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Machine learning (ML) models are applied in an increasing variety of domains. The
availability of large amounts of data and computational resources encourages the
development of ever more complex and valuable models. These models are
considered the intellectual property of the legitimate parties who have trained them,
which makes their protection against stealing, illegitimate redistribution, and unauthorized
application an urgent need. Digital watermarking presents a strongmechanism for marking
model ownership and, thereby, offers protection against those threats. This work presents
a taxonomy identifying and analyzing different classes of watermarking schemes for ML
models. It introduces a unified threat model to allow structured reasoning on and
comparison of the effectiveness of watermarking methods in different scenarios.
Furthermore, it systematizes desired security requirements and attacks against ML
model watermarking. Based on that framework, representative literature from the field
is surveyed to illustrate the taxonomy. Finally, shortcomings and general limitations of
existing approaches are discussed, and an outlook on future research directions is given.
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1 INTRODUCTION

In recent years, machine learning (ML) has experienced great advancements. Its ability to process
ever larger and more complex datasets has led to its application in a versatile and growing number of
domains. The performance of the applied models, thereby, largely depends on the quality and
quantity of their training data. However, the process of training data collection, cleansing, processing,
organizing, storing, and, in certain cases, even manual labeling is time-consuming and expensive. So
is the training process itself, as it may require large computational capacities, for example, in the form
of numerous GPUs, and know-how for hyperparameter tuning. As a consequence, a trained ML
model may be of high value and is to be considered intellectual property of the legitimate owner, that
is, the party that created it.

The value incorporated in trained ML models may turn them into lucrative attack targets for
malicious attackers who want to steal their functionality (Ateniese et al., 2013) for redistribution or to
offer their own paid services based on them. Given the broad attack surface of stealing ML models, it
might be impossible to entirely prevent theft. If theft cannot be prevented beforehand, a legitimate
model owner might want to react, at least, to the inflicted damage and claim copyright to take further
steps. This, however, requires that the stolen intellectual property can be traced back to its legitimate
owner through adequate labeling.

The idea of marking digital property is called watermarking. It refers to the act of embedding
identification information into some original data to claim copyright without affecting the data
usage. Watermarking is already broadly applied in digital media, for example, in images, where a
watermark may consist of a company logo inserted somewhere into the picture, or in texts, where a
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watermark in the form of an identifying text or image might be
added to the file. See Figure 1 for an example of such digital
watermarks. Also, see the study by Saini and Shrivastava (2014)
for a survey on watermarking approaches in digital media.

The concept of watermarking can also be adopted for tagging
ML models. So far, several methods to generate such watermarks
in MLmodels have been proposed in research. Additionally, ways
to detect, suppress, remove, or forge existing watermarks have
been proposed. However, so far, the threat space in which the
watermarking schemes operate has not been properly
characterized. The same holds for the goals and guarantees
offered by the different watermarking approaches. This makes
it difficult for model owners to choose an adequate watermarking
scheme that fulfills the needs in their scenarios and also to
compare existing approaches with each other. Those
shortcomings present, at the same time, a motivation and
challenge for the systematic review put forward in this work.
The goal of the article is to introduce a unified threat space for
model watermarking and a taxonomy of watermarking methods
and a systematization of their requirements. It, thereby, does not
only propose a common language for evaluating NN
watermarking but goes beyond and enables a structured
comparison among existing approaches. This can serve as a
basis to make watermarking methods more usable,
comparable, and accessible.

The concrete contributions by this work are as follows:

• Taxonomy for watermarking schemes.
• Systematization of desirable security properties of ML
model watermarks and attacks against them.

• Introduction of a unified threat model that enables
structured analyses of existing watermarking schemes.

• Survey and evaluation of existing watermarking schemes
and defenses according to the presented properties.

Based on the developed threat model, representative and
influential works from the literature were selected. Although
attempts were made to provide a comprehensive and complete
overview, it is practically not possible to cite all works in the scope
of the given article. For example, the topic of side-channel attacks
that aim at extracting neural networks (Wei et al., 2018) is not

covered. Also, the watermarking schemes presented in the
following are limited to neural networks (NNs) for classification.

2 BASIC CONCEPTS AND BACKGROUND

This section provides a brief overview on ML, on model stealing
in general and model extraction attacks in particular, and
introduces the concept of backdoors for NNs.

2.1 Machine Learning
ML consists of two phases, training and inference/testing. During
training, an ML model hθ is given a training dataset Ds to fit its
parameters θ on. For classification tasks, the training data have
the form (x, y) with x denoting the feature vector and y the target
class. The model parameters are adjusted through minimizing a
loss function that expresses the distance between predictions
hθ(x) and true targets y (Papernot et al., 2018).

At test time, once the model parameters θ are fit, the function
hθ() can be applied to new and unseen data x′ to produce
predictions on them. A model that performs well solely on the
training data is said to overfit that data, whereas a model that also
performs well on the unseen test data is said to exhibit a good
generalization capacity. Performance is usually expressed in
terms of accuracy, which is the percentage of correct
predictions over all predictions.

2.2 Model Stealing
Potential attackers may attempt to steal an ML model to have
unlimited access to its complex functionality without the high
preparation or continuous per query costs. Alternatively, they
may wish to use the stolen model as a departure point for further
attacks that are rendered more efficient through model parameter
access, for example, adversarial sample crafting (Tramèr et al.,
2016; Carlini et al., 2020). Protecting ML models against theft is a
challenging task, as by definition, the models are supposed to
reveal some information to the users. Hence, in addition to the
classical security risks of model theft, for example, malicious
insider access, successful attacks on servers hosting the model, or
side-channel attacks (Batina et al., 2018), the information legally
revealed by the model can be exploited. This enables people to
steal ML models in white-box and in black-box settings (see
Figure 2).

2.3 Model Extraction
A model extraction attack refers to stealing a target model hθ
through black-box access, that is, through posing queries to the
model over a predefined interface as depicted in Figure 2B. An
attacker might use those queries to hθ to obtain labels for
unlabeled data Ds′ from distribution D. Given Ds′ and the
corresponding labels obtained from the original model, the
attacker can train a surrogate model hθ′ that incorporates the
original model’s functionality. See Figure 3 for an overview on
the process. Jagielski et al. (2020) distinguished between two types
of model extraction. A fidelity extraction attack is considered
successful if hθ′ reproduces hθ with small deviation. Hence, when
hθ is erroneous with regard to the ground truth label of a data

FIGURE 1 | Example of a digital watermark embedded in (A) an image
and (B) a text file.
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point, so is hθ′ . A task accuracy extraction aims at extracting a
model that solves approximately the same underlying decision
task (Jagielski et al., 2020).

