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The paper extends earlier work on modeling hierarchically polarized groups on social
media. An algorithm is described that 1) detects points of agreement and disagreement
between groups, and 2) divides them hierarchically to represent nested patterns of
agreement and disagreement given a structural guide. For example, two opposing
parties might disagree on core issues. Moreover, within a party, despite agreement on
fundamentals, disagreement might occur on further details. We call such scenarios
hierarchically polarized groups. An (enhanced) unsupervised Non-negative Matrix
Factorization (NMF) algorithm is described for computational modeling of hierarchically
polarized groups. It is enhancedwith a languagemodel, and with a proof of orthogonality of
factorized components. We evaluate it on both synthetic and real-world datasets,
demonstrating ability to hierarchically decompose overlapping beliefs. In the case
where polarization is flat, we compare it to prior art and show that it outperforms state
of the art approaches for polarization detection and stance separation. An ablation study
further illustrates the value of individual components, including new enhancements.
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1 INTRODUCTION

Extending a previous conference publication (Yang et al., 2020), this paper solves the problem of
unsupervised computational modeling of hierarchically polarized groups. The model can accept, as
input, a structural guide to the layout of groups and subgroups. The goal is to uncover the beliefs of
each group and subgroup in that layout, divided into points of agreement and disagreement among
the underlying communities and sub-communities, given their social media posts on polarizing
topics. Most prior work clusters sources or beliefs into flat classes or stances (Küçük and Can, 2020).
Instead, we focus on scenarios where the underlying social groups disagree on some issues but agree
on others (i.e., their beliefs overlap). Moreover, we consider a (shallow) hierarchical structure, where
communities can be further subdivided into subsets with their own agreement and disagreement
points.

Our work is motivated, in part, by the increasing polarization on social media (Liu, 2012).
Individuals tend to connect with like-minded sources (Bessi et al., 2016), ultimately producing echo-
chambers (Bessi et al., 2016) and filter bubbles (Bakshy et al., 2015). Tools that could automatically
extract social beliefs, and distinguish points of agreement and disagreement among them, might help
generate future technologies (e.g., less biased search engines) that summarize information for
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consumption in a manner that gives individuals more control
over (and better visibility into) the degree of bias in the
information they consume.

The basic solution described in this paper is unsupervised.
However, it does accept guidance on group/subgroup structure.
Furthermore, the solution has an option for enhancement using
prior knowledge of language models. By unsupervised, therefore,
we mean that the (basic) approach does not need prior training,
labeling, or remote supervision. This is in contrast, for example,
to deep-learning solutions (Irsoy and Cardie, 2014; Liu et al.,
2015; Wang et al., 2017) that usually require labeled data. The
structural guidance, in this paper, is not meant to be obtained
through training. Rather, it is meant as a mechanism for an
analyst familiar with the situation to enter a template to match the
inferred groups against. For example, the analyst might have the
intuition that the community is divided into two conflicted
factions, of which one is further divided into two subgroups
with partial disagreement. They might be interested in
understanding the current views of each faction/subgroup. The
ability to exploit such analyst guidance (on the hierarchy of
disagreement) is one of the distinguishing properties of our
approach. In the absence of analyst intuitions, it is of course
possible to skip structural guidance, as we show later in the paper.
The basic algorithm can be configured so that it does not need
language-specific prior knowledge (Liu, 2012; Hu Y. et al., 2013),
distant-supervision (Srivatsa et al., 2012; Weninger et al., 2012),
or prior embedding (Irsoy and Cardie, 2014; Liu et al., 2015),
essentially making it language-agnostic. Instead, it relies on
tokenization (the ability to separate individual words). Where
applicable, however, we can utilize a BERTweet (Nguyen et al.,
2020) variant that uses a pre-trained Tweet embedding to
generate text features, if higher performance is desired.
BERTweet is a specific language model for Tweets with the
same structure as in the Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019). While we test
the solution only with English text, we conjecture that the its
application can be easily extended to other languages (with the
exception of those that do not have spaces between words, such as
Chinese and Japanese, because we expect spaces as token
separators). An advantage of unsupervised techniques is that
they do not need to be retrained for new domains, jargon, or
hash-tags.

The work is a significant generalization of approaches for
polarization detection (Conover et al., 2011; Demartini et al.,
2011; Bessi et al., 2016; Al Amin et al., 2017) that identify
opposing positions in a debate but do not explicitly search for
points of agreement. The unsupervised problem addressed in this
paper is also different from unsupervised techniques for topic
modeling (Litou and Kalogeraki, 2017; Ibrahim et al., 2018) and
polarity detection (Al Amin et al., 2017; Cheng et al., 2017). Prior
solutions to these problems aim to find orthogonal topic
components (Cheng et al., 2017) or conflicting stances (Conover
et al., 2011). In contrast, we aim to find components that adhere to a
given (generic) overlap structure, presented as structural guidance
from the user (e.g., from an analyst). Moreover, unlike solutions for
hierarchical topic decomposition (Weninger et al., 2012; Zhang
et al., 2018), we consider not only message content but also user

attitudes towards it (e.g., who forwards it), thus allowing for better
separation, because posts that share a specific stance are more likely
to overlap in the target community (who end up spreading them).

