
Which Neural Network to Choose for
Post-Fault Localization, Dynamic
State Estimation, and Optimal
Measurement Placement in Power
Systems?
Andrei Afonin1 and Michael Chertkov2*

1Department of Intelligent Information Systems and Technologies, Moscow Institute of Physics and Technologies, Moscow,
Russia, 2Program in Applied Mathematics, University of Arizona, Tucson, AZ, United States

We consider a power transmission system monitored using phasor measurement units
(PMUs) placed at significant, but not all, nodes of the system. Assuming that a sufficient
number of distinct single-line faults, specifically the pre-fault state and the (not cleared)
post-fault state, are recorded by the PMUs and are available for training, we first design a
comprehensive sequence of neural networks (NNs) locating the faulty line. Performance of
different NNs in the sequence, including linear regression, feed-forward NNs, AlexNet,
graph convolutional NNs, neural linear ordinary differential equations (ODEs) and neural
graph-based ODEs, ordered according to the type and amount of the power flow physics
involved, are compared for different levels of observability. Second, we build a sequence of
advanced power system dynamics–informed and neural ODE–based machine learning
schemes that are trained, given the pre-fault state, to predict the post-fault state and also,
in parallel, to estimate system parameters. Finally, third and continuing to work with the first
(fault localization) setting, we design an (NN-based) algorithm which discovers optimal
PMU placement.

Keywords: neural networks, physics-informed machine learning, power system, fault localization, state estimation

1 INTRODUCTION

The essence of this manuscript is in addressing classic problems in power systems (PSs)—state
estimation (Schweppe and Wildes, 1970; Monticelli, 1999; Baalbergen et al., 2009; Zhao et al., 2019),
fault detection and localization (Jiang et al., 2014; Xie et al., 2014), and optimal phasor measurement
unit (PMU) placement (Yuill et al., 2011; Yue Zhao et al., 2012; Li et al., 2019)—using the new
machine learning tools. Specifically, we consider the following two settings which are relevant for the
transmission level PS monitoring of faults which are not cleared but which are also not system
critical, that is, which result in the post-fault transient, typically occurring in the course of 5–20 s and
leading to a post-fault steady state which is distinct from the pre-fault steady state.1

Edited by:
Federico Milano,

University College Dublin, Ireland

Reviewed by:
Mert Korkali,

United States Department of Energy
(DOE), United States

Dongchan Lee,
Massachusetts Institute of
Technology, United States

*Correspondence:
Michael Chertkov

chertkov@arizona.edu

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 08 April 2021
Accepted: 31 July 2021

Published: 31 August 2021

Citation:
Afonin A and Chertkov M (2021) Which
Neural Network to Choose for Post-

Fault Localization, Dynamic State
Estimation, and Optimal Measurement

Placement in Power Systems?
Front. Big Data 4:692493.

doi: 10.3389/fdata.2021.692493

1Notice, in passing, that the two settings are most relevant to the post-fault control decisions made by the system operator,
which are, however, not discussed in the manuscript directly.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924931

ORIGINAL RESEARCH
published: 31 August 2021

doi: 10.3389/fdata.2021.692493

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.692493&domain=pdf&date_stamp=2021-08-31
https://www.frontiersin.org/articles/10.3389/fdata.2021.692493/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.692493/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.692493/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.692493/full
https://www.frontiersin.org/articles/10.3389/fdata.2021.692493/full
http://creativecommons.org/licenses/by/4.0/
mailto:chertkov@arizona.edu
https://doi.org/10.3389/fdata.2021.692493
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.692493

• I) Given a set of samples, each consistent with 1) a pre-fault
state and 2) a post-fault state, both recorded at the nodes of
the system equipped with PMUs, and 3) a faulty line that is
identified/localized2, we aim to find a function which
predicts the post-fault state (at the PMU locations), that
is, maps a mismatch between 1) and 2), considered as an
input, to 3), considered as an output.

• II) The same as the above in (I) but not utilizing 3) and
aiming at finding a universal dynamical model which maps
1) to 2)3.

• III) Given a limited budget on the number of active PMUs
available for the system monitoring (which is normally a
fraction of all of the system’s nodes), and given an
algorithm available for (I) above which can be applied
to any PMU placement, we aim to find the optimal
placement of PMUs.

While addressing the outlined problems, we will not only
present a modern algorithmic machine learning solution but
also suggest, for each of the problems, a number of solutions/
algorithms organized in a sequence. The sequence(s) will be
ordered, according to the amount and type of the power flow
information used in this particular solution. Therefore, the
first algorithm(s) in the sequence will be PS-physics-agnostic,
that is, dealing with the PMU data as it would with any other
data stream. We will see that these algorithms may be quite
successful in the regime(s) of the routine fault which is not
stressing the entire PS too much and/or in the regime of a
very detailed PMU coverage, when all or almost all nodes of
the system are monitored. On the other extreme of the
spectrum, we will be discussing very demanding regime(s)
when either the fault is severe or observability is very limited,
or possibly both. In this high-stress regime, we expect the PS-
agnostic schemes to perform very poorly and will thus be
focusing on injecting some (not all) PS-guidance into the
algorithm. In general, we are interested in building a road
map toward fault detection, localization, and interpretation,
which would help the system operator to have a choice of a
wide variety of tools, to select one from depending on the
current operational needs.

Application of ML to the problems related to localization of
the faulty line (I) in our list of the tasks above and, also, the
challenge of the PMU placement for better detection were already
discussed in the study by (Li et al., 2019), which is thus a starting
point for our analysis. Specifically, (Li et al., 2019) proposed a
method to identify the faulted line based on a convolutional
neural network (CNN) classifier using bus voltages and suggested
a placement strategy for PMUs under varying uncertain

conditions, system observability, and measurement quality.
This manuscript is linked to the study by (Li et al., 2019) in a
number of ways, some already mentioned above, but also we
continue to work in here with the same data source and the
same model.

We generate data using the power system toolbox (Chow and
Cheung, 1992) and work throughout the manuscript with the
same exemplary model—the IEEE 68-bus electrical network (see
Section 3.1 for details). We apply similar measures of
performance, for example, the cross-entropy (Wikipedia,
2021a) loss function to solve the classification problem of fault
localization in Section 2.1 and the mean squared error (MSE)
(Wikipedia, 2021b) loss function as we solve the regression
problem of the dynamic state estimation in Section 2.2 and
the classification problem of the optimal PMU placement in
Section 2.3.

As mentioned above, in this manuscript, we describe machine
learning (ML) models juxtaposed against each other and
experimented with in the following sections to establish their
regime of optimal use. Our aim is four-fold. First, we want to
make the description of the models simple and transparent.
Second, we attempt to clarify the logic behind the models’
design/architecture, focusing, in particular, on explaining why
particular models are chosen to answer the power system learning
problems (failure localization and/or state estimation/
prediction). Third, we build the hierarchy of models, in the
sense that models introduced earlier are used as building
blocks to construct more advanced models introduced later in
the section. Finally, fourth, the hierarchy of models will also be
gauged and commented on in terms of the level of physics of the
underlying power system processes involved in their
construction.

2 MATERIALS AND METHODS

2.1 Detection of Failure in the Static Regime
This section is split into subsections as follows. We remind the
reader of the basic elements of the machine learning (ML)
architecture and training in Section 2.1.1. We also use it to
set the stage for other learning problems considered in the
following sections. The experimental setup of the manuscript
is detailed in Section 3.1. Linear regression (LR), the feed-
forward neural network (FF-NN), AlexNet, and graph
convolution neural networks (GC-NNs) are introduced in
Sections 2.1.2, 2.1.3, 2.1.4, 2.1.5. In Section 4.1, we present
and discuss the results of our failure detection experiments with
the NNs (and also other NNs related to neural ODEs, as described
in Section 2.2).

