to
the CGAN model, where artificial images are generated for the
three categories. Both real data and CGAN generated data are
used to train the deep learning classifier based on CNN. The test
set is fed directly to the classifier and used to determine the
performance. For the baseline classifiers that used features, a
separate feature extraction process was performed, briefly
described in later sections. Finally, the result is obtained with
the task being classified into Right Hand Tap (RHT), Left Hand
Tap (LHT), or Foot Tap (FT).

3.2 Data
The data used for the training of the classifier was obtained from
an open database (Bak et al., 2019). Amore detailed description of
the data can be found in the original publication. Thirty
volunteers participated in this study. A total of 30 volunteers
without a history of psychiatric or neurological disorders
participated in the experiment (17 males 13 females; 23.4 ±
2.5 years old) (Bak et al., 2019). The fNIRS data were recorded
by a multichannel fNIRS system consisting of eight light sources
and eight detectors. Figure 3 illustrates the placement of the
fNIRS optodes. A single trial included an introduction period and
a task period, followed by an inter-trial break. The inter-trial
interval was 30 s on average. Out of RHT, LHT, and FT, a specific
task type was displayed randomly, which volunteers were
required to perform. For RHT/LHT tasks, the volunteers
performed unilateral complex finger-tapping at a rate of 2 Hz.
For FT, the participants tapped their foot at a 1 Hz rate.

fNIRS is a brain imaging technique used to observe the local
changes in hemoglobin concentrations in the brain that arise
from cerebral blood flow modulation. Certain brain areas are
activated when engaged in a task, thus changing the oxy and
deoxy patterns. Figure 4 shows the topographic distributions
plotted using oxy and deoxy channels. From the topographic
images, it is evident that the left hemisphere responds with an
increase in HbO to the right finger-tapping task and the right
hemisphere to the left finger-tapping task; the HbR shows the
opposite pattern. Interestingly, both the left and right
hemispheres show decreased HbO and an increase in HbR
during the tapping foot.

3.3 Pre-Processing
The fNIRS signals can contain various disturbances such as
instrumental, experimental, and physiological noises.
Instrumental and experimental noises are usually removed
before converting the raw optical density signals to the
concentration changes of HbO and HbR(Naseer and Hong,
2015). The physiological noises have to be removed from the
HbO and HbR changes. Physiological noises consist of heartbeat
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(1–1.5 Hz), respiration (0.2–0.5 Hz), Mayer waves (0.1 Hz),
among others. After experimenting with several filtering
arrangements, the filtering method recommended by the
original authors who published the dataset was used. None of
the filtering methods showed a significant advantage over the
other. A zero-order filter implemented by the third-order
Butterworth filter with a 0.01–0.1 Hz passband was used to
remove the physiological noises and DC offset for this dataset
(Bak et al., 2019). The ΔHbO/R values were segmented into
epochs ranging from −2–28 s relative to the task onset. Baseline
correction was done for each epoch by subtracting the average
value within the reference interval (−1–0 s).

The ΔHbO/R features were extracted from three-time
windows in the ranges of 0–5, 5–10 and 10–15 s. Epochs were
employed to compute the average ΔHbO/R for each of the 20
channels. Since no feature/channel selection method was applied,
the feature vector comprised three features extracted from 20
channels. The feature vector’s dimensionality was computed as
120. Before being fed to the model, the feature vectors were
standardized.

EEG and NIRS data have high dimensionality, with multiple
variables which are highly correlated. This may cause poor
performance of the machine learning algorithms. Hence it is
essential to use methods such as Independent Component
Analysis (ICA), or Principal Component Analysis (PCA) can
be used dimensionality reduction and maximize the statistical

FIGURE 2 | Overall architecture of the proposed system.

FIGURE 3 | fNIRS channel locations (Bak et al., 2019).

FIGURE 4 | Brain Imaging Representation (Oxy and Deoxy channels) for the three tasks.
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independence of the estimated components (Comon, 1994). In
this study, kernel PCA, an extension to the traditional PCA
technique with the ability to extract principal nonlinear
components without expensive computations, is used instead
of PCA due to the nonlinear nature of data (Mika et al.,
1999). Hence, before preparing the data for the deep learning
classifier Kernal, PCA was applied to remove highly correlated
variables.