This paper extends work originally presented at ASONAM
2020 (Yang et al., 2020). The extension augments the original
paper in several aspects. First, we provide options for integrating a
language model to improve outcomes. In this version, besides
tokenization, we use language models that boost performance,
compared to a purely lexical overlap-based approach. Second, we
derive a new orthogonality property for the factorized
components by our model. Finally, we conduct a simulation
and new experiments that additionally verify our model in
multiple scenarios involving both a flat group structure, and a
hierarchical structure with complex sub-structure.

The work is evaluated using both synthetic data as well as real-
life datasets, where it is compared to approaches that detect
polarity by only considering who posted which claim (Al Amin
et al., 2017), approaches that separate messages by content or
sentiment analysis (Go et al., 2009), approaches that identify
different communities in social hypergraphs (Zhou et al., 2007),
and approaches that detect user stance by density-based feature
clustering (Darwish et al., 2020). The results of this comparison
show that our algorithm outperforms the state of the art. An
ablation study further illustrates the impact of different design
decisions on accomplishing this improvement.

The rest of the paper is organized as follows. Section 2 formulates
the problem and summarizes the solution approach. Section 3
proposes our new belief structured matrix factorization model, and
analyzes some model properties. Section 4 proves the property of
orthogonality regarding one of the decomposed components.
Section 5 and Section 6 present an experimental evaluation
based on simulation and real data, respectively. We review the
related literature on belief mining and matrix factorization in
Section 7. The paper concludes with key observations and a
statement on future directions in Section 8.

2 PROBLEM FORMULATION

Consider an observed data set of posts collected from a social
medium, such as Twitter, where each post is associated with a
source and with semantic content, called a claim. Let S be the set
of sources in our data set, and C be the set of claims made by those
sources. While, in this paper, a claim is the content of a tweet (or
retweet), the analytical treatment does not depend on this
interpretation. Let matrix X, of dimension |S| × |C| be a matrix
of binary entries denoting who claimed what. A claim can be made
by multiple sources. In general, an entry ofX could be a positive real
number indicating a level of endorsement of a source to a claim. In
this paper, we simplify by using binary entries; if source Si endorsed
claim Cj, then xij � 1, otherwise xij � 0.

2.1 Problem Statement
We assume that the set of sources, S, is divided into a small
number, K, of latent social groups, denoted by the subsets G1 G2,
. . ., GK, that form a tree. In this tree, group Gi is a child (i.e., a
subgroup) of Gk if Gi ⊂ Gk. Children of the same parent are
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disjoint groups. Members of group Gk that do not belong to any of
its children are denoted by the residual set G−

k . Within each group,
Gk, 1 ≤ k ≤ K, individuals have shared beliefs expressed by a set of
claims. A shared belief of a group is a belief espoused by all
members of the group. By definition, therefore, a child group
inherits the shared beliefs of its parent. The child group may have
additional shared beliefs within its group (not shared by the
remaining members of the parent). Thus, we define the
incremental belief set, Bk, of group Gk to be the beliefs held by
group Gk, beyond what’s inherited from its parent. The overall
belief set of group Gk is thus the union of incremental beliefs of its
ancestors and itself. The problem addressed in this paper is to
simultaneously 1) populate the membership of all latent groups,
Gk, in the tree, and 2) populate their incremental belief sets, Bk,
given a structural template, B (to be populated), that lays out the
latent groups and latent belief sets.

Figure 1 illustrates an example, inspired by the first wave of
the COVID-19 pandemic in 2020. In this figure, a hypothetical
community is divided on whether to maintain social distancing
(G1) or reopen everything and let natural selection take place
(G2). Furthermore, while G1 agree on social distancing, they
disagree on some implementation details, such as whether
classes should be entirely online (G3) or hybrid (G4). In this
example, an analyst might want to understand what groups/
subgroups exist and what they disagree on. The analyst will enter
a tree topology template, letting the algorithm populate who and
which beliefs lie at which node of the tree.

2.2 Solution Approach
We use a non-negative matrix factorization algorithm to
decompose the “who endorsed what” matrix, X ∈ {0, 1}|S|×|C|,
into 1) a matrix, U ∈ R|S|×K

+ , that maps sources to latent
groups, 2) a matrix, B ∈ {0,1}K×K, that maps latent groups to
latent incremental belief sets (called the belief structure matrix),
entered as structural guidance from the analyst, and 3) a matrix,
M ∈ R|C|×K

+ , that maps claims to latent incremental belief sets.
Importantly, since groups and belief sets are latent, the belief
structure matrix, B, in essence, specifies the latent structure of the

solution space that the algorithm needs to populate with specific
sources and claims, thereby guiding factorization.