2.1.1 Parameterization and Training
A supervised ML model is introduced as a map of the input,
normally denoted as x, to the output, normally denoted as y,
which is parameterized by the vector of parameters, ϕ. We use the
notation MLϕ : x → y and emphasize that the ML model is of a
general position. In the supervised learning setting, which we are
mainly focusing on in this manuscript, we are given I samples of

2Clarification on the terminology: we will use the terms “identification” and
“localization” of the faulty line interchangeably for the task of discovering the
faulty line within a power grid consisting of many lines. We do not focus in this
manuscript on locating the position along the given line where the fault has
occurred.
3The model is universal in the sense that it stays the same regardless of the location
where (c) has occurred. This setting is of a special relevance to the situations where
PMU placement is relatively sparse and the faults considered are not severe.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924932

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

the input/output data, i � 1, . . . , I:x(i), y(i), which we also call
incidental I samples.

In the fault localization classification problem, aiming to
detect a failed line, we follow the scheme of (Li et al., 2019).
We input a sample vector, xVo � (xa|a ∈ Vo), with as many
components as the number of observed nodes, where Vo is the
set of observed nodes of the power system network. Here, V0 is a
subset of the set of all nodes of the network, V0 ⊂ V. The output,
y � (yab|{a, b} ∈ E), is the vector of the dimensionality equal to
the number of power lines in the system (number of edges, E, in
the power network, where each line is connecting two
neighboring nodes of the network). Each output vector is
sparse, with only one nonzero (unity) element corresponding
to the location of the fault.

A popular choice (see, e.g., (Li et al., 2019)) of the loss
function for the case of a classification output, for example, of
the fault localization of interest here, is the so-called cross-
entropy (CE) loss function (Wikipedia, 2021a), which is as
follows:

LCE(ϕ;Vo) � −1
I
∑I
i�1

∑
{a,b}∈E

y(i)ab log MLϕ;ab(x(i)Vo
)(), (1)

where MLϕ;ab(x
(i)
Vo
) � y(i)ϕ;ab shows the {a, b} ∈ E component of the

output vector for the ith sample generated by the NN function
with the fixed vector of the parameters, ϕ; the sums in Eq. 1
correspond to averaging over the empirical probability associated
with I actual (true) observations of the faults at specific locations
within the grid.

The process of training the ML model becomes to solve the
following optimization problem:

ϕtrained(Vo)^ argmin
ϕ

LCE(ϕ;Vo), (2)

where argmin means finding the argument of the minimum with
respect to the vector of parameters, ϕ, and LCE(ϕ;Vo) is defined in
Eq. 1. It should be noticed that the result (2) depends on the set of
the observed nodes, Vo.

2.1.2 Linear Regression
Linear regression (LR) is the simplest ML model, which is the
benchmark for comparison in all of our experiments. If it
performs well in a regime, other models will not be needed. It
is also appropriate to mention that in the case of a small-to-mild
perturbation, power systems are well explained by linear
equations (static or dynamic), therefore providing additional
(even though imprecise) legitimacy to the LR.

Formally, the LR model maps the input vector, x ∈ Rn, to the
output vector, y ∈ Rs, according to y � Wx + b, where W ∈ Rs×n

and b ∈ Rs are, respectively, the multiplicative matrix and the
additive vector to be learned. ϕ^(W, b) append W and b in one
vector of parameters. We will also use the following (standard in
the ML literature) notation for the linear map:

LRϕ: x→ y � Wx + b. (3)

The fault localization version of the LR learning consists in
solving Eqs 1, 2with the generic functionMLϕ substituted by LRϕ.

2.1.3 Feed-Forward Neural Network With Two Layers
The feed-forward neural network (FFNN) with two layers is one
of the simplest architectures of nonlinear NNs. We use it in the
regime of limited observability when we expect that due to the
severity of the perturbation, the LR reconstruction may not be
sufficient. The FFNN is implemented with the rectified linear unit
(ReLU) sandwiched by two LR layers as follows:

FFNNϕ: x→ LRϕ →ReLU→ LRϕ → y, (4)

where ϕ is the vector of parameters on the left side that is built by
appending W and b parameters of the two LR layers on the right
(parameters associated with the two layers are independent), and
therefore, if x ∈ Rn is the input vector and y ∈ Rs is the output
vector (as in the LR case), then p is the dimension of the hidden
ReLU layer (notice that the ReLU layer is fixed, that is, there are
no parameters associated with the layer). Training of the FFNNϕ

is, like before in the case of the LRϕ, reduced to solving Eqs 1, 2
with the generic function MLϕ substituted by FFNNϕ.

2.1.4 AlexNet Convolutional Neural Network
AlexNet (Krizhevsky et al., 2012) is a convolutional neural
network (CNN) which was cited the most in the ML
literature. It was used in many other applications as a starting
CNN option, in particular for the real-time faulted line detection
reported in the study by (Li et al., 2019). Following (Li et al.,
2019), we adapt here the classic AlexNet layout. We use the 13-
layer AlexNet CNN to reconstruct line failures. The CNN takes
input at the observed nodes and output status of lines (in the form
of the sparse vector with unity at the position of the failure). The
CNN has four convolutional layers and one fully connected layer.
Every convolutional layer consists of the convolution sublayer
and the max-pooling sublayer. Training of the network to localize
the fault requires solving Eqs 1, 2 with the generic function MLϕ
substituted by the AlexNetϕ.

2.1.5 Graph Convolutional Neural Network
The graph convolutional neural network (GCNN) is an NN
which we build by making relations between variables in the
(hidden) layers based on the known graph of the power system. In
this regard, the GCNN is informed, at least in part, about the
physical laws and controls associated with the power system
operations. Specifically, we utilize a sparse n × nmatrix, |Y|, built
from the absolute values of the impedances associated with power
lines connecting n nodes of the system to each other, in
constructing the GCNN (the matrix is sparse because the
degree of a typical node in a transmission-level power system
is somewhere in the 1–4 range). We follow the construction of
(Kipf and Welling, 2016) and use Y to build the convolutional
layer of the GCNN. Let H be the input vector to the graph
convolutional layer, then the output f (H, A) of such a layer is
f (H,A) � σ(D−1

2AD−1
2HW), where W is a matrix of parameters;

A � |Y| + I, where I is the unit matrix and σ() is a nonlinear
activation function. We normally use ReLU() for σ(). D is the
diagonal matrix built from the vector of the node degrees within
the power system graph.D−1

2 stands for the matrix derived fromD
by taking the component-wise inverse square root. We use GCϕ

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924933

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

for the GC operation where ϕ denotes all the parameters needed
to describe the graph convolution map from the n-dimensional
input to the p-dimensional vector representing the hidden layer.
With a minor abuse of notations, the resulting map becomes as
follows:

GCNNϕ: x→GCϕ →ReLU→ LRϕ → y, (5)

where x ∈ Rn is the input vector to our model, y ∈ Rs is its
output, and GCϕ(x) is the p-dimensional vector of the
intermediate layer p. As always, two independent vectors of
parameters on the right-hand side of Eq. 5 are appended into
the resulting vector of the parameters on the right-hand side of
Eq. 5. Training of the GCNNϕ to localize the fault is reduced to
solving Eqs 1, 2 with the generic function MLϕ substituted by
the GCNNϕ.