2.4 Backdoors in NNs
Adi (2018) defined backdooring in NNs as a technique to
intentionally train an ML model to output incorrect
predictions (w.r.t. the ground truth) on a given set of the
training data points. As a result, the backdoored NN behaves
normally on most data points but differently on the backdoor
data (Liu et al., 2018). The ability to add backdoors to NNs results
from their over-parametrization, that is, the fact that many such
models contain more parameters than they need for solving the
task that they are supposed to solve. In watermarking, a set of
backdoor data points can, for example, be used to mark and later
recognize a trained NN. Thereby, the backdoor data can act as a
watermark trigger (see Section 3.1).

3 TAXONOMY OF NN WATERMARKING

Even though inserting a watermark into a model does not prevent
theft, it can still enable legitimate owners to identify their stolen
model instances. Therefore, after the model is stolen by an
attacker, the legitimate owner might use the watermark to re-
identify it and claim copyright. Hence, the watermarking
methods need to be effective in and chosen adequately for the

given scenario. For example, using a watermarking scheme that
does not offer any binding between the watermark and the
identity of the legitimate model owner might still help the
owner recognize stolen model instances. However, it is of
little use in a scenario where the owner wants to claim
copyright in front of a third party, such as a legal entity.
This section presents a taxonomy to support classifying
watermarking schemes along five different dimensions.
Such a classification can be helpful for identifying and
comparing adequate watermarking schemes for a concrete
scenario and the corresponding requirements.

To determine the different classes, the following five
dimensions are considered:

1) Embedding method: refers to the method used to include the
watermark in the model.

2) Verification access: specifies how the watermark can be
verified, either through white-box or black-box access.

3) Capacity: distinguishes between zero-bit and multi-bit
schemes. The former refers to watermarks that do not
carry additional information, whereas the latter do.

4) Authentication: indicates if the watermark directly allows the
legitimate owner to prove ownership.

5) Uniqueness: states if single (stolen) model instances should be
uniquely identifiable.

In the following, the five dimensions are characterized in
greater detail.

3.1 Embedding Method
Watermarking techniques that have been proposed so far can be
divided into two broad categories, namely, 1) inserting the
watermark or related information directly into the model
parameters and 2) creating a trigger, carrier, or key dataset,
which consists of data points that evoke an unusual prediction
behavior in the marked model. See Figure 4 for a visualization of
both concepts. In 1), the watermark might either be encoded in
existingmodel parameters, for example, in the form of a bit string,
or be inserted through adding additional parameters that rely on
or directly contain the watermark. For 2), the trigger dataset
needs to be fed along the original training data during the training
process of the model. Thereby, a backdoor is inserted into the
model, such that the model learns to exhibit an unusual
prediction behavior on data points from the trigger dataset.

FIGURE 2 | Access scenarios for MLmodels. (A) Awhite-box setting allows the attacker full access to themodel and all of its parameters but not (necessarily) to the
model’s training data. (B) In a black-box scenario, the attacker has no direct access to the model but instead interacts with it over an application programming
interface (API).

FIGURE 3 | Process of a model extraction attack. The attacker holds
auxiliary data from a similar distribution as the target model’s training data.
Through query access, the attacker obtains corresponding labels for the
auxiliary data. Based on that data and the labels, a surrogate model can
be trained that exhibits a similar functionality to the original model.
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The unusual behavior can then be used in order to identify
illegitimate model copies. Therefore, when testing a model, the
legitimate owner can query the trigger dataset and calculate the
percentage of agreement between the model’s prediction on the
trigger dataset and the original corresponding labels. If the
resulting percentage exceeds a certain threshold (should be
close to 1), then the model is likely to be an illegitimate copy
(Yang et al., 2019). The trigger dataset can be generated
independently or be based on the original training data.
Hence, it can potentially belong to a different data distribution
than the training data. Some watermarking schemes, for example
(Fan et al., 2019), also combine both embedding categories.
Figure 5 shows a taxonomy-tree depicting a more fine-grained
division of sub-categories within 1) and 2). This taxonomy-tree
provides the structure for presenting existing watermarking
schemes in greater detail in Section 6. In addition to the two
broad categories of embedding watermarks into NNs, it is also
possible to use existing features of the models themselves as so-
called fingerprints to identify potentially stolen model instances
(Chen et al., 2019a; Lukas et al., 2019). Since these methods do not
require explicitly inserting additional information as watermarks
into the models, they will only be mentioned briefly in this
document.

3.2 Verification Access
The type of access to a model required in order to perform
watermark verification is closely related to the embedding
method that was used to insert the watermark into it. There
exist two broad scenarios for watermark verification, namely,
white-box and black-box. In a white-box scenario, a legitimate
model owner needs access to the model parameters in order to
check for the watermark in potentially stolen copies of a model.

This might be necessary when the watermark is embedded into
the model parameters alone and does not reflect in the model
behavior. However, in many scenarios, white-box access for
verification is no realistic assumption. A more realistic
scenario is a black-box access scenario in which a legitimate
model owner can access the potentially stolen model solely
through a predefined query interface. Through such an
interface, the model owner could query (parts of) the
watermark trigger and recognize a stolen instance of the
model by its prediction behavior on these data points. When
selecting an adequate watermarking method, the access scenario
for verification needs to be taken into account. This is because a
watermark that requires the model owner to have access to the
model parameters for verification might be of little use in a
scenario where the attacker deploys the stolen model in a black-
box setting.

3.3 Capacity
Similar to the study by Xue et al. (2020), this work defines
capacity as the watermark’s capability to carry information. In
general, a distinction can be made between zero-bit and multi-bit
watermarking schemes. Zero-bit watermarks do not carry
additional information, such that they solely serve to indicate
the presence or the absence of the watermark in a model. An
example for such a scheme could be using plain random data
points as a trigger dataset to backdoor a model and verifying
potentially stolen model instances by querying these data points
and observing the model’s predictions on them. In multi-bit
schemes, the watermark can carry information, for example, in
the form of a bit string. Thereby, such schemes can be used,
among others, for creating a link between a model owner’s
identity and the watermark or to mark individual model
instances.

3.4 Authentication
By creating a link between a model owner’s identity and the
watermark, a watermarking scheme can serve to authenticate the
legitimate owner. This allows us to extend the information that a
model was watermarked by the information by whom it was
watermarked, which can be useful, for example, if the legitimate
model owner wants to claim copyright in front of a legal entity.
The link between the owner’s identity and the watermark can be
expressed, among others, by including the owner’s digital
signature directly in the watermark or in the trigger data.
Besides enabling the legitimate owner to proof their

FIGURE 4 | Two broad approaches for watermarking ML models. (A) Define a watermarking bit string and embed it into the model parameters. For verification,
retrieve bit values from parameters and compare the result with that of the original string. (B) Train the model on the original data and a separate watermarking trigger
dataset. For verification, query the trigger dataset and verify the labels with regard to the trigger dataset labels.

FIGURE 5 | Taxonomy-tree depicting the methods that can be used to
insert a watermark into an ML model.
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ownership, watermarking schemes that offer authentication also
prevent attackers from claiming ownership of existing
watermarks, that is, forging them. Preventing forging is
necessary to guarantee unambiguous ownership claims (see
Section 5.3). Watermarking schemes that do not inherently
allow for authentication need to take different measures to
prevent attackers from forging watermarks.