3 STRUCTURED MATRIX FACTORIZATION

The proposed structured matrix factorization algorithms allows
the user (e.g., an analyst) to specify matrix, B, to represent the
relation between the latent groups, Gk (that we wish to discover),
and their incremental belief sets, Bk (that we wish to discover as
well). An element, bij of the matrix, B, is 1 if group Gi adopts the
belief set Bj. Otherwise, it is zero. In a typical (non-overlapping)
clustering or matrix factorization framework, there is an one-to-
one correspondence between groups and belief sets, reducing B to
an identity matrix. Structured matrix factorization extends that
structure to an arbitrary relation. Matrix B can be thought of as a
template relating latent groups (to be discovered) and belief sets
(to be identified). It is a way to describe the structure that one
wants the factorization algorithm to populate with appropriate
group members and claims. While it might seem confusing to
presuppose that one knows the latent structure, B, before the
groups and belief sets in question are populated, below we show
why this problem formulation is very useful.

3.1 An Illustrative Example
Consider a conflict involving two opposing groups, say, a
minority group G1 and a majority G2. Their incremental belief
sets are denoted by B1 and B2, respectively. The two groups
disagree on everything. Thus, sets B1 and B2 do not overlap. An
unfriendly agent wants to weaken the majority and conjectures
that the majority group might disagree on something internally.
Thus, the unfriendly postulates that group G2 is predominantly
made of subgroups G2a and G2b. While both subgroups agree on
the shared beliefs, B2, each subgroup has its own incremental
belief sets, B2a and B2b, respectively. The structure matrix in
Figure 2 represents the belief structure postulated above.

For example, the second column indicates that the belief set B2

is shared by all members of group G2 (hence, there is a “1” in rows

FIGURE 1 | A notional example of hierarchical overlapping beliefs.
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of subgroups G2a, G2b, and the residual G−
2 ). The third and fourth

columns state that belief sets B2a and B2b are unique to subgroups
G2a and G2b, respectively. Note how the beliefs espoused by
different groups overlap. For example, from the third and
fourth rows, we see that groups G2a and G2b overlap in the set
of beliefs, B2.

An interesting question might be: which sources belong to
which group/subgroup? What are the incremental belief sets B2a

and B2b that divide group G2 (i.e., are shared only by the
individual respective subgroups)? What are the shared beliefs
B2 that unite it? What are the beliefs, B1, of group G1? These are
the questions answered by our structured matrix factorization
algorithm whose input is (only) matrix, X, and matrix, B
(Figure 2).

3.2 Mathematical Formulation
To formulate the hierarchical overlapping belief estimation
problem, we introduce the notion of claim endorsement. A
source is said to endorse a claim if the source finds the claim
agreeable with their belief. Endorsement, in this paper, represents
a state of belief, not a physical act. A source might find a claim
agreeable with their belief, even if the source did not explicitly
post it. Let the probability that source Si endorses claim Cj be
denoted by Pr(SiCj). We further denote the proposition Si ∈ Gp

by Spi , and the proposition Cj ∈ Bq by C
q
j . Thus, Pr(Spi ) denotes

the probability that source Si ∈ Gp. Similarly, Pr(Cq
j) denotes the

probability that claim Cj ∈ Bq. Following the law of total
probability:

Pr SiCj( ) � ∑
p,q
Pr SiCj|Spi Cq

j( )Pr Spi C
q
j( )

� ∑
p,q
Pr SiCj|Spi Cq

j( )Pr Spi( )Pr Cq
j( ). (1)

By definition of the belief structure matrix, B, we say that
Pr(SiCj|Spi Cq

j) � 1 if bpq � 1 in the belief structure matrix.
Otherwise, Pr(SiCj|Spi Cq

j) � 0. Let uip � Pr(Spi ) and
mjq � Pr(Cq

j). Let ui and mj be the corresponding vectors,
with elements ranging over values of p and q respectively.
Thus, we get: Pr(SiCj) � u⊤i Bmj. Let the matrix XG be the
matrix of probabilities, Pr(SiCj), such that element
xG
ij � Pr(SiCj). Thus:

XG � UBM⊤ (2)

where U is a matrix whose elements are uip and M is a matrix
whose elements are mjq. Factorizing XG, given B, would directly
yield U and M, whose elements are the probabilities we want:

elements of matrix U yield the probabilities that a given source Si
belongs to a given group Gp, whereas elements of matrix M yield
the probabilities that a claim Cj belongs to a belief Bq. Each source
is then assigned to a group and each claim to a belief set, based on
the highest probability entry in their row of matrix U and M,
respectively. In practice, B could be customized up to certain tree
depth to meet different granularity of belief estimation.