2.2 Dynamic Models
This section is devoted to the introduction and discussion of
the dynamic models, transitioning to the models gracefully
from the topic (of fault localization) discussed in the
preceding section. We show that the dynamic models can
be used both in the context of static and dynamic state
estimation, where in the former case, the dynamic
component of the model helps to provide input about
(otherwise hidden) dynamic aspects of the underlying
phenomena. We start with the discussion of a generic, and
thus power system (PS)-physics-agnostic, neural ODE model
in Section 2.2.1 and then start to add the PS-physics in steps
progressing to the physics-informed neural networks
(PINNs) in Section 2.2.2, to the Hamiltonian neural
networks (HNNs) in Section 2.2.3, and, finally, to the
direct ODE NN based on the swing equations in
Section 2.2.4.

2.2.1 Neural Ordinary Differential Equations
The neural ODE is a modern NN method suggested in the study
by (Chen et al., 2018). It builds an input-to-output map as if it
would come from the temporal dynamics governed by the
parameterized ODE as follows:

t ∈ [0,T] : dx(t)
dt

� fϕ(x(t)), (6)

where ϕ is a (possibly time-dependent) vector parameterizing the
“rhs” of the ODE, that is, fϕ(t) [x(t)], using a NN. It is assumed that
an ODE solver, taking f as an input, can be used in a black-box
fashion to train the NN. When considered in discrete time, Eq. 6
becomes k � 1, . . . , K, tk � Δk, Δ � T/K as follows:

x(tk+1) � x(tk) + Δfϕ(x(tk)), (7)

where Δ is the time step. Neural ODEs are also naturally linked to
the so-called ResNet (residual network) architecture discussed in
the study by (He et al., 2015). Consistent with notations used for
other models, we have the following:

NeuralODEϕ: x(0)→ x(T), (8)

where x(0) ∈ Rn is the input vector to our model, and x(T) ∈ Rn

is the output which is of the same dimensionality, n, as the input.
We will work in the following with an LR version of fϕ and with a
graph CNN version of fϕ in Eq. 6, and then replace NeuralODE in
Eq. 8 by LinODE and GraphODE, respectively, where LinODE
and GraphODE mean that fϕ(t) [x(t)] is parameterized by the
linear layer and the graph convolutional layer, correspondingly.
To make the output of the LinODE and GraphODE versions of
Eq. 8 consistent with the output of other (static) models discussed
so far, we will additionally map x(T) to y, as discussed above,
inserting the additional ReLU function (we remind the reader
that y is the output vector which, in the training stage, has only
one nonzero component correspondent to the faulty line). We
therefore add, as already discussed in Section 2.1, the LinODE
and GraphODE augmented with the ReLU function to the list of
other (static) schemes resolving the task of the failed line
localization.

However, we may also consider NeuralODE (8) as a part of the
dynamic state estimation (DSE) scheme. In this case, we assume
that x(T) is the observed output and then we may train the
NeuralODE by minimizing the following:

argmin
ϕ

L2;NeuralODE(ϕ), L2;NeuralODE(ϕ) � (9)

∑I
i�1

x(i)(T) − NeuralODEϕ(x(i)(0))
���� ����2. (10)

Moreover, we may generalize Eq. 8 and consider the entire
trajectory, which we will also call “the path,” {x(t)|t ∈ 0,T}, or
(more realistically) its discretized version, {x (tk)|k � 1, . . . , K}, as
the output of the NeuralODEϕ, which is as follows:

Path − NeuralODEϕ: x(0)→ {x(tk)|k � 1,/ ,K}. (11)

FIGURE 1 | Architecture of the optimal placement NN. Top and bottom
sub-figures illustrate the two-step training of the OP-NN. Gray shading
highlights components of the architecture trained during the respective stage
(parameters are tuned). See text for details.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924934

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Then the exemplary training problem—finding the best
(functional) map in the path version of the
NeuralODE—becomes the following:

argmin
ϕ

L2;Path−NeuralODE(ϕ), L2;Path−NeuralODE(ϕ) �

argmin
ϕ
∑I
i�1

1
K
∑K
k�1

����x(i)(tk)−Path −NeuralODEϕ(x(i)(0); tk)
����2.
(12)

As will be argued in the remaining subsections of this
section, we may project the formulation of Eqs 11, 12 to the
problems of interest to the power system dynamics.
Specifically, we may consider x(t) corresponding to
dynamics of the state of the power system measured as a
function of time at the observed mode (e.g., S(t) and/or
V(t)) in the transient regime. In this case, the training data,
that is, {x(i) (t)|i � 1, . . . , I, t ∈ [0, T]}, can be generated by a
dynamic power flow solver, resolving many more degrees of
freedom (at many more nodes) and, therefore, producing
results much slower than the trained Path-NeuralODE
reduced model.

2.2.2 Physics-Informed Neural Net
The structure of the so-called physics-informed NN (PINN) is
described in the study by (Raissi, 2018). It is based on some early
ideas on tuning an NN to satisfy the output of a differential
equation (Lagaris et al., 1998). We are seeking to use it for data
fitting of a concrete version of the ODE model (6), with fϕ[x(t)]
replaced by fψ[x(t)], which is specified by “physics,” where ψ thus
stands for the vector of physics-meaningful (explainable or
interpretable) parameters, as follows:

dx(t)
dt

� fψ(x(t)), (13)

where x(t) stands formeasurements changing in time t. We built a
neural network, mapping t to x̂ϕ(t). We aim to search through the
space of ϕ to minimize the difference between x̂ϕ(t) and the actual
measurements, x at the time t. In the PINN of the study by (Raissi,
2018), the goal is achieved byminimizing the following loss function:

arg min
ϕ,ψ

LPINN , LPINN(ϕ,ψ) � λ∑K
k�1

(x̂ϕ(tk) − x(tk))2

+∑K
k�1

x̂ϕ(tk+1) − x̂ϕ(tk) − Δfψ(tk, x̂ϕ(tk)))2,((14)

FIGURE 2 | Comparison of the learning model performance for detection of line failure in the static regime. Sub-figures correspond to (left-to-right and top-to-
bottom) 100, 70, 40, 20, 10, and 5% of observability.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924935

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

where over ϕ represents the aforementioned NN, and also over ψ,
which may be represented by a NN, or can also include some
“physical” parameters, that is, parameters which allow physical
(the power system in our case) interpretation 4; λ is a pre-set
hyper-parameter; the entire data path, {x(t)}K � {tk, xk|k � 1, . . . ,
K}, is assumed to be known.

A number of technical and terminology remarks are in order.
First, the vector of physical parameters, which may describe ψ or
its part, should be tuned to the specifics of the power system, and
this is what will be done below in Sections 2.2.3, 2.2.4. Second,
generalization of the scheme from the ODE to the PDE is
straightforward. In fact, the Burgers PDE was the enabling
example in the study by (Raissi, 2018).