3.3.1 Image Generation
Image generation is a critical part of a classification system based
on CNN. In the proposed method, CNN’s are used for both
generation and classification phases. The quality of the images fed
to these networks will determine the performance of the
classifiers. In this instance, fNIRS signals pose a challenge to
CNN-based systems since they can be represented differently.
This section will discuss the different images used and how they
finally decide which category of images to train the classifier.
Recently, remarkable results have been achieved by processing
data with deep learning techniques and, specifically, by using
GAN networks with images as input. GAN networks are typically
associated with the neural network’s outstanding performance for
reading, processing, and extracting two-dimensional data’s
essential features, which have positively contributed to its
popularity. However, even in scenarios where input data aren’t
formatted as an image, many transformation methods have
helped apply CNNs to other data types. The time series is one
of these data structures modeled to approach a computer vision
perspective.

The time-series data must be converted to a 2D image for
input to the CNN. A temporal approach is typically chosen in
previous studies for this step, capturing all fNIRS channels in a
time window. This method’s success depends heavily on the
length of the dataset and the time window; a small number of
samples could be overfitting. Only a few techniques can be used to
represent the whole time series in its entirety. This section
describes some possible solutions considered in this study to
determine which image generation process was suitable for the
classification system.

In Spectrograms, time series carry information with both time
and frequency as magnitude dimensions. Local relationships are
represented using different domain spectrograms. This feature
complicates the local feature extraction feeding two-dimensional
CNN layers with spectrograms, as they have non-local
relationships. Several CNN-based classification systems have
used spectrograms of neural signals (Ho et al., 2019; Chhabra
et al., 2020).

A Gramian Angular Field (GAF) is an image obtained from
a 1-dimensional time series, representing some temporal
correlation between each time point (Wang and Oates,
2015a). GAFs can be either Gramian Angular Summation
Field (GASF) or Gramian Angular Difference Field (Wang
and Oates, 2015b). A GAF, in which we represent time series in
a polar coordinate system instead of the typical Cartesian
coordinates. For this study, GASF images were used as the
images to train the Convolution Neural Networks. After
analyzing the best-performing baseline classifier’s feature

importance, the fNIRS channel used to generate the images
was chosen. GAFs have been used to classify neural signals
such as EEG waveforms and fNIRS (Thanaraj et al., 2020;
Wickramaratne and Mahmud, 2021).Another method used to
convert a time series to an image is a Recurrence plot, an image
obtained from a time series representing the distances between
each time point (Marwan et al., 2007). For multivariate time
series, a joint recurrence plot derived from the individual
recurrence plot can be used. Researchers have used
recurrence Plots to classify EEG signals primarily for
medical conditions (Zeng et al., 2020; Gao et al., 2020).
After initial analysis, Grammian Summation Fields were
chosen for the proposed classification system. In the first
step of image generation, the time series are analyzed. From
the fNIRS stream, the area where the tasks are performed is
isolated. A single recording contains additional data in
addition to the task completed. This data is not required for
the classification and can work as noise in the system.
Afterward, the chosen data stream contains many highly
correlated channels, is sent through the kernel PCA. After
the initial image is generated, the images are preprocessed by
rescaling them according to CNN’s dimensions. Also, the
images are grey-scaled to make sure the pixels’ values are
within a range.

3.4 Model
The proposed system consists of two models—one system for
classifying samples and the Generative model to generate
synthetic samples. Since the inputs used in the classification
system are image data and a relatively small number of
samples are available for the model’s training, a generative
adversarial network-based approach is used. In this specific
case, a Conditional GAN network was used to generate
synthetic samples used to train the model. The GAN network
has two competing models known as the Generator and
Discriminator. The structure of these individual models is
detailed in later sections. One of the most challenging
problems in the GAN network is training the models in an
adversarial manner. Stable training mechanism for training
GANs where both models can attain a status equivalent to
Nash Equilibrium.

3.4.1 Model Architecture
After experimenting with several generative models, a conditional
GAN network was chosen to create the synthetic samples. A
CGAN network has the unique ability to generate new samples of
a given category by passing a conditional argument to the
Generator. The Generator will be generating the synthetic
samples according to the conditional argument.