3.5 Uniqueness
The last dimension along which to classify watermarking schemes
for NNs concerns the uniqueness of the watermarks, that is, the
question whether all instances of a model use the same watermark
or if every instance receives a unique identification. A crucial
shortcoming of the former is that when a stolen copy of a model
appears somewhere, it is impossible for the legitimate model
owner to identify which of the parties that had access to the model
stole it. Unique watermarks allow us to distinguish between
different model instances, and thereby, enable a more fine-
grained tracking of the intellectual property. The distinction
between different instances of a model can be, for example,
implemented through the use of unique model identifiers or
serial numbers (Xu et al., 2019). The watermark, then, does not
only signal to the legitimate owner that the model was stolen but
also by whom it was stolen.

4 THREAT MODEL AND SECURITY GOAL

In general and for watermarking schemes, the security of a system
should be evaluated with respect to a specific threat space that
characterizes the attacker’s knowledge, capabilities, and objectives
and the underlying security goals. This serves to thoroughly
explain what properties the watermarking scheme needs to
exhibit in order to adequately serve the goal of protecting a
model in a given scenario: for example, a watermarking scheme
supposed to protect an ML model that is directly distributed to
the users in a white-box fashion will most likely need to possess
different properties than a scheme applied to a model that is only
accessible in a black-box fashion. This section, therefore, presents
a unified threat model for watermarking schemes by elaborating
the concrete requirements for watermarking and properly
characterizing the attack surface and the attacker.

4.1 Requirements for Watermarking
In watermarking, the security goals can be expressed in the form
of concrete requirements for an effective watermarking scheme.
Within the last years, several such requirements have been
formulated by different parties (Uchida et al., 2017; Adi, 2018;
Chen et al., 2019a; Li H. et al., 2019). See Table 1 for a structured
overview on the requirements and their practical implications.
Note that it might not be feasible to implement all requirements
simultaneously, since they might interfere with each other. Take
as an example reliability and integrity. In order to make a
watermark reliable, verification should be very sensitive and
also indicate ownership in case of doubt. A watermarking
scheme in which verification always and for every model
under test indicates ownership would be perfectly reliable

since it would detect every stolen model instance. However,
that scheme would exhibit a very high false alarm rate and
erroneously accuse many honest parties of theft, which
represents a violation of the integrity.

4.2 Watermarking Attack Surface and
Attacker
The attack surface needs to be characterized to understand at what
point and how an attacker might attempt to bypass the watermark.
Independent of the attacker, the main aspect to be considered is the
scenario in which the model is stolen, that is, black-box or white-box
access as depicted in Figure 2. A white-box scenario holds the
advantage that by stalling the model as is, the attacker is likely to
retain the watermark within it. This might render watermark
verification for the legitimate owner more successful if the
attacker does not employ additional methods to impede
verification. In a black-box scenario, for example, through model
extraction (see Section 2.3 and Figure 3), there is not necessarily a
guarantee that the watermark is entirely transferred to the surrogate
model. As a consequence, watermark accuracy might already be
degraded in the extracted model without additional explicit
measures by the attacker. Hence, watermark verification might be
more difficult for the original model owner. Further aspects of the
attack surface are shaped by the attackers, their knowledge,
capabilities, and objectives.

4.2.1 Attacker Knowledge
The attacker knowledge refers to the information that an attacker
holds about the system. In NN watermarking, the information
can consist of the following (fromweak to strong): 1) the existence
of the watermark, knowledge on the 2) model and its parameters,
3) the watermarking scheme used, 4) (parts of) the training data,
and 5) (parts of) the watermark itself or the trigger dataset. More
meaningful information can, potentially, allow for more effective
attacks. For example, the sheer knowledge of the existence of a
watermark within a model, without further details, will hardly
serve as a warning to the attacker to release the stolen model with
care in order to avoid detection by the legitimate owner. However,
when knowing what watermarking scheme was employed and
even possessing additional training data or parts of the watermark
itself, an attacker might be able to more successfully extract a
model in a black-box scenario and to apply concrete attacks
against the watermark, such as the ones described in Section 5.

4.2.2 Attacker Capabilities
Other than the information on the system, the attacker’s
capabilities can also shape the threat space. A typical
distinction here is to be made between a passive and an active
attacker. A passive attacker cannot interact directly with the
target model but might be able observe the model’s behavior
through its outputs or input–output pairs. Such an attack is
usually referred to as eavesdropping and might yield sub-optimal
attack results or provide limited information on the watermark.
An active attacker, on the contrary, might be able to interact with
the model by 1) posing queries and 2) observing the
corresponding output. Thereby, through carefully choosing the
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inputs, the attacker might gain much more information on the
target model and the watermark than by simple eavesdropping.
Also, among active attackers, there is a broad range of capabilities.
For 1), namely, providing model inputs, the number of queries
that the attacker can pose might be restricted or unrestricted.
Being able to pose more queries might enable the attacker to gain
more information on the system. There might, furthermore, exist
restrictions on the type of queries that an attacker can pose, such
as on the input format, the input source, or the range of possible
input values. When there are no restrictions on the type of
queries, the attacker can query any possible data point to the
model. For 2), namely, the observation of the model output, the
attacker might also have different capabilities ranging from, for
example, the ability to only observe the predicted class of a
classifier, up to obtaining much more fine-grained information
from the model, such as confidence scores for all classes.
Depending on the level of details that the model returns
together with the predictions, the attacker’s ability to learn
about the system might vary.

4.2.3 Attacker Objectives
The last part of the threat space specifies the attacker’s objectives.
This includes the question on what for and where the stolen
model will be used. If the attacker plans to deploy it secretly and
with no external interaction, there is a large chance that the model
theft might remain uncovered. Otherwise, if access to the stolen
model is offered, for example, if the attacker wants to sell services
that are based on the model and its predictions, the legitimate
owner is more likely to successfully re-identify the stolen model
instance. In case a stolen model is exposed for interaction, the
attacker’s methods to prevent the model owner from successfully
verifying the watermark play a vital role. They are depicted in
greater detail in the following section.

5 ATTACKS AGAINST WATERMARKING

The attacks described in this section highlight several practical
considerations that must be taken into account when designing

watermarking methods that should still enable identification of
stolen model instances, even when an attacker tries to prevent
successful verification. The attacks can be grouped into five
different classes (from weak to strong), namely, watermark
detection, suppression, forging, overwriting, and removal. While
watermark detection is a passive attack in the sense that it does
not directly impede successful watermark verification, all other
attacks actively try to reduce the watermark’s suitability to prove
the legitimate model owner’s copyright claim. Figure 6 provides a
visualization of the concepts behind the active attacks against
watermarking schemes.