Finally, third, let us also mention that the PINN ideas (Raissi,
2018) are similar to the approach known under the name of the
learning differential equation (LDE) (see, e.g., (Bento et al., 2010)
and references therein) and are also discussed in the context of
learning power system dynamics in the study by (Lokhov et al.,
2017). The similarity between the two approaches is in the form
of the loss function, including differential equations via the l2-
term and the also kind of similar, but not identical, l1
regularization term. The difference between the PINN
approach of (Raissi, 2018) and the LDE approach of (Bento
et al., 2010) is two-fold. On one hand, no NNs were used in the
study by (Bento et al., 2010) to represent unknown functions,
while embedding NNs into the scheme is the main novelty of the
study by (Raissi, 2018). On the other hand, the LDE approach of
the study by (Bento et al., 2010) consisted in learning the
stochastic differential equations and, specifically, the unknown

physical parameters, ψ, in fψ(t, u) (if we use the extension of the
PINN) just introduced above in the first remark. The stochastic
component revealed itself in the study by (Bento et al., 2010) via
the appearance of the inverse covariance matrix (also called the
precision or concentration matrix), which may also be considered
as contributing, in full or partially, the vector of the physics-
meaningful training parameters, ψ. Finally, fourth, let us also
mention that the PINN scheme of the study by (Raissi, 2018) was
adapted to dynamic parameter learning in the power system
setting in the study by (Misyris et al., 2019). See also the related
discussion below in Section 2.2.4.

2.2.3 Hamiltonian Neural Net
As already mentioned above, more structures related to our
understanding (or expectation) about the physics of the
problem can be embedded into the NeuralODE and PINN.
Specifically, if the underlying ODE is of a conservative
(Hamiltonian) type, we can construct what is coined in the
studies by (Zhong et al., 2020a; Zhong et al., 2020b) as the
Hamiltonian NN. However, the system of equations describing
the power system dynamics (which are yet to be introduced) is
not conservative, therefore suggesting that a more general model
than the bare Hamiltonian one can be appropriate here. It seems
reasonable to consider the dynamical system described by the so-
called port-Hamiltonian system of equations (van der Schaft
et al., 2006) as follows:

(_q

_p) � 0 I
−I 0

() − Dϕ(p, q)()
zHϕ(p, q)

zq

zHϕ(p, q)
zp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + 0

Fϕ(p, q)(),
(15)

where the coordinate vector, p, and the momentum vector, q, are
of the same dimensionality, m, I is the m × m-dimensional
identity matrix, Hϕ (p, q) is the Hamiltonian function, Dϕ (q)
is the symmetric positive-definite m × m dissipation matrix
(function), and Fϕ (p, q) is the source function.

Obviously, one may consider Eq. 15 as a particular case of the
general ODE Eq. 6 where x � (p, q). Then one can naturally
introduce the (port-) Hamiltonian version of the Path-Neural
ODE, substituting Path-NeuralODEϕ in Eq. 11 by path-HNNϕ,
and then train it by minimizing Eq. 12 where the respective
substitution is also made.

TABLE 1 | AlexNet (Krizhevsky et al., 2012) architecture. Abbreviations are
inp.,input; out.,output; ker.,kernel; chan.,channels.

Conv (inp. Size � 68, inp. chan. � 1, out. chan. � 4, ker. size � 5, stride � 1)

ReLU

MaxPool (ker. size � 2, stride � 2)

Conv (inp. chan. � 4, out. chan. � 8, ker. size � 5, stride � 1)

ReLU

MaxPool (ker. size � 2, stride � 2)

Conv (inp. chan. � 8, out. chan. � 8, ker. size � 3, stride � 1)

ReLU

MaxPool (ker. size � 2, stride � 2)

Conv (inp. chan. � 8, out. chan. � 8, ker. size � 3, stride � 1)

ReLU

MaxPool (ker. size � 2, stride � 2)

Linear (inp. size � 16, out. size � 87)

TABLE 2 | Summary of the detection failure experiments. The columns show the
following: models; quality of performance under 5% observability and 0%
SNR; number of parameters; time per epoch (in sec), averaged over 1,000 epochs
for the CPU and GPU, respectively.

Model Quality # Param tCPU tGPU

LR 0.4993 6,003 0.016 0.023
FFNN 0.6490 5,079 0.021 0.018
AlexNet 0.6229 2,071 0.100 0.048
GCNN 0.6342 5,079 0.029 0.019
ODE Lin 0.6737 10,695 1.238 1.847
ODE Graph 0.6398 10,695 1.284 1.791

4In the following, we will combine ϕ and ψ in one set of parameters, where some of
the parameters may be physical, that is, interpretable, and some, normally
represented by an NN, can be physics blind.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924936

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

2.2.4 Direct Ordinary Differential Equation Neural
Network Based on the Swing Equations
A popular model of the power system, extending the static power
flow equations to the dynamical case, is the so-called nonlinear
and dissipative swing equations governing dynamics of the phase
of the voltage potential, θa(t), as follows:

∀a ∈ V: ma
€θa + da _θa � Pa − ∑

b∈V;{a,b}∈E
βabvavb sin(θa−θb)

− ∑
b∈V;{a,b}∈E

gabva va − vb cos(θa − θb)(), (16)

where va is the absolute value of the voltage potential at a
node, a, βab and gab are the susceptance and conductance of the

TABLE 3 | Summary of the optimal hyper-parameters (the optimal rate | value of
the l2 regularization) in the dynamic state estimation experiments.

Model 100% 70% 40%

LR 1e-3 | 3e-7 1e-3 | 3e-7 1e-3 | 3e-7
FFNN 1e-2 | 1e-6 1e-2 | 1e-6 1e-2 | 1e-7
GCNN 1e-3 | 5e-8 5e-3 | 5e-8 5e-3 | 5e-9
AlexNet 1e-3 | 3e-7 - | - - | -
ODE Lin 1e-2 | 1e-8 1e-2 | 1e-8 1e-2 | 1e-8
ODE Graph 2e-2 | 3e-9 2e-2 | 3e-9 3e-2 | 3e-9
PINN 1e-2 | 3e-9 1e-2 | 3e-8 5e-3 | 3e-8
HNN 1e-2 | 0 3e-3 | 0 3e-3 | 0
DIRODENN 5e-3 | 1e-8 5e-3 | 1e-8 1e-2 | 1e-8

Model 20% 10% 5%

LR 1e-3 | 3e-7 1e-3 | 3e-7 1e-3 | 3e-7
FFNN 2e-2 | 5e-7 1e-2 | 5e-8 1e-2 | 5e-8
GCNN 1e-2 | 5e-6 1e-2 | 3e-6 5e-2 | 5e-8
AlexNet - | - - | - - | -
ODE Lin 5e-2 | 5e-8 5e-2 | 5e-8 5e-2 | 5e-8
ODE Graph 5e-2 | 5e-9 5e-2 | 5e-9 2e-2 | 0
PINN 5e-3 | 8e-5 5e-3 | 8e-5 5e-3 | 8e-5
HNN 3e-3 | 0 5e-3 | 0 1e-2 | 0
DIRODENN 5e-2 | 1e-8 5e-2 | 1e-8 5e-2 | 1e-8

TABLE 4 | CDSE models under 100% observability.

Model Loss # Param tCPU

LR −30.21 4,692 0.010
FFNN −28.16 4,452 0.012
GCNN −26.98 4,452 0.016
AlexNet −19.10 6,800 0.058
ODE Lin −34.30 4,692 0.301
ODE Graph −34.98 4,692 0.378
PINN −26.19 4,452 0.349
HNN −36.39 37,469 1.860
DIRODENN −34.10 204 0.457

TABLE 5 | CDSE models under 70% observability.

Model Loss # Param tCPU

LR −28.24 3,196 0.026
FFNN −26.20 3,748 0.029
GCNN −24.61 4,452 0.032
ODE Lin −29.58 5,358 0.362
ODE Graph −30.02 6,370 0.564
PINN −27.63 3,748 0.376
HNN −32.34 29,899 2.140
DIRODENN −28.21 12,786 0.513

TABLE 6 | CDSE models under 40% observability.