3.3 Estimating XG

Unfortunately, we do not really have matrix XG to do the above
factorization. Instead, we have the observed source-claim matrix
X that is merely a sampling of what the sources endorse. (It is a
sampling because a silent source might be in agreement with a
claim even if they did not say so.) Using X directly is suboptimal
because it is very sparse. It is desired to estimate that a source
endorses a claim even if the source remains silent. We do so on
two steps.

3.3.1 Message Interpolation (the M-Module)
First, while source Si might have not posted a specific claim, Cj, it
may have posted similar ones. If a source Si posted, retweeted, or
liked claim Cj in our data set (i.e., xij � 1 in matrix X), then we
know that the source endorses that claim (i.e., xM

ij � 1 in matrix
XM). The question is, what to do when xij � 0? In other words, we
need to estimate the likelihood that the source endorses a claim,
when no explicit observations of such endorsement were made.
We do so by considering the claim similarity matrix D, of
dimension |C| × |C|. If source Si was observed to endorse
claims Ck similar to Cj, then it will likely endorse Cj with a
probability that depends on the degree of similarity between Cj
and Ck. Thus, when xij � 0, we can estimate xM

ij by weighted sum
interpolation:

xM
ij � ∑

k: xik≠0

dkj · xik (3)

To compute matrix D, in this work, we provide two
configurations. For the language agnostic approach, we first
compute a bag-of-words (BOW) vector wj for each claim j,
and then normalize it using vector L2 norm, wj � wj/‖wj‖2.
For the BERTweet approach, wj is the embedding for each
claim. We select non-zero entries xij in each row i of X as
medoids {wj | xij ≠ 0}. We assume that claims close to any of
the medoids could also be endorsed by Si as well. Based on that,
we use dkj � ϕ(‖wj − wk‖) in Eq. 3. A Gaussian radial basis
function (RBF) is used for ϕ(r) � e−(ϵr)

2
. This is called message

interpolation (the M-module). The output of this module is a
matrix XM. If the resulting value of xM

ij is less than 0.2, we regard
that it is far from all of the medoids and set it back to 0. In the
experiments presented in our evaluation, ϵ is set to 0.5 for the
synthetic dataset and 0.05 for each of the United States Election
2020, Eurovision 2016, and Global Warming datasets.

3.3.2 Social Graph Convolution (S-Module)
To further improve our estimation of matrix XG, we assume that
sources generally hold similar beliefs to those in their immediate
social neighborhood. Thus, we perform a smoothing of matrix

FIGURE 2 | The belief structure matrix, B.
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XM by replacing each cell, xij, by a weighted average of itself and
the entries pertaining to neighbors of its source, Si, in the social
graph. Let matrix A, of dimension |S| × |S|, denote the social
graph. Each entry, aij, denotes the influence of user Si on user Sj.A
is thus the adjacency matrix of a social network graph. In this
paper, we construct A by calculating the frequency of each source
Si retweeting posts of source Sj. We call it the retweet graph. The
update of entries of XM by smoothing over entries of neighboring
sources is called social graph convolution (S-module). It results in
an improved estimate, XMS.

More specifically, from the social dependency matrix A (user-
user retweet frequency), we can compute the degree matrix F by
summing each row of A. The random walk normalized adjacency is
denoted as Ãrw � F−1A. We define our propagation operator based
on Ãrw with self-loop re-normalization, A�rw ← 1

2F̃rw−1(Ãrw + I).
Thus, the new source-claim network is given by,

XMS � A�
rwX

M, (4)

where each row of A�rw adds up to 1. The effect of the propagation
operator is to convolve the information from 1-hop neighbors,
while preserving half of the information from itself. Note that, we
deem dependency beyond 1-hop too weak to capture, so we do
not consider An, where n > 1. From a macroscopic perspective,
this social graph convolution recovers some of the possible
source-claim connections and also enforces the smoothness of
matrix XMS. We can now take, XG ≈ XMS, and decompose it as
presented in Section 3.2, Eq. 2, with L1 and L2 regularizations to
enforce sparsity and prevent overfitting.

3.4 Loss and Optimization
Given a belief mixture matrix, B, we now factorize XMS to
estimate matrices U and M that decide the belief regions
associated with sources and claims, respectively. (e.g., the
estimated belief for claim Cj is given by the index of
maximum entry in the jth row of M).

Regularization. To avoid model overfitting, we include widely
used L2 regularization. Also, we enforce the sparsity of U and M
by introducing an L1 norm. The overall objective function
becomes (defined by the Frobenius-norm),

J � ‖XMS − UBM⊤‖2F + λ1‖U‖2F + λ1‖M‖2F + λ2‖U‖1 + λ2‖M‖1.
(5)

We rewrite J using matrix trace function tr(·)
J � tr XMS⊤XMS( ) − 2tr XMS⊤UBM⊤( ) + tr UBM⊤MB⊤U⊤( )
+λ1tr U⊤U( ) + λ1tr M⊤M( ) + λ2‖U‖1 + λ2‖M‖1.