GANs are predominantly associated with the image data and
use Convolutional Neural Networks (CNNs) as the generator and
discriminator models. Remarkable progress has been seen using
CNNs more generally to achieve state-of-the-art results on a suite
of computer vision tasks. The Generator’s input provides a
compressed representation of the set of images utilized for
model training. The Generator generates new images, which
can be easily viewed and assessed by the developers. GANs gives
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the ability to determine the quality of the generated images
visually. This unique feature and the advances in the computer
vision field have made GANs the most sought-after
generative model.

Following is the mathematical representation of loss function
(or objective function) of GANs, as shown in Eq. 1.

min
G

max
D

V(G,D) � min
G

max
D

Ex ∼ pdata[logD(x)]
+ Ez ∼ pz[log(1 − D(G(z)))]

(1)

where x is a sample from the real dataset distribution pdata(x)
and z is sampled from a latent space distribution pz(z). Eq. 1
shows the two networks playing aMini-Max Game, each trying to
improve their loss function.

The technique of CGAN is very similar to GAN. Both the
Generator and Discriminator have conditioned an extra input(y).
This conditioning can be performed by feeding into both the
Discriminator and Generator as the additional input layer. “Y”
can be any auxiliary information. In the proposed model, class
labels are considered as “y” parameter (Gauthier, 2014). The cost
function for CGAN is shown in Eq. 2. The intuition behind the
conditional information, y, is that by adding additional
information, both the generator G and the discriminator D
learn to operate in specific modes.

min
G

max
D

V(G,D) � min
G

max
D

Ex ∼ pdata[logD(x|y)]
+ Ez ∼ pz[log(1 − D(G(z|y)))]

(2)

3.4.2 Classifier
The classifier used to determine the participant’s task was based
on CNN architecture, illustrated in Figure 5 The model uses both
real data and synthetic data generated by the GAN network. The
network was tested only on real data. CNN uses a
multidimensional structure in which each set of neurons

explores a small region of the image. Each group of neurons
specializes in identifying one part of the image. The final output is
a vector of probability scores, representing how likely each feature
is to be part of a class.

A CNN operates in three stages. The first is a convolution.
The image is scanned a few pixels at a time, and a feature map is
created with probabilities that each feature belongs to the
required class. The second stage is pooling or down
sampling, which reduces each feature’s dimensionality while
maintaining its most relevant information. The pooling stage
creates an overview of the essential features in the image. Max
Pooling is commonly used in CNNs, in which the highest value
is taken from each pixel area scanned by the CNN. Usually,
CNN has to perform several rounds of convolution and
pooling. CNNs can search for the appropriate features by
themselves. Hence an additional feature selection step is not
required.

This fully connected neural network analyzes the final
probabilities and decides to which class the image belongs.
The fully connected layers perform classification on the
extracted features based on information on labeled training
data. Every node in a fully connected layer is connected to
every node in the previous layer. Finally, the output layer
contains a single node for each target class in the model with a
softmax activation function to compute each class’s
probability. The softmax activation function ensures that
the final outputs fulfill the constraints of a probability
density.

As shown in Figure 5, the CNN model consisted of 18 layers,
including an input layer, four pairs of convolutional, max-pooling
layers, Batch Normalization, two fully connected layers, and
finally a softmax layer to obtain the classified class. All the
Convolution Layers were activated by the Rectified Linear
Unit (Relu) function. The proposed CNN classifier inputs
fixed-size grey-scaled images of 28 × 28, with an intensity
range rescaled (0,1).

FIGURE 5 | CNN based architecture of the proposed classifier.
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A Dropout factor is applied to all hidden layers’ outputs, and
all layers have an l2-kernel regularizer of strength 0.5 initially
(Cogswell et al., 2015). The model was trained using batches of
four and included images generated from the Generator in
addition to real data. The learning rate was reduced on the
plateau, and early stopping was used to reduce over-fitting.
The loss function used was categorical cross-entropy for the
model, and the optimizer was RMSprop (Tieleman and
Hinton, 2012).