Model Loss # Param tCPU

LR −23.28 1,836 0.025
FFNN −24.01 3,108 0.029
GCNN −23.93 4,452 0.031
ODE Lin −24.18 2,538 0.305
ODE Graph −24.29 3,630 0.456
PINN −23.52 3,108 0.381
HNN −25.18 12,799 1.626
DIRODENN −23.52 7,286 0.412

TABLE 7 | CDSE models under 20% observability.

Model Loss # Param tCPU

LR −21.41 952 0.024
FFNN −22.39 2,692 0.035
GCNN −22.75 4,452 0.032
ODE Lin −23.05 1,134 0.268
ODE Graph −23.11 1,849 0.378
PINN −22.10 2,692 0.381
HNN −21.99 5,116 1.427
DIRODENN −22.54 3,711 0.356

TABLE 8 | CDSE models under 10% observability.

Model Loss # Param tCPU

LR −20.82 476 0.023
FFNN −21.30 2,468 0.027
GCNN −20.82 4,452 0.031
ODE Lin −22.24 518 0.202
ODE Graph −22.69 890 0.242
PINN −21.77 2,468 0.398
HNN −20.23 2,099 1.369
DIRODENN −22.42 1,786 0.330

TABLE 9 | CDSE models under 5% observability.

Model Loss # Param tCPU

LR −18.92 272 0.023
FFNN −21.24 2,372 0.027
GCNN −20.40 2,372 0.029
ODE Lin −20.06 479 0.181
ODE Graph −20.03 479 0.228
PINN −22.09 2,372 0.404
HNN −19.30 1,046 1.268
DIRODENN −20.14 961 0.314

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924937

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

line {a, b}, defined as imaginary and real parts of the line
admittance, Yab � gab + iβab, and ma and da are inertia and
the so-called droop coefficients at the node a5.

Normally (in the power system literature), the power
network and line characteristics in Eq. 16 correspond to
the actual physical lines; then line parameters, m, d, are
dynamic physical parameters associated with devices’
(generators and loads) inertia and damping (also frequency
control), respectively, while β, g are static physical parameters
of the respective lines and devices. Here, we adapt this
physical picture to a reduced model of power systems. This
adaptation is obviously blurred by limited observability. We
assume, extending the static consideration of the study by
(Pagnier and Chertkov, 2021), that Eq. 16 also applies to a
reduced set of nodes where the PMU devices are located and
measurements are available. In this setting, we consider a
complete graph that connected the observed nodes and do not
assume that the (effective) nodal and line parameters are
known—instead we aim to learn the effective parameters. It
should also be noticed that Eq. 16 can be viewed as a
particular, that is, more structured, version of the port-

Hamiltonian system of Eq. 15. Here, like in the case of
Path-HNN, we introduce the direct ODE NN
(DIRODENN) version of the Path-Neural ODE,
substituting Path-NeuralODEϕ in Eq. 11 by Path-
DIRODENNϕ, and then train it by minimizing Eq. 12
where the respective substitution is also made.

2.3 Machine Learning Algorithms for
Optimal Placement of Phasor Measurement
Units
As the first set of experiments (detection of failure in the static
regime, reported and discussed in Section 2.1) show, accuracy of
the MLmodel varies very significantly not only on the percentage
of nodes where observations are available but also on where
exactly within the system the observations are made. This
dependency motives the third set of experiments discussed
below. Specifically, we focus in this section on building ML
schemes which are capable of discovering locations for close
to optimal placement of the phasor measurement units (PMUs)
for the given level of observability efficiently, that is, fast.

It should be noticed that this problem of searching for the
optimal PMU placement was already addressed in the study
by (Li et al., 2019). However, the algorithm suggested
that there was “passive,” which means that the

FIGURE 3 | Comparison of the learning model performance for detection of line failure in the dynamic regime. Sub-figures correspond to (left-to-right and top-to-
bottom) 100, 70, 40, 20, 10, and 5% of observability.

5In the DIRODENN scheme described below the g � 0 version of Eq. 16, ignoring
power line resistance, was actually implemented.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924938

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

algorithm worked in parallel with the training of the main
model (in the setting of our first experiment). Stating it
differently, in the passive search, the placement
configurations do not utilize the information received so
far. In theory, this passive sampling conducted without a

feedback loop should eventually find the optimal PMU
placement; however, the passive search normally takes a
long time.

In the following part, we develop an active strategy which
reinforces the search by taking advantage of the measurement
made so far, thus allowing a much faster discovery of the
optimal PMU placement than in the passive case considered
so far.

The main idea of the approach, illustrated in Figure 1, is in
solving the OP problem in two steps: first, find a function which
maps each set of observed nodes to a score expressing the
accuracy, A, of the reconstruction, f : Vo →A, where A ∈ (0, 1),
and 0 and 1 correspond to the complete failure and success of
the reconstruction, respectively. Second, find the argument of
the minimum of the function, suggesting the desired optimal
placement (OP). We construct the function, f, by means of
learning from multiple input–output–placement (IO-P)
samples, where each IO-P sample aggregates multiple
samples correspondent to experiments discussed in Section
2.1 that are conducted for the same placeemnt (i.e., the same set
of observed nodes, Vo) and for the same basic NN model, for
example, the LR model. Accuracy, A, of a particular OP-IO
sample, corresponding to the asymptotic y-axis value of a curve
in Figure 2 achieved at the end of the training run, becomes the

TABLE 10 | Additional details on the architecture of the optimal placement neural
network (OP-NN) from Figure 1.

Optimal placement neural network:

GraphConv layer (68, 16)

ReLU

FF layer (16, 16)

ReLU

FF layer (16, 16)

ReLU

FF layer (16, 6)

Sigmoid

FIGURE 4 | Comparison of the placement learning with the LR model for different observabilities. Sub-figures correspond to (left-to-right and top-to-bottom)
70, 40, 20, 10, and 5% of observability.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6924939

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

output of the OP-NN, as shown in the left sub-figure of
Figure 1. Additional details on the structure of the OP-NN
are given below. Parameters of the OP-NN, built from four
layers (a graph convolutional layer, followed by three feed-
forward layers), are trained during the first stage by minimizing
LOP-NN, chosen to be the l2 norm between A-predictions and A-
observations. The second stage consists in fixing parameters of
the OP-NN and then finding the arg-maximum of the resulting
optimal function, f. It is achieved by finding the optimal vector
α � (αa ∈ R|a ∈ V), built from n � |V| real-valued components,
mapped via g(s) (α) p OP-NN to the accuracy, A. Here, the g(s)

(α) is the function mapping a real-valued α associated to a
vector of the same length n having nonzero components at the
nodes of the suggested PMU placement; formally, this is as
follows:

g(s)a (α)� exp(αa)∑
b∈V

exp(αb) ×
1, αa ∈ top − s comp. of α;

0, otherwise.

⎧⎨⎩

This additional “softening” function allows us to take
advantage of the automatic differentiation for finding the
minimum of f efficiently.

We also use the transfer learning technique (Zhuang et al., 2019)
to speed up and improve the quality of the OP scheme. Specifically,
we first implement the scheme on (by far) the fastest, but also the
least accurate, linear regression (LR) method and then use the pre-
trained LR-OP-NN as a warm-start for training other (more
accurate, but slower) methods of the OP reconstruction.