5.1 Watermark Detection
The weakest form of attack is concerned with the detection of
watermarks in ML models. As stated above, watermark detection
is a passive attack that does not directly prevent successful
watermark verification by the legitimate model owner.
However, discovering the presence of a watermark in a stolen
model increases the attacker’s knowledge (see Section 4.2.1) and
can, thus, be used as a base for further attacks. Additionally,
knowing that a stolen model was watermarked gives the attacker
the opportunity to adapt this model’s behavior in order to avoid
successful watermark verification. To detect watermarks included
in the target model’s parameters, for example, property inference
attacks have shown to be successful (Wang and Kerschbaum,
2019; Shafieinejad et al., 2021), while backdoor detection can help
to identify when models were watermarked by a trigger dataset
(Aiken et al., 2021).

5.2 Watermark Suppression
One way to avoid successful watermark verification can consist in
suppression of the watermark in a stolen model instance. In a
scenario where the legitimate model owner has white-box access
to the model for watermark verification, the attacker, therefore,
needs to dissimulate any presence of a watermark in the model
parameters and behavior. When the legitimate model owner has
black-box access to the potentially stolen model, suppressing the
reactions of the model to the original watermark trigger might be
sufficient for an attacker to prevent detection. This can be

TABLE 1 | Requirements for watermarking techniques.

Requirement Explanation Motivation

Fidelity Prediction quality of the model on its original task should not be
degraded significantly

Ensures the model’s performance on the original task

Robustness Watermark should be robust against removal attacks Prevents an attacker from removing the watermark to avoid copyright claims of
the original owner

Reliability Exhibit a minimal false negative rate Allows legitimate users to identify their intellectual property with a high probability
Integrity Exhibit a minimal false alarm rate Avoids erroneously accusing honest parties with similar models of theft
Capacity Allow for inclusion of large amounts of information Enables inclusion of potentially long watermarks, for example, a signature of the

legitimate model owner
Secrecy Presence of the watermark should be secret; the watermark should be

undetectable
Prevents watermark detection by an unauthorized party

Efficiency Process of including and verifying a watermark to an ML model should
be fast

Does not add large overhead

Generality Watermarking algorithm should be independent of the dataset and the
ML algorithms used

Allows for broad use

Definitions adopted from the studies by Uchida et al. (2017); Adi, 2018; Chen et al. (2019a); Li H. et al. (2019).
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achieved, for example, by identifying possible trigger data points
and modifying the model’s predictions on them (Hitaj and
Mancini, 2018; Namba and Sakuma, 2019). Additionally, so-
called ensemble attacks that rely on stealing n models from
different providers and using them as an ensemble for
prediction have been shown to be successful for watermark
suppression, since they eliminate individual watermark triggers
(Hitaj and Mancini, 2018).

5.3 Watermark Forging
In some cases, the attacker might also be able to forge a
watermark on a given model. This attack does not necessarily
prevent the legitimate model owner from successfully verifying
the watermark in a stolen model instance. However, it creates an
ambiguity, in which, for an external entity, such as a legal
authority, it is not possible anymore to decide which party has
watermarked the given model. Thereby, the attack prevents the
legitimate owner from successfully claiming copyright of the
intellectual property. Watermark forging might be done by 1)
recovering the legitimate owner’s watermark and claiming
ownership (if there is no binding between the watermark and
the owner) (Xu et al., 2019), 2) adding a new watermark that
creates ambiguity concerning ownership (Fan et al., 2019), or 3)
identifying a fake watermark within the model that coincidentally
acts like a real watermark but actually is not (Guo and Potkonjak,
2018).

5.4 Watermark Overwriting
Within the attack setting of watermark overwriting, an attacker
knows that the stolen model was watermarked but might have no
knowledge about the legitimate owner’s concrete watermark or
trigger dataset. The attacker can then embed a new watermark
into the model to pretend ownership. Note that the new
watermark does not necessarily need to be created with the

same watermarking scheme as the original one. In a weak
form of the attack, the original watermark is still present after
embedding the new one, such that both watermarks co-exist in
the model. Therefore, the legitimate owner can then no longer
prove (unique) ownership due to ambiguity. In a stronger version
of this attack, the attacker might be able to replace the original
watermark entirely with the new one (Wang and Kerschbaum,
2018). Thereby, the ownership claim can be taken over
completely (Li H. et al., 2019).

5.5 Watermark Removal
As an ultimate solution to prevent successful watermark
verification by a legitimate model owner, an attacker might
also try to entirely remove the watermark from a stolen model
(Zhang et al., 2018). The success of the removal attack usually
depends on the attacker’s knowledge about 1) the presence of a
watermark, 2) the underlying watermarking scheme, and on the 3)
availability of additional data, for example, for fine-tuning or
retraining. Especially the last point is interesting to consider
because many attacks presented in the literature rely on the
assumption that an attacker has large amounts of data
available to fine-tune (Chen et al., 2021). In reality, an attacker
possessing a sufficiently large dataset to train a good model might
be less motivated to steal a model, instead of training it from
scratch (Chen et al., 2021).

The most general methods that can be used to remove
watermarks can be grouped as follows:

• Fine-Tuning: use initial model parameters and fine-tune
them to a refinement set. Thereby, it is possible to improve a
model for certain kinds of data (Sharif Razavian et al., 2014;
Tajbakhsh et al., 2016). This process might remove the
watermark when model parameters or prediction behaviors
are changed (Chen et al., 2021; Shafieinejad et al., 2021).

FIGURE 6 |Methods an attacker can apply to prevent the detection of a watermark in a stolen model. (A) Suppress watermark. (B) Forge watermark. (C)Overwrite
watermark. (D) Remove watermark.
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• Pruning (Augasta and Kathirvalavakumar, 2013;
Molchanov et al., 2019): cut some redundant parameters
and obtain a new model that looks different from the
original model but still has a similarly high prediction
accuracy. If the parameters containing the watermark are
cut, it is no longer possible to verify the watermark (Zhang
et al., 2018).

• Rounding (Guo, 2018): reduce the precision of the
parameters. If the model strongly overfits the watermark
triggers, or the watermark is included in the parameters
directly, rounding might destroy the watermark
information (Yang et al., 2019).

• Fine-Pruning: first prune the model architecture and then
continue to train. In the benign setting, this helps recover
some of the accuracy that may have been lost during
pruning. In the presence of backdoors, such as certain
watermarks, this also contributes to overwriting their
information (Liu et al., 2018; Jia et al., 2021).

• Model Compression (Chen et al., 2015; Han et al., 2016):
optimize the memory needed to fit the model while
preserving its accuracy on the task. This might be
necessary in mobile or embedded devices with limited
resources. Model compression is performed by, for
example, removing insignificant parameters and pruning
links between neurons. This can affect the watermark
reliability, especially if the neurons used for the
watermarking task are different from the ones of the
original task because then they can be pruned without
losing accuracy in the original task (Yang et al., 2019).