The hyper-parameters for the CNN network were chosen after
a random search (Bergstra and Bengio, 2012). Hyperopt Python
library was used for the random search (Bergstra et al., 2013). The
chosen hyperparameters included dropout value, choice of the
optimizer, kernel size, no. of neurons. The hyper-parameters
which were able to achieve the best accuracy were chosen.

3.4.3 Generator
The GAN network consists of two separate models: the Generator
(G) and the Discriminator (D). G is used for producing fake
samples similar to real data space from the latent variable z. D
determines whether its input comes from G or real data space. G
and D compete to achieve their individual goals; hence the term
“adversarial” is used. Since D wants to classify real or fake
samples, V (G, D) is considered an objective function as an
aspect of the classification problem. From D’s perspective, if a
sample comes from real data, D will maximize its output. In
contrast, if a sample comes from G, D will minimize its output.
Hence log (1 − D (G (z|y))) term appears in Eq. 1. Since G’s
objective is to deceive D, it tries to maximize D’s output when a
fake sample is presented to D. Consequently, D tries to maximize
V (G, D). In contrast, G tries to minimize V (G, D), thus forming
the minimax relationship in Eq. 1. In theory, when the
equilibrium between G and D occurs when pdata(x) � pg(x)
and D always produce 1/2, where pg(x) means a probability
distribution of the data provided by the Generator.

The Generator takes a point in latent space and a class label as
input. The output of the Generator is a grayscaled image of size
28 × 28 × 1 of a Gramian Angular Summation Field. The network
architecture consists of a fully connected layer reshaped to size
7 × 7 × 128 and three deconvolutional layers to up-sample the
image with a 4 × 4 kernel size. Deconvolution can be considered
as expanding the pixels by inserting zeros in between them (Frid-
Adar et al., 2018). Convolution over the expanded image will
result in a larger output image. Batch normalization (BN) is
applied to each layer except the output layer. BN helps to stabilize
learning and issues with parameters’ initialization. This is useful
to prevent models from falling into mode collapse. When mode
collapse happens, the Generator will output same looking images
with little diversity for different inputs. ReLU activation functions
are applied to all layers except the output layer, where the tanh
activation function is used. The Discriminator’s feedback helps
the Generator to adjust its weights towards better performance.

3.4.4 Discriminator
The Discriminator network is used to determine whether the
generated samples can be considered as real samples. Typically
the Discriminator can be regarded as working optimally to

classify 50% of the generated sample as fake. GAN networks
are formulated in two steps where the Discriminator is trained to
maximize. The optimal Discriminator has the shape given in Eq.
3. The discriminator network has a typical CNN architecture that
takes the input image of size 28 × 28 × 1 and outputs whether the
image is real or fake.

D*(x) � Pr(x)
Pr(x) + Pg(x) (3)

3.4.5 Model Training
The training of GAN networks is one of the most challenging
tasks. The generative models’ goal is to match the real data
distribution pdata(x) from pg(x). Thus, minimizing differences
between the two distributions is a crucial point for training
generative models. Two competing systems should be trained
at the same time. The training of the two systems is a zero-sum
problem. The optimum solution can only be attained when the
Nash Equilibrium is reached.

G and D are two differentiable functions that represent the
Generator and the Discriminator, respectively. Inputs given to D
are x (real data) and z (random data). G’s output is fake data
produced per the probability distribution of actual data (or
pdata), G (z). If existing data are given as input to
Discriminator, it should classify the input data as real data,
labeling it 1. Suppose fake or generated data is provided as
input to Discriminator. In that case, it should classify the
input data as fake data, labeling it 0. Discriminator strives to
classify the input data correctly as per the source of data. The
Generator seeks to deceive the Discriminator by making
generated data G (z) similar and in line with the real data x.
This game-like adversarial process improves the performance of
both Discriminator and Generator slowly and gradually
throughout the process. Therefore, slowly, Generator can
generate better images that look more real because it has to
fool the improved and more efficient Discriminator.

Although the GANs are increasing in popularity, they remain
challenging to train, with most researchers finding stable
architectures heuristically (Radford et al., 2015). Traditional
approaches to generative modeling rely on maximizing
likelihood or equivalently minimizes the Kullback-Leibler (KL)
divergence between the original data distribution Pr and the
Generator’s distribution Pg Notably, the discriminator model’s
performance is used to update both the Discriminator model’s
model weights and the generator model. The Generator never
actually sees examples from the domain and adapt according to
the Discriminator’s performance.