3 RESULTS

3.1 Detection of Failure: Experiments
We are conducting our experiments on the ground truth data, (x,
y), generated using the power system toolbox (Chow and Cheung,
1992) on the exemplary IEEE 68-bus electrical network,
consisting of n � 68 nodes and m � 87 lines.

We follow the supervised learning setup of the study by (Li
et al., 2019), which is as follows:

• The power network is described in terms of the known,
symmetric (n × n) admittance matrix with 2m off-diagonal
nonzero complex elements.

• We limit our analysis to single-line failures. To generate the
ground truth data, we pick the failed line i. i. d. at random

FIGURE 5 |Comparison of the placement learning with the FFNNmodel for different observabilities. Sub-figures correspond to (left-to-right and top-to-bottom)
70, 40, 20, 10, and 5% of observability.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249310

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

from the m � |E| options. The fault is permanent (not
cleared); however, we assume that it is operating in the
so-called N−1 safe regime, with the system stabilized after
any of the single-line faults to a new steady state (thus
achieved in the regime of the corrected admittance matrix
derived from the initial admittance matrix by removing a
line, that is, forcing the admittance of the corrected line to
zero).

• Observations, before and after the fault, are available at |Vo|
nodes assumed to be equipped with phasor measurement
units, or alternative measurement equipment. We consider
the cases with 5%, 10%, 20%, 40%, 70%, and 100% of
observed nodes. Creating the initial training dataset, we
pick the observed nodes at random. For each setting of the
observed nodes, we train each of the ML models (yet to be
described). We repeat the training protocol 50 times for
eachMLmodel in each case of partial observability and then
present the averaged results.

• Input (sample): x is generated using the power system toolbox
(PST) (Chow and Cheung, 1992) according to x � YΔU,
whereY ∈Cn × s is a n × s, where n � |V| and s � |Vo|, the sub-
matrix of the full (n × n) admittance matrix, and ΔU ∈ C s is
the complex valued vector of changes, that is, difference in
readings before and after the incident, in the voltage

potentials at the observed nodes. Here, we assume that Y
is known. It should be noticed that each component of the x-
vector is complex, and therefore represented in the NN
modeling via two real channels.

• Output (sample): m � |E| is the binary vector of the
empirical line failure probability,
∀{a, b} ∈ E: yab ∈ {0, 1},∑{a,b}∈Eyab � 1. In our
experiments, each of the 50 samples corresponds to a
new randomly removed line of the system.

The AlexNet model is presented in Table 1 and details on the
architectures of other models are as follows:

LR: x→ Lin(68, 87)→ y
FFNN: x→ Lin(68, 32)→ReLU→ Lin(32, 87)→ y
GCNN: x→GraphConv(68, 32)→ReLU→Lin(32, 87)→y
ODENN: ODEBlock(68, 68)→ Lin(68, 87)→ y

where ODEBlock � [Linear (input size, output size)], followed by the
ReLU in the case of the LinODE andODEBlock� [GraphConv (input
size, output size), followed by the ReLU in the case of the GraphODE.

Training consists in minimizing the cross-entropy loss
function (Wikipedia (2021a). Cross, 2021a) with respect to the
vector of parameters, ϕ, over 1,000 epochs. We use the Adam

FIGURE 6 | Comparison of the placement learning with the GCNN model for different observabilities. Sub-figures correspond to (left-to-right and top-to-
bottom) 70, 40, 20, 10, and 5% of observability.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249311

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

(Kingma and Ba, 2014) gradient optimization method with the
learning rate 1e−3 and the value of the l2 regularization 5e−6.

Results of our experiments are shown in Figure 2 and Table 2.
Color-shaded regions show the distribution of the learning curves
in terms of their dependence on the random choice of the
observable nodes. These regions are obtained by sampling at
random, given the percentage of nodes and learning on the data
these nodes provide. For each of the models, a bold curve
represents the mean over the sampling. The mean curve is
seen to be located within the color-shaded (sampled) region.
Discussion of the results is presented in Section 4.1.

3.2 Dynamic State Estimation: Experiments
It seems appropriate to start the discussion of our dynamic state
estimation (DSE) experiments reported in this section from a
clarification on the use of terms. The subject of the DSE has a
long, distinguished, and continuing history in power systems (see,
e.g., the most recent report of the IEEE Task Force on Power
System Dynamic State and Parameter Estimation (Zhao et al.,
2019) and references therein). The essence of DSE is in
introducing a dynamical equation, for example, corresponding
to one of the dynamic models described in the preceding Section
2.2, and then reconstructing/learning coefficients in the equation
from the data.

As in the (static) fault detection setting, described in Section
3.1, we are conducting our dynamic experiments with the data
generated in the power system toolbox (Chow andCheung, 1992) on
the IEEE 68-bus electrical network under sufficiently small dynamic
perturbations6. Changes in the dynamic setting (when compared
with the static one of Section 3.1) are as follows. Input/output is the
dynamic path, {x(t)}K, where at each tk, x (tk) represents the voltage
potential (the absolute value and phase) measured at the observed
nodes of the system. That is, {x(t)}K ∈ R2×68×K , in the case of the full
observability and, {x(t)}K ∈ R2×|Vo|×K , in the case of the partial
observability. We are experimenting with (5%, 10%, 20%, 40%,
70%, and 100%) node observation levels. We experiment with the
dynamic models expressing different degrees of physics, discussed in
Section 2.2, but also test static models adapted to the (time-
incremental) map7. In this case of the dynamic state estimation,
we select observation nodes at random and then repeat multiple

FIGURE 7 | Comparison of the placement learning with the AlexNet model for different observabilities. Sub-figures correspond to (left-to-right and top-to-
bottom) 70, 40, 20, 10, and 5% of observability.

6The authors are grateful to Wenting Li for providing temporal, PST
generated data.
7All static models but AlexNet are tested in the regime of limited observability. This
is because AlexNet is fine-tuned to the fixed size of the input, x(0) ∈ R2×68, and
adapting it to partial observability would require reconstructing the entire
architecture of the NN. Moreover, AlexNet was not competitive in the case of
the full observability.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249312

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

experiments (collect statistics) for this particular set of the observed
nodes. Our training consists in minimizing the l2 norm given by Eq.
12, adapted, respectively, to different dynamicalmodels considered 8.
Actual optimization is implemented using the Adam (Kingma and
Ba, 2014) gradientmethod over 1,000 epochs (under exception of the
case of theHNNmodel under 100%observability, where the training
is over 200 epochs) with the optimal learning rate and the value of
the l2 regularization presented inTable 3 for eachmodel.Tables 4, 5,
6, 7, 8, 9 show details on the results on the comparison of the
dynamic state estimation (CDSE) experiments under 100, 70, 40, 20,
and 10% of observability. These tables show the comparison of the
best loss (in decibels), number of model parameters, and required
CPU time. Also, one can see the results in Figure 3. The
performance of prediction (in dB) is accessed according to the
log of the ration of the mismatch between the predicted and the
observed, normalized to the observed: Accuracy � 10lg(PerrorPoutput

), where

Perror � ∑t‖x(pred)t − x(pred)t ‖22, Poutput � ‖x(pred)t ‖22.