(6)

We minimize J by gradient descent. Since only the non-negative
region is of interest, derivatives of the L1 norm are differentiable in
this setting. By referring to the gradient of traces of product with
constant matrixA,∇Xtr (AX) �A⊤ and∇Xtr (XAX

⊤) � X (A+ A⊤),
the partial derivative of J w.r.t. U and M are calculated as,

∇U � −2XMSMB⊤ + 2UBM⊤MB⊤ + 2λ1U + λ21,
∇M � −2XMS⊤UB + 2MB⊤U⊤UB + 2λ1M + λ21.

The gradient matrix ∇U is of dimension |S| ×K, and ∇M is
of dimension |C| × K. Estimation step begins by updating U
←U − η∇U and M ←M − η∇M, and η is the step size.
Negative values might appear in the learning process,
which are physically meaningless in this problem. Thus,
we impose non-negativity constraints for U and M during
the update. A ReLU-like strategy is utilized: when any entry
of U or M becomes negative, it is set to be ξ. In the
experiment, we set ξ � 10−8, λ1 � λ2 � 10−3. Note that the
initial entry values of U and M are randomized uniformly
from (0, 1).

Algorithm 1. : Belief Structured Matrix Factorization (BSMF).

3.4.1 Run-time Complexity
During the estimation, we generalize standard NMF
multiplicative update rules (Lee and Seung, 2001) for our tri-
factorization,

ηU � 1
2

U
UBM⊤MB⊤, ηM � 1

2
M

MB⊤U⊤UB
. (7)

Note that, K (number of belief groups) is picked according
to the dataset, and it typically satisfies K≪ min(|S|, |C|).
Algorithmically, updating U and M takes O(K|S‖C|) per
iteration, similar to the typical NMF. The number of
iterations before the empirical convergence is usually no
more than 200 for random initialization in our
experiments, and thus we claim that our model is scalable
and efficient. In Figure 3, we present our measurements
on time taken per iteration for our algorithm and
FNMTF (Wang et al., 2011), which is known to be able
to perform tri-factorization fast. We measured each
iteration 20 times to make the results more accurate. Our
algorithm, with the generalized multiplicative update rules,
performs better. This is because our algorithm does not need
to update the B matrix, and avoids using matrix inversion.
The graph appears to be consistent with our time complexity
analysis.

4 PROPERTY OF ORTHOGONALITY

The basic idea of belief structured matrix factorization (BSMF) is
to decompose XMS ≈ UBM⊤. What does that imply regarding the
generated rows of decomposition matrices? Below, we show that
the rows of matrix U are approximately orthogonal and that the
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rows of matrix M are also approximately orthogonal. This
property suggests a sense of decomposition quality in that the
latent factors produced constitute more efficient (non-
redundant) encoding bases of the original information.

Theorem 1. After BSMF factorization, {Uk} are approximately
orthogonal.

PROOF. We start the analysis by the recapitulation of loss
function,

J � ‖XMS − UBM⊤‖2F + λ1‖U‖2F + λ1‖M‖2F + λ2‖U‖1 + λ2‖M‖1.
� tr XMS⊤XMS( ) − 2tr XMS⊤UBM⊤( ) + tr UBM⊤MB⊤U⊤( )
+λ1tr U⊤U( ) + λ1tr M⊤M( ) + λ2‖U‖1 + λ2‖M‖1.

(8)

Let us first ignore the L1 and L2 term. Since tr(XMS⊤XMS) is a
constant, the problem of minimizing Eq. 8 is equivalent to,

max
U,M≥0

tr XMS⊤UBM⊤( ), (9)

and min
U,M≥0

tr UBM⊤MB⊤U⊤( ). (10)

The first objective, Eq. 9, is similar to K-means type clustering
after expanding the trace function, which maximize within-
cluster similarities,

max ∑
i,j

u⊤
i Bmjxij. (11)

The second objective is to enforce orthogonality approximately.
Because UBM⊤ ≈ XMS, let us add L2-norm of U and M now, so
that the scale ofU,M are constrainedWangandZhang (2012). SinceB is

positive and fixed, tr(U⊤U) � ‖U‖2F and tr(BM⊤MB⊤) �
‖MB⊤‖2F ≤ ‖M‖2F‖B‖2F are approximately constants. SoEq. 10 becomes,

min
U,M≥0

tr U⊤U − I( ) BM⊤MB⊤ − I( )( ). (12)

By Cauchy’s inequality, we further have,

tr U⊤U − I( ) BM⊤MB⊤ − I( )( )
� ∑

i�1,...,K; j�1,...,K
U⊤U − I( )ij BM⊤MB⊤ − I( )ji

≤ ‖U⊤U − I‖F · ‖BM⊤MB⊤ − I‖F.
(13)

Thus, the overall second objective is bounded by,

min
U,M≥0

‖U⊤U − I‖F · ‖BM⊤MB⊤ − I‖F
0 min

U≥0
‖U⊤U − I‖F ·min

M≥0
‖BM⊤MB⊤ − I‖F. (14)

which enforces the orthogonality of rows in set {Uk}.
Corollary 1.1. After BSMF factorization, {Mk} are

approximately orthogonal.