• Distillation (Hinton et al., 2015): transfer the prediction
power of a potentially very complex teacher model to a less
complex student model. This approach finds application,
for example, in low-power environments, where simpler
models are to be preferred. It can, however, not be
guaranteed that the watermark is also included in the
simpler model (Yang et al., 2019).

• Transfer Learning (Oquab et al., 2014): update the
classification task of a model to a related but slightly
different task. Therefore, model layers toward the output
are modified. This approach saves computational power
because large parts of trainedmodels’weights can be applied
to the new task with solely small changes. However, the
changes within the model layers can lead to a removal of the
watermark (Adi, 2018).

• Computation Optimization (Jaderberg et al., 2014): reduce
computation time of NNs, for example, by low-rank
expansion techniques to approximate convolution layers.
The reduction might as well lead to a watermark removal
(Yang et al., 2019).

• Backdoor Removal (Liu et al., 2021): remove backdoors,
that is, functionalities in the NN that are not relevant for
the original task (see Section 2.4). Li H. et al. (2019)
pointed out that if the watermarking task is indeed a
backdoor function that is too loosely related to the
original task, it is possible to remove the watermark by
normal backdoor removal attacks against NNs, such as in
the study by Wang et al. (2019).

• Retraining: an ML model might be trained continuously,
instead of being trained once and then released for
prediction. Through retraining, models can adapt to
potential shifts in the underlying data distribution over
time. While retraining, the watermark might be damaged
(Adi, 2018; Rouhani et al., 2018a; Zhang et al., 2018; Le
Merrer et al., 2020).

In addition to the aforementioned approaches, there also exist
more specific attacks proposed in the literature that rely, for
example, on regularization (Shafieinejad et al., 2021) or on graph
algorithms (Wang et al., 2020).

6 CATEGORIZING WATERMARKING
METHODS

This section surveys examples of watermarking methods
proposed in the literature to illustrate and validate the
taxonomy presented in Section 3. The methods are presented
in semantic groups based on their embedding method and their
distinctive characteristics. Methods that might fit to several
groups are presented according to their most distinctive
property. For a more comprehensive overview of existing
approaches, see the study by Li et al. (2021).

6.1 Embedding Watermarks Into Model
Parameters
Early approaches to mark ML models with the aim of including
information about the training data into the model parameters
were proposed by Song et al. (2017). Among others, they showed
how to include information in the least significant bits of the
model parameters or the parameters’ signs and developed a
correlated value encoding to maximize a correlation between
the model parameters and a given secret. A similar method
was then applied by Uchida et al. (2017) as the first explicit
watermarking scheme in NNs. The authors interpret the
watermark as a T-bit string {0,1}T. In order to include it into
the model parameters, they use a composed loss function
L(θ) � LO + λLR(θ) with LO being the loss of the original task
and LR being an embedding regularizer. This regularizer imposes a
statistical bias on certain model parameters in order to represent
the watermark. To project the weights carrying the watermark
information, an embedding parameter X is used as a secret key
needed for watermark embedding and verification.

Wang et al. (2020) extended this work by developing an
alternative for the embedding parameter X. Instead, they
employ an additional independent NN on selective parameters
from the original model to project the watermark. For training of
the original model, they use the aforementioned loss function
L(θ) � LO + λLR(θ). To train the additional NN, they apply the
binary cross-entropy loss between its output vector and the
watermark. The additional NN is not released publicly and
serves for watermark verification. Wang and Kerschbaum
(2018), however, showed that both the approaches of Uchida
et al. (2017) and Wang et al. (2020) do not meet the requirement
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of watermark secrecy because they cause easily
detectable changes in the statistical distribution of the model
parameters.

Wang and Kerschbaum (2019) proposed a strategy to create
undetectable watermarks in a white-box setting based on
generative adversarial networks (GANs). The watermarked
model hO serves as the generator, whereas a watermark
detector that detects changes in the statistical distribution of
the model parameters serves as a discriminator hD. During
training, hO is encouraged to generate nondetectable
watermarks, whereas hD tries to distinguish watermarked from
non-watermarked models. Both optimize the following functions,
respectively:

hO: min(LO(θ) + λLR(θ) − λ2 loghD(θ)) (1)

hD: max(loghD(θnon) + log(1 − hD(θ))) (2)

where θnon refers to the parameters of non-watermarked
previously trained models.

Fan et al. (2019) suggested embedding passport-layers with
digital signatures into NNs for ownership verification. The
passport layers are inserted into convolutional neural networks
(CNNs) and calculate hidden parameters without which the
model’s inference accuracy is reduced. For verification, the
authors developed three mechanisms based on different
strategies of distributing and verifying the passports.

Table 2 provides an overview on the mentioned methods that
rely on inserting watermarks directly into the model parameters.

6.2 Using Pre-Defined Inputs as Triggers
Le Merrer et al. (2020) proposed directly marking the model’s
action itself by slightly moving the decision boundary through
adversarial retraining such that specific queries can exploit it.
Therefore, their approach first identifies adversarial samples and
normal data points that are very close to the decision boundary.
Then, the trigger dataset is composed by 50% of the adversarial
examples and 50% of the data points that do not cause
misclassification but are close to the decision boundary.
Afterward, the trained classifier is fine-tuned to predict the
trigger data points to their correct original class. See Figure 7
for a visualization of this approach. The resulting labeled data
points are supposed to serve as an expressive trigger dataset.
Namba and Sakuma (2019) argued that this method offers weak
integrity because, nowadays, adversarial retraining is broadly

used to create more robust models; hence, a non-watermarked
model can be mistaken for being watermarked.

Adi (2018) considered watermarking from a cryptographic
point of view. The authors generated abstract color images with
randomly assigned classes as a trigger dataset. In order to
guarantee non-trivial ownership, a set of commitments is
created over the image/label pairs before embedding the
watermark into the model. Thereby, at verification time,
ownership can be proven by selectively revealing these
commitments. A similar approach for creating the watermark
trigger dataset was also described by Zhang et al. (2018). They
include irrelevant data samples, for example, from another
unrelated dataset, as watermarks into the training data. Those
samples are labeled with classes from the original model output.
During training, the model learns to assign real images and those
trigger samples to the corresponding classes.

Rouhani et al. (2018a) developed an approach of including the
watermark as a T-bit string into the probability density function
(pdf) of the data abstraction obtained in different network layers.
These layers’ activation maps at intermediate network layers
roughly follow Gaussian distributions. The legitimate model’s
owner can choose in how many of those they want to embed the
watermark string. Afterward, the network is trained to
incorporate the watermark information in the mean values of
the selected distributions. A projection matrix A can be used to

TABLE 2 | Techniques to embed watermarks into model parameters sorted alphabetically by author.