4 RESULTS

The results of the system were analyzed in several phases. In the
first phase, traditional classifiers were used to determine baseline
classification accuracy. For this phase, the features used by the
original authors were used. The next stage will discuss the
performance of the deep learning classifier with and without
data augmentation.
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4.1 Performance Parameters
The results of the study are divided into two sections. The first
section will focus on the baseline classifiers that were used to
evaluate the data set. The results from these classifiers were used to
determine some parameters for the deep learning classifiers. The
second section will present the proposed deep neural network’s
performance and its comparison with the other classifiers.

The area under Receiver-Operator Characteristic (AUROC) is
an essential metric for the classifier’s ability to distinguish
between the classes accurately. An AUROC value over 0.9 is
considered an excellent classifier, while over 0.8 can be regarded
as a good classifier. In this study, the testing indicators used were
classification accuracy and the area under the curve. The
definitions of the above indicators are as follows:

Accuracy � TP + TN
TP + FP + TN + FN

(5)

TP is the number of true positives, FN is the number of false
negatives, FP is the number of false positives, and TN is the
number of true negatives.

4.2 Performance of Baseline Models
In the original publication, a linear SVM-based classifier was
implemented to calculate classification accuracies. Leave-one-out
cross-validation (LOOCV) was applied to validate the dataset
(Bak et al., 2019). The grand averages of binary classification
accuracies were estimated at 83.4, 77.4, and 80.6% for RFT vs.
LFT, RFT vs. FT, and LFT vs. FT, respectively in the original
publication. The analysis revealed that RFT vs. LFT classification
accuracy, significantly higher than RFT vs. FT classification
accuracy. The grand average of the ternary classification
accuracy was estimated at 70.4%. In the preliminary study, 27
out of 30 volunteers exceeded the theoretical chance level of
ternary classification of 42.7%. In addition to the original
classification method for this study, additional traditional
machine learning methods were also used for comparison. The
accuracy comparison of these classifiers is given in Table 1. Apart
from the original authors’ SVM-based method, other methods
such as Logistic Regression, Random Forest, and XGBoost were
used for comparison. Logistic Regression had the worst
performance while SVM performed the best. None of the
traditional classifiers which were used exceeded the
classification accuracy of the original authors.

4.3 Performance of Deep Learning Models
Two deep learning models were used, one for classification and
the other for data augmentation. The traditional performance

metrics are compared with the stand-alone deep learning network
and data augmentation network in the first phase. In the second
phase, further analysis was done to determine the data generated
through the data augmentation process. The deep learning
classifier proposed in this study is CNN-based, which is
trained using the CGAN network’s data. The CNN classifier,
which was trained using only real data, obtained an accuracy
of 80%.

The sample data generated by the Generator for each category
are illustrated in Figure 6. The generated data samples start at
10% of the original data and increases by 10% each step. The
traditional performance metrics, such as accuracy and AUROC,
and the classification accuracy are calculated for each step.
Table 2 shows how the classification accuracy and average
AUROC vary with each step. Further Table 3 shows the
precision obtained for each class in each dataset. The
confusion matrix for the classifier trained using only original
data is given in Table 4. According to the confusion matrix, there
were several misclassifications, primarily for RHT and LHT tasks.
The confusion matrix for the classifier trained using maximum
data augmentation is given in Table 5. In this confusion matrix,
there is only a single misclassification. The classifier trained using
the maximum augmented data obtained the best AUROC value
as well. The AUROC curves obtained for this instance are shown
in Figure 7. As expected, the classification accuracy improved
with more data. The general architecture of the classifier was not
changed. However, several regularization parameters were
changed along with the increase of data. Initially, there was a
strict regularization scheme due to the small size of data, and
periodically the regularization was relaxed to prevent under-
fitting.

The classifier obtained maximum classification accuracy of
96.67% which was trained with real data and 110% of generated
data. Further improvement of the classification accuracy required
the data changes to the data architecture. Since the authors
intended to improve the model’s performance through data
augmentation only, the data generation step concluded after
110% data. This dip in the classification accuracy after 110%
may be caused by over-fitting, and further regularization may be
required.