3.3 Optimal Placement of Phasor
Measurement Units: Experiments
We pre-train the OP function, f, illustrated in Figure 1 on the LR
training data in the experimental setting of Section 2.1, on 1,600
samples, each characterized by the (placement nodes and LR
accuracy) pair. Architecture of the OP function, f, is shown in
Table 10. The results are used as a warm-start for training all
other schemes (the FFNN, GCNN, AlexNet, ODE Lin, and ODE
Graph) independently and each on 350 samples (placement
nodes and method accuracy). Specifically, in training the
advanced methods, we fix parameters of the first three layers
according to the pre-trained LR-OP-NN and retrain the last
layer. We use the Adam (Kingma and Ba, 2014) gradient
method for 1,200 epochs with an initial step of 0.08 and
decrease it by a factor of 10 every 300 epochs at the pre-
training (LR) stage. We use the same method for 300 epochs,
with an initial step of 0.01 and decrease it by a factor of 10 times
every 100 epochs at the post-training (advanced methods) stage.

Results of the OP experiments are shown in Figures 4–9
for the LR, FFNN, GCNN, AlexNet, ODE Lin, and ODE
Graph, respectively, each showing in sub-figure
performances under 100, 70, 40, 20, 10, and 5% of nodes.
Each sub-figure in the set corresponding to the advanced (all

FIGURE 8 | Comparison of the placement learning with the Linear ODE model for different observabilities. Sub-figures correspond to (left-to-right and top-to-
bottom) 70, 40, 20, 10, and 5% of observability.

8In the cases of path-HNNϕ and path-DIRODENNϕ, and according to the
discussions above, some of the parameters will be physical and some physics-
ignorant. Optimization in the respective version of Eq. 12 is over all the
parameters.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249313

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

but LR) methods shows a comparative performance of 1)
multiple IO-P samples, 2) OP-LR configuration found with
LR-based training only, and 3) OP configuration found with
LR-based pre-training and follow-up training on the
corresponding model’s data.

3.4 Description of Software and Hardware
All the experiments were implemented on Python using Pytorch
(Paszke et al., 2019) on Google Colab with an Intel Xeon CPU @
2.20GHz and a 12GB NVIDIA Tesla K80 GPU.

4 DISCUSSION

4.1 Detection of Failure: Discussion of
Results
We have tested the performance of all the models introduced so
far on the problem of fault detection on the experimental setup
described in Section 3.1. We also included in this comparative
study experiments with two other models introduced below.
Specifically, in Section 2.2.1, we have adapted two Neural
ODE models, both of which have a broader applicability to
the case study of the fault detection in the case of the static
observations.

Results of the 100 experiments with different randomly
initialized parameters for each model are shown in Figure 2.
Bold lines show mean accuracy curves for each model. We
observe that, in general, the Linear ODE model performs
better than other models. Also, all models outperform linear
regression in low-observability regimes. Finally, our proposed
models outperform the AlexNet-based model, which was
suggested for the problem in the study by (Li et al., 2019). We
also observed that the performance of the models depends
dramatically on where the measurement (PMU) devices are
placed. This observation-motivated material of Section 2.3
discusses the NN approach to the optimal placement of PMUs.

We expect that the NN methods described above will allow
generalization/scalability to larger grids. Our ongoing exploration
(work in progress, not reported in this manuscript) suggests that
the number of NN parameters (and possibly layers) should grow
linearly or faster with the grid size in order to result in a learning
of a satisfactory quality.

4.2 Dynamic State Estimation Which
Extrapolates: Discussion of Results
We observe that under full observability, the models which are
the most physics informed, for example, DIRODENN and

FIGURE 9 | Comparison of the placement learning with the Graph ODE model for different observabilities. Sub-figures correspond to (left-to-right and top-to-
bottom) 70, 40, 20, 10, and 5% of observability.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249314

Afonin and Chertkov Which NN to Choose in Power Systems?

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

especially HNN, perform better than physics-agnostic models, of
which the only linear one (LR) is the worst in performance.
Systematic decrease in observability, from almost complete to
modest, does not affect the qualitative assessment much. We
interpret this preliminary conclusion (preliminary in view of the
disclaimer above) as the confirmation of the general expectation
that adding information about the structure of the power systems
and especially about its dynamics helps to extrapolate, that is, in
our context, represents part of the system where no samples were
observed. On the other hand, when the observability becomes
poor, it seems that the models which are from the middle of the
pack (in terms of their use of the power system physics), such as
the PINN and the Graph-ODENN, which are aware of the rather
rough physical structure of the power system (and not about the
details) are the winners of the performance competition. This
suggests that planting too much of physics into the dynamic state
estimation algorithm in the regime of low observability may also
lead to a diminishing return.

4.3 Optimal Placement of Phasor
Measurement Units: Discussion of Results
The experiments suggest that 1) finding optimal placement
improves performance of the fault detection dramatically, 2)
optimal placement of the PMU is a combinatorial
optimization problem (of exponential complexity in the
network size), which can be resolved efficiently (and,
obviously, heuristically, i.e., approximately) using modern ML
optimization software, 3) softening input and pre-training (with a
fast but not accurate LR method) are steps which are critical for
making the optimal placement algorithms efficient.

5 CONCLUSION

In this manuscript we first designed a sequence of NNs locating a
faulty line. Different NN solutions were compared to each other
at different levels of observability. The results suggest that NNs
based on linear ODEs outperform other models at all the
observability levels. Second, we proposed a sequence of the
(power system) physics-informed NNs which allow us to
predict the post-fault state. The results show that embedding
this extra physical modeling in the NN helps; however, one also
needs to be careful as constraining the learning too much (with
the physical model) may lead to a diminishing return. Third, we
designed an algorithm to improve PMU placement for better
learning. Our methodology here is heuristics finding a
satisfactory (but potentially suboptimal) solution.

We conclude by providing an answer to the question posed
in the title. In this manuscript, we rely on synthetic
experiments because mathematical derivations of the
reduced models, for example, those represented by a NN,
are not feasible at this stage. Our main point (which, one
may say, is the main contribution of the manuscript) is not in
providing solid guidance on which NN to use in each situation.
Instead, we suggest (and show it on examples) that a researcher
facing this challenge should be ready to test a number of
different solutions. This custom search for the best (or
simply good enough) NN solution depends on the
following: 1) how much data/measurements are available?
2) How much explanation in terms of meaningful power
system terms would we like to get? 3) How much
extrapolation (to regimes unseen or purely represented in
samples) is expected? We also suggest that as the problem
becomes more challenging (fewer data and more explanations
and extrapolations), we ought to rely more on embedding
power system physics into the NN to succeed.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
AfoninAndrey/NNs-for-power-systems/tree/main/Datasets.

AUTHOR CONTRIBUTIONS

MC contributed to the conception of the manuscript. AA
designed and conducted experiments. Both wrote sections of
the manuscript and read and approved the submitted version.

FUNDING

This work was supported by MC’s seed funding at UArizona.

ACKNOWLEDGMENTS

We are grateful to Nikolai Stulov, Laurent Pagnier, and
Christopher Koh for multiple discussions and detailed and
insightful feedback and to Wenting Li for providing data used
in the manuscript.

REFERENCES

Baalbergen, F., Gibescu, M., and van der Sluis, L. (2009). “Modern State
Estimation Methods in Power Systems,” in IEEE/PES Power
Systems Conference and Exposition, 15-18 March 2009, Seattle, WA,
1–6. doi:10.1109/PSCE.2009.4840003

Bento, J., Ibrahimi, M., and Montanari, A. (2010). “Learning Networks of Stochastic
Differential Equations,” in Proceedings of the 23rd International Conference on
Neural Information Processing Systems, 6 December, 2010, Vancouver, British
Columbia, Canada (USA: Curran Associates Inc.), Vol. 1: NIPS’10, 172–180.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). “Neural
Ordinary Differential Equations,” in Advances in neural information
processing systems, December 3-8, 2018, Montreal, Canada.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249315

Afonin and Chertkov Which NN to Choose in Power Systems?

https://github.com/AfoninAndrey/NNs-for-power-systems/tree/main/Datasets
https://github.com/AfoninAndrey/NNs-for-power-systems/tree/main/Datasets
https://doi.org/10.1109/PSCE.2009.4840003
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

Chow, J. H., and Cheung, K. W. (1992). A Toolbox for Power System Dynamics
and Control Engineering Education and Research. IEEE Trans. Power Syst. 7,
1559–1564. doi:10.1109/59.207380

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learning for Image
Recognition. arXiv:1512.03385 (2015).