Method Verification Method Capacity Auth Unique

Uchida et al. (2017): embed bit string watermark to random model parameters’ statistical bias White-box Biases in weights Multi-bit No No
Fan et al. (2019): adding passport layers into NNs White- and

black-box
New layers Multi-bit Yes No

Song et al. (2017): include information in model parameters, for example, least significant bit or
sign

White-box Model bits Zero-bit No No

Wang and Kerschbaum (2019): create non-detectable watermarked parameters White-box Existing
parameters

Zero-bit No No

Wang et al. (2020): extend the work of Uchida et al. (2017) and include watermarks in quickly
converging model parameters

White-box Existing
parameters

Zero-bit No No

FIGURE 7 | Visualization of the work of Le Merrer et al. (2020), figure
adapted from the study by LeMerrer et al. (2020). Squares indicate adversarial
examples for the corresponding color, and circles correspond to data points
that lie close to the decision boundary but are correctly classified.
Decision boundary is altered to correctly classify the adversarial examples. (A)
Original decision boundary. (B) After fine-tuning.
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map the selected distribution centers to the binary watermark
vector. In a white-box setting, this matrix A is utilized for
verification. For black-box verification, a trigger dataset can be
constructed from data points whose features lie in the model’s
unused regions, that is, samples at the tail regions of the pdf. In
contrast to methods including the watermark in the static model
content, like in the study by Uchida et al. (2017), this approach
changes the dynamic content of the model, namely, the
activations that depend on the data and the model. This
results in a more flexible and not that easily detectable change
(Rouhani et al., 2018a).

Chen et al. (2019b) proposed taking the model owner’s binary
signature as a watermark for an NN. Their aim is to combine the
advantage from black-box and white-box watermark extraction,
that is, weaker assumptions on the attacker’s power and large
capacity at the same time. To include the signature in the model,
they build a model-dependent encoding scheme that clusters the
model’s output activations into two groups according to their
similarities, one group for class 0 and one for class 1. The binary
signature is then included in the model’s output activations and
can be verified through a designated trigger dataset that can be
passed to the model in order to retrieve the signature.

6.2.1 Trigger Dataset Creation Based on
Original Training Data
Some watermarking approaches rely on inserting forms of digital
media watermarks into the original training data in order to
create the model’s trigger dataset. The approach by Guo and
Potkonjak (2018) generated an n-bit signature of the model
owner and embedded it into the training data in order to
generate the trigger dataset. The authors made sure that the
altered images from the trigger dataset obtained different labels
than the original data points that they were based on.

Zhang et al. (2018) described algorithms for watermarking
NNs for image classification with remote black-box
verification mechanisms. One of their algorithms embeds
meaningful content together with the original training data
as a watermark. An example for this approach is embedding a
specific string (which could be the company name) into a
picture of the training set when predicting images and
assigning a different label than the original one to the
modified sample. Instead of a meaningful string, it is also
possible to embed noise into the original training data. A
similar approach to the first algorithm of the study by Zhang
et al. (2018) was proposed by Li Z. et al. (2019), who combined
some ordinary data samples with an exclusive “logo” and
trained the model to predict them into a specific label. To
keep these trigger samples as close as possible to the original
samples, an autoencoder is used whose discriminator is trained
to distinguish between training and trigger samples with the
watermarks. Sakazawa et al. (2019) proposed a cumulative and
visual decoding of watermarks in NNs, such that patterns
embedded into the training data can become visual for an
authentication by a third party.

See Table 4 for an overview on methods that use original
training data to generate the trigger dataset.

6.2.2 Robust Watermarking
A problem of watermarking methods that rely on using a trigger
dataset from a different distribution than the original training
data is that the models are actually trained for two different (and
independent) tasks. Research has shown that when these tasks are
more or less unrelated, it is possible to remove the watermarks
through attacks described in Section 5.5 without affecting the
model’s accuracy on the original task learned through the training
data (Li H. et al., 2019; Jia et al., 2021).

For example, Yang et al. (2019) showed that distillation
(Papernot et al., 2016) is effective to remove watermarks. This
results from the fact that the information learned from the
watermark trigger dataset is redundant and independent of the
main task. Hence, this information is not transferred to the
resulting surrogate model when doing distillation. As a
solution, the authors described an “ingrain”-watermarking
method that regularizes the original NN with an additional
NN that they refer to as the ingrainer model gω, which
contains the watermark information. Regularization is
performed with a specific ingrain loss C(hθ,T(x), gω(x)) (T is
the temperature in the softmax) that causes the watermark
information to be embedded into the same model parameters
as the main classification task. The joint loss function over the
training data Ds is given by the following:

LDs(hθ) �
1

|Ds| ∑
x∈Ds

C(hθ(x), y) + δC(hθ,T(x), gω(x)), (3)

where the labels are indicated by y, and λ determines the degree of
ingrain.

Jia et al. (2021) proposed a similar idea that relies on
“entangled watermarking embeddings.” The entanglement is
used to make the model extract common features of the data
that represent the original task and the data that encode the
watermarks and stem from a different distribution. Therefore, the
authors apply the soft nearest neighbor loss (SNNL)

FIGURE 8 | Watermark pattern, figure adapted from the study by Li H.
et al. (2019).
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(Salakhutdinov and Hinton, 2007). Informally spoken, the SNNL
measures entanglement over labeled data, that is, how close pairs
of points from the same class are relative to pairs of points from
different classes (Frosst et al., 2019). Points from different groups
that are closer relative to the average distance between two points
are called entangled. Using entanglement when including a
watermark ensures that the watermark and the original task
are represented by the same sub-model and not by different
ones that may be harmed during extraction. Hence, it becomes
more difficult for an attacker to extract the model without its
watermarks. At the same time, through the entanglement,
removing the watermark would result in a decrease in model
performance on the original task.

Namba and Sakuma (2019) described a method they called
“exponential weighting.” They generated a watermark trigger by
random sampling from the training distribution and assigning
wrong labels to that sample for training. To protect the
watermark against pruning or retraining attacks, the authors
proposed embedding the samples by exponential weighting,
that is, imprint trigger samples with greater force and cause
the model to learn them profoundly. Therefore, they increased
the weight of the model parameters that are involved in the
prediction exponentially, and thereby, made the prediction
depend mainly on some few and very large model parameters
which are harder to change through the mentioned attacks.

Li H. et al. (2019) developed a “null embedding” for including
watermarks into the model’s initial training, such that attackers
are not able to remove them or include their own watermarks on
top. Therefore, they generate a filter pattern p as shown in
Figure 8. Image pixels under the white pattern pixels are

changed to a very large negative number, image pixels under
black pattern pixels are changed to a very large positive number,
and pixels under gray pattern pixels stay unchanged. Over this
process, the predicted class of the image needs to stay the same as
for the original image. Using extreme values and setting strong
deterministic constraints on the optimization during learning
leads to strong watermark inclusion. To create a binding between
the owner and the pixel pattern, the authors propose using the
owner’s signature and a deterministic hash function to generate
the pattern (Li H. et al., 2019).

See Table 3 for an overview on all the mentioned methods that
rely on using a trigger dataset to watermark ML models.