4.4 Performance Metrics Related to the
Generative Adversarial Networks (GAN)
The conditional GAN used to classify the tasks can generate
artificial samples belonging to a specific category specified by the
conditional argument. This section analyzes the similarity
between the generated samples and the original data
distribution this section.

Different models of GANs have used other performance
evaluation metrics, including inception score, mean opinion
score (MOS), Wasserstein metric, fuzzy combinatorial analysis
(FCA) score, log-likelihood, and human evaluation schemes
(Sharma et al., 2018). Among these, the Inception score is the
most popular metric (Salimans et al., 2016). However, it is
insensitive to prior distribution labels. Frechet Inception
distance is also sensitive to generated samples’ visual quality

TABLE 1 | Comparison between the performance of traditional classifiers.

Model Ternary
classification accuracy%

Average AUROC

Logistic regression 58.6 0.51
Random forest 64.8 0.59
SVM 70.6 0.72
XGBoost 65.4 0.60
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and more robust to noise one step further. It is capable of
detecting intra-class mode dropping. Another variant is the
kernel inception score. Multi-scale structural similarity for
image quality (MS-SSIM) is used to interpret the diversity of
images, where a higher MS-SSIM score indicates a higher
similarity between the two images (Sharma et al., 2018; Wang
et al., 2003; Brooks et al., 2008).

Figure 6 shows a sample of generated GASF images for the
three tasks. Visual inspection was done to determine the quality
of the images generated. The outputs for various inputs were
inspected to see whether there is diversity among the generated
images. In case of a mode collapse, the generated images will look
very similar regardless of the inputs. In cases with visually similar
images, MS-SIM values were used to determine how similar they
are. For the proposed system, measures were taken at the

FIGURE 6 | Synthetic images generated by CGAN for the tasks (A) Foot Tap (B) Left Finger Tap (C) Right Finger Tap.

TABLE 2 | Generated data and performance metrics.

Amount of data Ternary classification accuracy% (%) Average AUROC

Original data set 80.00 0.79
Real data + 10% generated data 80.00 0.83
Real data + 20% generated data 83.33 0.875
Real data + 30% generated data 83.33 0.87
Real data + 40% generated data 83.33 0.91
Real data + 50% generated data 86.67 0.9
Real data + 60% generated data 90 0.92
Real data + 70% generated data 86.67 0.92
Real data + 80% generated data 90 0.94
Real data + 90% generated data 90 0.95
Real data + 100% generated data 93.33 0.97
Real data + 110% generated data 96.67 0.98

TABLE 3 | Precision for each Class in each Data set.

Amount of data Precision

LHT RHT FT

Original data set 0.73 0.89 0.80
Real data + 10% generated data 0.80 0.80 0.80
Real data + 20% generated data 0.91 0.80 0.78
Real data + 30% generated data 0.90 0.80 0.80
Real data + 40% generated data 0.91 0.82 0.88
Real data + 50% generated data 0.91 0.89 0.80
Real data + 60% generated data 0.91 0.90 0.89
Real data + 70% generated data 0.80 0.91 0.89
Real data + 80% generated data 0.80 0.91 1.0
Real data + 90% generated data 0.78 0.91 1.0
Real data + 100% generated data 0.89 1.0 0.91
Real data + 110% generated data 0.9 1.0 1.0

TABLE 4 | The Confusion Matrix obtained by CNN model using test data from
subject 1 for original data set.

Actual Predicted

RHT LHT FT

RHT 8 1 1
LHT 2 7 1
FT 0 1 9

TABLE 5 | Confusion Matrix for model with GAN data augmentation (Real Data +
110% Generated Data) using test data from subject 1

Actual Predicted

RHT LHT FT

RHT 9 1 0
LHT 0 10 0
FT 0 0 10
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generator architecture design stage, introducing Batch
Normalization after each layer.

5 DISCUSSION

Our study results show that NIRS based classification accuracy
can be increased by using deep learning methods. Classification
processes are an essential step to enhance NIRS based
classification systems used in BCI applications. The proposed
ternary classification system can classify RHT, LHT, and FT brain
activation patterns. Some form of preprocessing was required for
the classification. However, the feature selection step can be
eliminated by using deep neural networks. As expected by
using the GAN network for data augmentation increased the
classification accuracy of the system. The proposed network can
generalize the model used in the task classification of a wide range
of subjects.