PROOF. Similar to the proof above, tr(M⊤M) � ‖M‖2F and
tr(B⊤U⊤UB) � ‖UB‖2F ≤ ‖U‖2F‖B‖2F are approximately
constants. Equation 10 becomes,

min
U,M≥0

tr M⊤M − I( ) B⊤U⊤UB − I( )( ). (15)

Thus, the overall second objective is bounded by,

min
M≥0

‖M⊤M − I‖F ·min
U≥0

‖B⊤U⊤UB − I‖F. (16)

FIGURE 3 | Running time under different configurations of dimensions of X and B. For each method, under the same |S|, |C| takes 10000, 20000, 30000, 40000,
50000 respectively. Red bar indicates standard deviation on time measurements.
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which enforces the orthogonality of pre-belief bases {Mk}.
In other words, the generated groups into which all sources

and claims decomposed are maximally diverse and are not
redundant in some sense.

5 ILLUSTRATIVE SIMULATION

To help visualize the belief structure developed in our approach
and offer a concrete example of approximate orthogonality of
groups (i.e., pre-belief bases), we created simulations to evaluate
our models multiple times against two simpler variants. We also
provide 3D visualizations of the factorized components to
observe their spatial characteristics.

5.1 Dataset Construction
To offer a simplified and controllable setting in which we can
visualize the novel factorization algorithm, we build a synthetic
dataset, where two groups of users are created, a minority, G1 (100
users) of belief set B1, and a majority, G2 (300 users) of belief set
B2. The majority includes two subgroups, G2a and G2b (100 users
each) of incremental belief sets B2a and B2b, respectively.
Essentially, the groups follow the hierarchical structure
illustrated in Figure 2. For each group, we built disjoint claim
corpora, denoted by c1, c2, c2a and c2b to express their respective
belief sets. Users were simulated to post claims chosen from their
group’s assigned corpus or from their parent’s corpus (we
randomly generate 20 claims for each user). Thus, for
example, users in group G2a could post claims generated from
c2a or from the parent corpus c2, but users in group G1 only post
claims from corpus c1. In sum, 400 users and 8,000 claims were
created. To keep it simple, in this experiment, we do not impose
social relations. Instead, we use the identity matrix for the
adjacency A.

5.2 Method Comparison
The factorization algorithm uses the belief structure matrix in
Figure 2. Two simpler variants are introduced: 1) the first variant
substitutes B with an identity matrix, and takes a standard NMF
formulation XG � UM⊤; 2) the second variant substitutes B with
an learnable matrix ~B, which takes a standard non-negative
matrix tri-factorization (NMTF) form, XG � U~BM⊤.
Obviously, NMTF offers more freedom. However, the need to
learn parameters of matrix ~B can cause overfitting. We use the
same regularization settings for NMF, NMTF and our BSMF to
make sure the comparison is fair. Empirically, after 150 ∼ 200
iterations, all three methods converge. The predicted belief set
label for each claim is given by the index of the maximum value in
this final representation from matrix, M.1

5.3 Results of 200 Rounds
We run each model for 200 times and compute the classification
accuracy of users and claims for each algorithm in every run, then

average them over all runs. We find that BSMF consistently
outperforms NMF and NMTF. The average values of accuracy for
BSMF, NMF and NMTF are 97.34%, 93.78%, 95.54%,
respectively. As might be expected, specifying matrix, B,
guides subsequent factorization to a better result compared to
both NMF and NMTF.

5.4 Visualization of Results
We also visualize the computed matrix, M, for each algorithm.
Colors are based on ground-truth labels. In Figure 4 and
Figure 5, we project the estimated M into a 3-D space,
where each data point represents a message. In each figure,
all of the data points seem to lie in a regular tetrahedron (should
be regular K-polyhedron for more general K-belief cases). It is
interesting that for NMF, different colors are very closely
collocated in the latent space (e.g., there is very little
separation between the grey color and others). It is
obviously difficult to draw a boundary for the crowded
mass. NMTF is a little bit better: different colors are visually
more separable. We also visualize the learned ~B ∈ R4×4, which
turns out to be an SVD-like diagonal matrix, meaning that pure
NMTF only learns the independent variances aligned with each
belief.