6.2.3 Unique Watermarking
The requirements for unique watermarking schemes are the same
as the ones for common watermarking methods (see Table 1) but
extended by the two following points Chen et al. (2019a):

• Uniqueness. Watermarks should be unique for each user.
This serves to identify model instances individually.

• Scalability. Unique watermarking schemes should scale to
many users in a system. This allows for a large-scale
distribution of the target model.

Chen et al. (2019a) proposed an end-to-end collusion-secure
watermarking framework for white-box settings. Their approach
is based on anti-collusion codebooks for individual users which
are incorporated in the pdf of the model weights. The
incorporation is achieved by using a watermark-specific
regularization loss during training.

TABLE 4 | Techniques to embed watermarks into the training data in order to create the trigger dataset.

Approach Verification Method Capacity Auth Unique

Guo and Potkonjak (2018): model owner’s signature embedded into the training data Black-box Watermark in data
points

Multi-bit Yes No

Li et al. (2019b): include “logo” in the training data images and use an auto-encoder to make trigger
samples close to original data

Black-box Watermark in data
points

Zero-bit Yes No

Zhang et al. (2018): include (meaningful) information in the training data samples Black-box Watermark in data
points

Multi-bit Yes No

TABLE 3 | Techniques using a specific trigger dataset as a watermark sorted alphabetically by author.

Approach Verification Method Capacity Auth Unique

Adi (2018): abstract color images with random classes as trigger dataset Black-box Backdoor Zero-bit Yes No
Chen et al. (2019b): include the model owner’s binary signature in output activations Black-box Output activations Multi-bit Yes No
Jia et al. (2021): entangled watermarks through training with soft nearest neighbor loss Black-box Backdoor Zero-bit No No
Le Merrer et al. (2020): adversarial decision boundary modification through a trigger sample
consisting of adversarial examples

Black-box Adversarial examples Zero-bit No No

Li et al. (2019a): null embedding watermark consisting of a pixel pattern Black-box Watermark in data
Points

Multi-bit Yes No

Namba and Sakuma (2019): exponential weighting: enforce watermark predictions with
higher weights during training

Black-box Backdoor Zero-bit No No

Rouhani et al. (2018a): include watermark in the probability density function of network layers White- and
black-box

Biases in weights Multi-bit No No

Yang et al. (2019): train an additional model (called an ingrainer) that contains the watermark
information via its prediction on training data

Black-box Backdoor Zero-bit No No
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Xu et al. (2019) embedded a serial number in NNs for model
ownership identification. Their solution generates a unique serial
number as a watermark and creates an endorsement by a certification
authority on it. Serial numbers are generated by the owner through a
digital signature algorithm (based on the owner’s private key). During
model training, the serial number is fitted into the model, together
with the original task, by having a second loss, such that owner
verification can be achieved by sending trigger inputs, extracting the
serial number and verifying it with the certification authority.

See Table 5 for an overview on these methods generating
unique watermarks.

6.3 Using Model Fingerprints to Identify
Potentially Stolen Instances
Instead of explicitly adding watermark information into an ML
model, some methods use existing features of the model in order
to identify potentially stolen instances. This offers the advantages
that no overhead is added to the original training task and that the
model’s original prediction abilities are not affected. However, as
those methods do not actively alter the model in order to include
a watermark, they will only be mentioned very briefly in this
document.

Zhao et al. (2020) used adversarial examples as fingerprints for
NNs. They identified some special adversarial examples within
NNs that they called “adversarial marks.” Those adversarial marks
differ from traditional adversarial examples in their transferability:
they show high transferability between models that are similar and
low transferability between models that are different. The authors
argued that adversarial marks represent suitable model fingerprints
as they are difficult to remove due to the number and type of
adversarial examples being practically infinite.

Lukas et al. (2019) also exploited the transferability of
adversarial examples in order to verify the ownership of ML
models. They define the class of conferrable adversarial examples.
Those examples transfer only to surrogate models of a target
model (potential illegitimate copies) but not to reference models,
that is, similar models trained on similar data for a related task. By
querying those examples to a model, one can identify whether this
model is a copy of the target model or not. The authors also
proposed a generation method for this class of adversarial
examples and proved that this watermarking method is robust
against distillation (Papernot et al., 2016) and weaker attacks.

7 DISCUSSION

This section, first, discusses the pros and cons of existing classes
of watermarking methods. Afterward, it revisits the requirements

for effective watermarking to provide a structured reasoning for
choosing or designing adequate watermarking schemes. Finally, it
presents limitations of existing methods and proposes an outlook
on promising research directions.

7.1 Discussing Potential Shortcomings
First, in trigger dataset–based watermarking approaches,
watermark detection relies on the model’s reaction on queries
from the trigger dataset. If the agreement of the prediction on
them to the trigger dataset’s original labels overpasses a given
threshold, this suggests the presence of the watermark. However,
defining a suitable threshold to identify a stolen model requires
thorough tuning. If the threshold is set too high, slight
modifications in a stolen model might already be sufficient to
prevent watermark detection, which violates the reliability
requirement. If the threshold is set too low, different models
might erroneously be identified as stolen model instances, which
violates the integrity requirement. Hence, the choice of a
threshold also expresses a trade-off between reliability and
integrity.

In addition to the issue of choosing an adequate threshold,
Hitaj and Mancini (2018) formulated the general disadvantage
for the scenario of public verification. They argued that after the
verification algorithm is run against a stolen model, the attacker is
in possession of the trigger dataset, which enables them to fine-
tune the model on those data points to remove the watermark.
Hence, in order to run several verifications, the original trigger
dataset needs to be divided or there have to be several trigger
datasets. This class of approaches, thus, has its limitation due to
the maximum amount of backdoors that can be embedded in an
NN. Approaches that need few queries, like the one by Jia et al.
(2021), might allow for a higher number of independent
watermark verifications with the same model capacities.

Second, watermarking schemes embedding watermarks into
the ML models’ parameters without taking precautions do not
only leave a detectable trace in the model and, hence, violate the
secrecy requirement (Wang and Kerschbaum, 2018) but they also
often rely on white-box access for verification. Even though in
some scenarios, the latter might be feasible, still, assuming black-
box access often is a more realistic scenario. Therefore, such
schemes might be suitable only to very specific applications.

Third, watermarking schemes that do not exhibit a verifiable
link between the watermark and the legitimate model owner
enable an attacker to forge the watermark. A similar disadvantage
exists for watermarking schemes that rely on nonspecific data
points as trigger data [e.g., (Adi, 2018; Guo and Potkonjak,
2018)]. Those might enable an attacker to choose (random)
different points than the initial watermark, in order to claim
having marked the model with them as triggers. Approaches that

TABLE 5 | Techniques to generate unique watermarks that can be verified by querying a trigger dataset.