Jiang, H., Zhang, J. J., Gao, W., and Wu, Z. (2014). Fault Detection, Identification,
and Location in Smart Grid Based on Data-Driven Computational Methods.
IEEE Trans. Smart Grid 5, 2947–2956. doi:10.1109/TSG.2014.2330624

Kingma, D. P., and Ba, J. Adam: A Method for Stochastic Optimization. arXiv:
1412.6980 (2014).

Kipf, T. N., and Welling, M. Semi-supervised Classification with Graph
Convolutional Networks. arXiv:1609.02907 (2016).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, December 3-8, 2012, Lake Tahoe, CA.
Editors F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran
Associates, Inc.), 25, 1097–1105.

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial Neural Networks for
Solving Ordinary and Partial Differential Equations. IEEE Trans. Neural Netw.
9, 987–1000. doi:10.1109/72.712178

Li,W.,Deka,D., Chertkov,M., andWang,M. (2019). Real-time Faulted Line Localization
and Pmu Placement in Power Systems through Convolutional Neural Networks.
IEEE Trans. Power Syst. 34, 4640–4651. doi:10.1109/tpwrs.2019.2917794

Lokhov, A. Y., Vuffray, M., Shemetov, D., Deka, D., and Chertkov, M. Online
Learning of Power Transmission Dynamics. arxiv:1710.10021 (2017).

Misyris, G. S., Venzke, A., and Chatzivasileiadis, S. Physics-informed Neural
Networks for Power Systems. arxiv:1911.03737 (2019).

Monticelli, A. (1999). State Estimation in Electric Power Systems: A Generalized
Approach. New York: Springer.

Pagnier, L., and Chertkov, M. Physics-informed Graphical Neural Network for
Parameter & State Estimations in Power Systems. arXiv:2102.06349 (2021).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: An Imperative Style, High-Performance Deep Learning Library,” in
Advances in Neural Information Processing Systems. Editors H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett
(Vancouver, Canada: Curran Associates, Inc.), 32, 8024–8035.

Raissi, M. (2018). Deep Hidden Physics Models: Deep Learning of Nonlinear
Partial Differential Equations. J. Mach. Learn. Res. 19, 932–955.

Schweppe, F., and Wildes, J. (1970). Power System Static-State Estimation, Part I:
Exact Model. IEEE Trans. Power Apparatus Syst. PAS-89, 120–125.
doi:10.1109/TPAS.1970.292678

van der Schaft, A. (2006). “Port-hamiltonian Systems: an Introductory Survey,” in
Proceedings of the International Congress of Mathematicians. Editors M. Sanz-
Sole, J. Soria, J. Varona, and J. Verdera (Madrid, Spain: European Mathematical
Society Publishing House (EMS Ph)), Vol. III: Suppl. 2, 1339–1365.

Wikipedia (2021a). Cross Entropy. Available at: https://en.wikipedia.org/wiki/
Cross_entropy (Accessed August 21, 2021)

Wikipedia (2021b). Mean Squared Error. Available at: https://en.wikipedia.org/
wiki/Mean_squared_error (Accessed August 21, 2021)

Xie, L., Chen, Y., and Kumar, P. R. (2014). Dimensionality Reduction of
Synchrophasor Data for Early Event Detection: Linearized Analysis.
IEEE Trans. Power Syst. 29, 2784–2794. doi:10.1109/
TPWRS.2014.2316476

Yue Zhao, Y., Goldsmith, A., and Poor, H. V. (2012). “On Pmu Location Selection
for Line Outage Detection in Wide-Area Transmission Networks,” in IEEE
Power and Energy Society General Meeting, July 22-26, 2012, San Diego, CA,
1–8. doi:10.1109/PESGM.2012.6344572

Yuill, W., Edwards, A., Chowdhury, S., and Chowdhury, S. P. (2011).
“Optimal Pmu Placement: A Comprehensive Literature Review,” in
IEEE Power and Energy Society General Meeting, July 24-28, 2011,
Detroit, Michigan, 1–8. doi:10.1109/PES.2011.6039376

Zhao, J., Qi, J., Huang, Z., Meliopoulos, A. P. S., Gomez-Exposito, A., Netto, M.,
et al. (2019). Power System Dynamic State Estimation: Motivations,
Definitions, Methodologies, and Future Work. IEEE Trans. Power Syst. 34,
3188–3198. doi:10.1109/tpwrs.2019.2894769

Zhong, Y. D., Dey, B., and Chakraborty, A. Dissipative Symoden: Encoding
Hamiltonian Dynamics with Dissipation and Control into Deep Learning.
arXiv:2002.08860 (2020).

Zhong, Y. D., Dey, B., and Chakraborty, A. (2020). “Symplectic Ode-Net: Learning
Hamiltonian Dynamics with Control,” in International Conference on
Learning Representations, Apr 26-30, 2020, Addis Ababa, Efiopia.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., et al. A Comprehensive Survey
on Transfer Learning. arXiv:1911.02685 (2019).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Afonin and Chertkov. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 69249316

Afonin and Chertkov Which NN to Choose in Power Systems?

https://doi.org/10.1109/59.207380
https://doi.org/10.1109/TSG.2014.2330624
https://doi.org/10.1109/72.712178
https://doi.org/10.1109/tpwrs.2019.2917794
https://doi.org/10.1109/TPAS.1970.292678
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://doi.org/10.1109/TPWRS.2014.2316476
https://doi.org/10.1109/TPWRS.2014.2316476
https://doi.org/10.1109/PESGM.2012.6344572
https://doi.org/10.1109/PES.2011.6039376
https://doi.org/10.1109/tpwrs.2019.2894769
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Which Neural Network to Choose for Post-Fault Localization, Dynamic State Estimation, and Optimal Measurement Placement in ...
	1 Introduction
	2 Materials and Methods
	2.1 Detection of Failure in the Static Regime
	2.1.1 Parameterization and Training
	2.1.2 Linear Regression
	2.1.3 Feed-Forward Neural Network With Two Layers
	2.1.4 AlexNet Convolutional Neural Network
	2.1.5 Graph Convolutional Neural Network

	2.2 Dynamic Models
	2.2.1 Neural Ordinary Differential Equations
	2.2.2 Physics-Informed Neural Net
	2.2.3 Hamiltonian Neural Net
	2.2.4 Direct Ordinary Differential Equation Neural Network Based on the Swing Equations

	2.3 Machine Learning Algorithms for Optimal Placement of Phasor Measurement Units

	3 Results
	3.1 Detection of Failure: Experiments
	3.2 Dynamic State Estimation: Experiments
	3.3 Optimal Placement of Phasor Measurement Units: Experiments
	3.4 Description of Software and Hardware

	4 Discussion
	4.1 Detection of Failure: Discussion of Results
	4.2 Dynamic State Estimation Which Extrapolates: Discussion of Results
	4.3 Optimal Placement of Phasor Measurement Units: Discussion of Results

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