The projection result of BSMF are different: different color
points are better separated and grouped by colors. We
hypothesize that in the four-dimensional space, data
points should be perfectly aligned with one of the belief
bases/parts, and these four bases are conceivably
orthogonal in that space. In a word, the results on
synthetic data strongly suggest that our model disentangles
the latent manifold leading to a better separation of messages
by belief sets.

6 EXPERIMENTS WITH EMPIRICAL DATA

In the section, we evaluate Belief Structured Matrix
Factorization (BSMF) using real-world Twitter datasets of
different patterns of belief overlap, hierarchy, or
disjointedness. Key statistics of these data sets are briefly
summarized in Table 1. Our model is compared to (up to)
six baselines and five model variants. Each experiment is run
20 times to acquire the mean and the standard deviation for
measurements. We elaborate the experimental settings and
results below.

6.1 Disjoint Belief Structure: United States
Election 2020
We start with a dataset where we posit that agreements are too
weak to the point where beliefs of key groups are assumed to be
“disjoint” (i.e., share no overlap). Specifically, during the 2020
United States election, messages on social media tended to be very
polarized, either supporting the democratic or the republican
party, exclusively. The example demonstrates a simplest case of
belief factorization for clarity.

1In practice, we permute the labels and pick the best matching as a result, since our
approach does clustering not classification.
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6.1.1 Dataset
We use Apollo Social Sensing Toolkit2 to collect the United States
Election 2020 dataset. The dataset contains tweets collected
during the United States Election in 2020, where the support
for candidates was split between former president Donald Trump

and president Joe Biden. Basic statistics are reported in Table 1.
Overall, the most retweeted 237 tweets from the dataset are
manually annotated, which separate into 133 pro-Trump and
104 anti-Trump claims.

In this dataset, the sources are split into two groups G1 and G2,
each with belief sets, B1 and B2, respectively. The belief structure
matrix, therefore, is:

B � 1 0
0 1

[ ]
where rows correspond to groups G1 and G2, respectively, and
columns correspond to belief sets, B1 and B2, respectively.

6.1.2 Baselines
We select six baseline methods that encompass different
perspectives on belief separation:

FIGURE 4 | Visualization of M for our BSMF (left) and NMF (right).

FIGURE 5 | Visualization of M (left) and ~B (right) for NMTF.

TABLE 1 | Basic statistics for three twitter datasets.

Dataset # Sources # Claims # All tweets # Retweets

Eurovision2016 3,514 5,812 9,868 6,001
US Election 2020 502 4,159 7,030 6,942
Global Warming 14,752 7,030 16,418 9,341

2http://apollo4.cs.illinois.edu/datasets.html
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• Random: A trivial baseline that annotates posts randomly,
giving equal probability to each label.

• DBSCAN (Darwish et al., 2020): A density-based clustering
technique that extracts user-level features and performs
DBSCAN for unsupervised user stance detection in
Twitter. In this paper, we use DBSCAN and then map
the user stance to claim stances with majority voting, as a
baseline.

• Sentiment140 (Go et al., 2009): Content-aware solutions
based on language or sentiment models. In the
implementation, each of the claims is a query through
Sentiment140 API, which responds with a polarity score.
The API will respond with the same score upon multiple
same requests.

• H-NCut (Zhou et al., 2007): The method views the bipartite
structure of the source-claim network as a hypergraph,
where claims are nodes and sources are hyperedges. The
problem is thus seen as a hypergraph community detection
problem, where community nodes represent posts. We
implement H-NCut, a hypergraph normalized cut
algorithm.

• Polarization (Al Amin et al., 2017): A baseline that uses an
NMF-based solution for social network belief extraction to
separate biased and neutral claims.

• NMTF: A baseline with a learnable mixture matrix. We
compare our model with it to demonstrate that pure
learning without a prior is not enough to unveil the true
belief overlap structure in real-world applications.

• FNMTF (Wang et al., 2011): A baseline for data co-
clustering with non-negative matrix tri-factorization. We
compare to this model mainly to have a run-time
complexity comparison and demonstrate the importance
of structural guidance.

Different variants of BSMF are also evaluated to verify the
effectiveness of message similarity interpolation (the M-module)

and social graph convolution (the S-module). BSMFMS

incorporates both modules. Models with only the M-module
or the S-module are named BSMFM and BSMFS, respectively.
BSMF denotes the model without either module. BSMFMS−BERT

and BSMFM−BERT are two variants whose M-modules are
configured to use BERTweet (Nguyen et al., 2020) embeddings,
while BSMFMS and BSMFM are using lexical overlap enabled by
tokenization.

6.1.3 Evaluation Metrics
We evaluate claim separation, since only claim labels are
accessible. We use the Python scikit-learn package to help with
the evaluation. Multiple metrics are employed. Since we only have
two groups in the dataset, we use binary-metrics to calculate
precision, recall and f1-score over the classification results, and we
also use weighted-metrics to account for class imbalance by
computing the average of metrics in which each class score is
weighted by its presence in the true data sample. Standard
precision, recall and f1-score are considered in both scenarios.
Note that weighted averaging may produce an f1 that is not
between precision and recall.