Approach Verification Method Capacity Auth Unique

Chen et al. (2019a): end-to-end unique watermarking scheme based on anti-collusion codebooks for
individual users

White-box Biases in
weights

Multi-bit Yes Yes

Xu et al. (2019): embed a unique serial number based on the model owner’s signature and create
endorsement by certification authority

Black-box Backdoor Multi-bit Yes Yes
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do not allow already marked models to be marked again, like the
one by Li H. et al. (2019), can prevent this threat.

Finally, due to their instability, their potentially low robustness
against fine-tuning or retraining, and, in some cases, their
transferability, which might violate watermark integrity, adversarial
examples used for watermarking (Le Merrer et al., 2020) or
fingerprinting (Lukas et al., 2019; Zhao et al., 2020) might exhibit
important drawbacks. Namba and Sakuma (2019) pointed out that
especially an adaption of the model’s decision boundary according to
some adversarial examples, as in the study by Le Merrer et al. (2020),
might be likely to violate the integrity requirement because its effect is
similar to the effect of adversarial retraining, a method commonly
used to make ML models more robust.

7.2 Discussing Requirements
In addition to considering the pros and cons of existing classes of
watermarking methods, this section discusses the question of
choosing or creating reliable watermarking methods by revisiting
the requirements presented in Table 1.

• Fidelity: to guarantee fidelity, existing watermarking
schemes aim at preserving model performance on the
original task. Depending on the scheme, this can be
achieved through different means, for example, only
minimally altering the original decision boundary (Le
Merrer et al., 2020) or including the watermark to early
converging model weights (Wang et al., 2020).

• Robustness: if the trigger dataset stems from a significantly
different distribution than the original data, (Adi, 2018; Fan
et al., 2019), the model learns two different (and
independent) tasks. Therefore, it is possible to extract
them independently or to remove the watermark without
causing an impact on the model’s prediction performance.
Thus, to achieve robustness, watermarking schemes need to
take measures to create a relation between both tasks and to
enforce the watermark to the model such that it cannot be
removed easily.

• Reliability: certain factors can influence watermark
reliability. First, similarly as for robustness, if the trigger
dataset stems from a different distribution than the original
dataset, reactions of the stolen model to the watermark
triggers can be suppressed by an attacker. Second, all
schemes that rely solely on white-box verification might
offer lower reliability, as such access to all potentially stolen
model instances might not always be a realistic assumption,
which might prevent successful verification.

• Integrity: quantifying watermarking schemes’ integrity is a
challenging task, as it requires judging how (potentially all
other) non-watermarked models react on the given trigger
dataset. A good trigger dataset is characterized by the
uniqueness of the watermarked model’s predictions on it, in
order to accuse no honest parties with similar models of theft.

• Capacity: capacity expresses how much information can be
included in the watermark. To allow for specific tasks, such
as owner authentication, inserting multi-bit watermarks is
common practice (Guo and Potkonjak, 2018; Zhang et al.,
2018).

• Secrecy: watermarking schemes that change the model
parameters in a detectable way, for example (Uchida
et al., 2017), violate the secrecy requirement. To prevent
watermark detection, adding them to the dynamic model
content (Rouhani et al., 2018b) or taking measures to force
the model parameters to stay roughly the same (Li Z. et al.,
2019) are possible solutions.

• Efficiency: efficiency can be evaluated with regard to
embedding and verification time, that is, the overhead in
training and the computation time or number of queries
needed to verify the watermark. Most existing work does not
explicitly evaluate computational overhead of their
approaches. Jia et al. (2021) presented one of the few
evaluations of efficiency and came to the conclusion that
for their approach, the trigger dataset should consist of more
than half the amount of data samples as the original data.
Therefore, the model needs to train with 150–200% of the
original data. Especially for large datasets, this might result
in large overhead.

• Generality: not all existing schemes directly generalize to all
datasets; for example, the study by Chen et al. (2019b) needs
a different watermark encoding scheme on each dataset.
Such behavior can be considered as lacking generality.

7.3 Limitations and Outlook
Based on the evaluation of existing schemes and their security
requirements, this section presents current limitations and
promising future research directions.

The largest limitation of watermarking in general is that it
represents a passive defense. That is, watermarking schemes
cannot prevent theft but only detect it afterward. Some
research was conducted in order to issue security warnings,
once an ML model is about to reveal enough information that
an attacker or a group of attackers might be able to extract its
functionality (Kesarwani et al., 2018). Further research focused
on creating models that solely achieve high accuracy when being
queried by an authorized user (Chen and Wu, 2018). Other work
was directed toward the development of models that are more
difficult to steal, for example, by only returning hard labels and no
probabilities per output class, by perturbing the prediction
outputs (Orekondy et al., 2019), or by designing networks that
are extremely sensitive to weight changes, which makes it difficult
for an attacker to steal and adapt them (Szentannai et al., 2019).
Future work could focus on how to integrate watermarking
within such active defense strategies against model stealing.

Furthermore, most current watermarking schemes apply
solely to image data, so far. Only a few exceptions, for
example, the one by Jia et al. (2021), have proven the
applicability of their schemes to other data types. Future work
will have to focus on examining the generality and universal
applicability of existing schemes and, if necessary, their
adaptation or extension.

Moreover, most watermarking approaches proposed so far
also apply solely to classification tasks. There exist only a few
works on watermarking in other ML domains, like reinforcement
learning (Behzadan and Hsu, 2019) and data generation with
GANs (Ong et al., 2021) or image captioning (Lim et al., 2020).
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Therefore, the development of watermarking schemes for other
ML applications represents a promising future challenge.

Additionally, so far, existing watermarking schemes are mainly
applied and evaluated on rather small research datasets, like
MNIST (LeCun et al., 2010). Therefore, the question of their
scalability remains open. Approaches that require training with
up to double the initial amount of data might, hence, not be
applicable to every scenario. Thus, future work should assess the
practical applicability of existing watermarking schemes to larger
real-world datasets and analyze whether the properties they exhibit
on the research datasets (efficiency of training, reasonable trigger
dataset size, integrity, etc.) hold.

Finally, once those watermarking schemes meet all the
technical requirements, another challenge will lie in their
adaptation to real-world workflows. Especially the juridical
and organizational workflows will have to be adapted in order
to enable asserting ownership claims based on the watermarks.

8 CONCLUDING REMARKS

Nowadays, ML is used in an increasing number of domains. With
growing complexity of the applied models, employing
watermarks to protect intellectual property incorporated in
those models has become a major focus both in academia and
industry. This systematic review provided a framework for
articulating a comprehensive view on different watermarking
schemes. It introduced a taxonomy to classify and compare
existing methods, presented a systematization of the
requirements for and attacks against watermarking schemes,
and formulated a unified threat model. Guided by the

taxonomy, relevant prior research was surveyed. This work
can serve as a solid foundation for analyzing existing
watermarking methods, designing new ones, or choosing
adequate solutions to given scenarios. Therefore, it can be
used as a reference for researchers and ML practitioners over
all domains.
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