One drawback regarding deep neural networks is that a
substantial amount of data must be used to train the network
correctly. Data augmentationmethods can increase the sample size
when collecting many samples is not practical due to economic or
time constraints. Traditional data augmentation methods include
zooming, cropping and rotating, etc. Although these methods are
very successful in object classification, there is no single object to
focus on classification in exceptional cases like time series data
represented in images. Hence, using traditional data augmentation
methods makes little sense. Therefore, to improve the classification
accuracy using the deep neural network’s ability to handle
complex data, the authors propose a combined GAN and CNN
classifier. The GAN networks have the potential to improve the
performance of the classification by data augmentation. The
generator-discriminator model of GAN networks enables the
generation of artificial samples. This approach also introduces
the unique challenge of training the model since optimization is
a zero-sum game.

According to the results, it is clear that the CGAN-CNN
network shows superior accuracy compared to the other
machine learning methods use. Hence it is possible to train a
reliable deep learning classification model with small sample
sizes. Further, the authors tried to train the CNN classifier
entirely with GAN-generated data and test it on real data.
However, this approach was not very successful, with an
average accuracy of 63.33%. For comparison, the classifier
trained with the same size training set from the original data
set, when evaluated with the test set, obtained an accuracy of 80%.
Generally, deep learning models tend to over-fit data when they
are trained using small sample sizes. This over-fitting results in
poor performance with test data, causing the model’s
generalization to a significant challenge. Further, it should be
added that although the performance improved for the models,
with data augmentation, the regularization parameters of the
models changed to make sure the model’s performance does not
deteriorate.

One of the most important aspects of deep learning-based
models is handling the raw data without much preprocessing. By
using raw data, more complex deep learning architectures may be
required for classification tasks. The authors initially tried to
develop a model based on images derived using raw data in this
study. The raw data-based classifier performed poorly compared
to the model with preprocessing. A certain degree of
preprocessing was required for the deep learning models in
this study. This result does not mean that future studies
should abandon raw data-based classifiers. The raw data-based
classifiers will be helpful if real-time task classification is needed.
Hence, more research should is required to determine the correct
balance between the classification accuracy and preprocessing
complexity.

A further enhancement to fNIRS-based studies that the
authors suggest is artificial sequence generation regarding
neural signals using generative networks. The current deep
learning-based generative networks are mostly focused on
image studies. There may be some information lost by
representing the sequences as images. Artificial neural signals
can be used in studies for both brain-computer interfaces and
health fields as well. Further preprocessing signals can train such
generative neural networks, eliminating the preprocessing step
for the additional data. Generative networks can be used to
overcome the economic and time constraints of the population
studies. Generative networks such as CGAN can be used along
with the other neuroimaging techniques, especially where a single
trial can be costly, time-consuming, or repetitive trials harmful to
the subject.

6 CONCLUSION

fNIRS is a neuro-imaging technique that can be used for task
classification for Brain-Computer Interfaces. The complex nature
of fNIRS signals makes it ideal for deep learning-based classifiers.
The small sample size gained from the experiments using neuro-
imaging techniques makes it difficult for the deep learning
classifiers to generalize. Generative Models can generate

FIGURE 7 | ROC curves for the three tasks obtained using all the test
sets when model is trained with Real Data + 110% generated data for
training set.
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synthetic samples that can increase the classification accuracy of
deep learning-based classifiers. The authors proposed a
Conditional GAN network that enables data augmentation by
generating new samples. The newly generated samples are used to
train the deep learning model, which is CNN-based.
Furthermore, it was observed that the classification accuracy
on the test set could improve by using generated data samples
for training. This proposed solution can be used in various
instances where a large amount of data is required for
accurate predictions from a model. Yet, due to multiple
constraints, data collection is complex. The quality of the
system can improve with more data collection and fine-tuning
of the model. Further analysis can compare how the synthetic
data generated from the GAN network with different subjects.
Such synthetic neural data can be used for training both task
classification andmedical data classification where data collection
has constraints.
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