6.1.4 Result of United States Election 2020
The comparison results are shown in Table 2. It is not surprising
that all baselines beat Random. Overall, matrix factorization
methods work well for this problem. Among other baselines,
Sentiment140 work poorly for this task, because 1) they use
background language models that are pre-trained on another
corpus; and 2) they do not user dependency information, which
matters in real-world data. H-NCut and DBSCAN yield
acceptable performance, but cannot compare with our BSMF
algorithm with S-module, since they ignore the user dependencies.
Considering weighted scores, NMTF outperforms the NMF-based
algorithm, which is as expected. With the S-module, our BSMF
algorithm ranks the top in terms of all metrics. Comparing to other
variants, M-module in this dataset does not add benefit, mostly

TABLE 2 | Binary- and weighted- metrics comparison (United States election 2020).

Models United States election 2020

Binary Weighted

Prec. Recall F1 Prec. Recall F1

Random 0.655 ± 0.036 0.502 ± 0.058 0.567 ± 0.048 0.542 ± 0.036 0.487 ± 0.043 0.502 ± 0.041
Sentiment140 0.741 ± 0.000 0.208 ± 0.000 0.325 ± 0.000 0.651 ± 0.000 0.595 ± 0.000 0.530 ± 0.000
H-NCut 0.680 ± 0.002 0.980 ± 0.001 0.806 ± 0.004 0.676 ± 0.078 0.679 ± 0.006 0.566 ± 0.003
DBSCAN 0.714 ± 0.000 0.981 ± 0.000 0.827 ± 0.000 0.753 ± 0.000 0.722 ± 0.000 0.656 ± 0.000
Polarization 0.673 ± 0.002 0.982 ± 0.008 0.801 ± 0.004 0.454 ± 0.001 0.669 ± 0.006 0.541 ± 0.003
NMTF 0.679 ± 0.013 0.739 ± 0.085 0.705 ± 0.037 0.566 ± 0.018 0.588 ± 0.029 0.571 ± 0.017
FNMTF 0.747 ± 0.073 0.978 ± 0.008 0.845 ± 0.046 0.693 ± 0.167 0.753 ± 0.085 0.688 ± 0.138

BSMF 0.788 ± 0.007 0.600 ± 0.027 0.680 ± 0.020 0.677 ± 0.010 0.621 ± 0.018 0.632 ± 0.017
BSMFS 0.873 ± 0.008 0.940 ± 0.022 0.905 ± 0.013 0.867 ± 0.019 0.867 ± 0.017 0.864 ± 0.017
BSMFM 0.754 ± 0.015 0.681 ± 0.014 0.715 ± 0.010 0.655 ± 0.016 0.635 ± 0.012 0.642 ± 0.018
BSMFM−BERT 0.754 ± 0.015 0.724 ± 0.010 0.739 ± 0.008 0.661 ± 0.017 0.654 ± 0.013 0.657 ± 0.015
BSMFMS 0.803 ± 0.006 0.946 ± 0.035 0.869 ± 0.012 0.615 ± 0.024 0.807 ± 0.012 0.793 ± 0.007
BSMFMS−BERT 0.848 ± 0.007 0.964 ± 0.015 0.902 ± 0.008 0.864 ± 0.015 0.859 ± 0.011 0.852 ± 0.011

*Prec. stands for precision.
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because several important keywords such as “president”, “Trump”,
and “election” are shared by both sides. Therefore, variants using
content similarity may experience confusion and not perform well.
This is especially true of variants that use lexical similarity although
variants that use BERTweet embeddings also suffer compared to
BSMFS.

For illustrative purposes (to give a feel for the data), Table 3
shows the top 3 tweets from each belief set (B1 and B2) estimated
by our model. Note that, due to an update of the Twitter API, the
crawled text field is truncated to 140 characters. Our algorithm
runs on the text within that range only. For human readability
and interpretability, we manually fill in the rest of the tweet,
showing the additional text in yellow (the same for Table 5 and
Table 7). Note that, the labels shown in the first column, called
Beliefs, are inserted manually after the fact (and not by our
algorithm). The algorithm merely does the separation/clustering.

6.2 Star-like Belief Structure:
Eurovision2016
Next, we consider a data set where we break sources into two
subgroups but assume that they have overlapping beliefs. The

example facilitates comparison with the prior state of the art on
polarization that addresses a flat belief structure.

6.2.1 Dataset
We use the Eurovision2016 dataset, borrowed from (Al Amin
et al., 2017). Eurovision2016 contains tweets about the
Ukrainian singer, Jamala, who won the Eurovision (annual)
song contest in 2016. Her success was a surprise to many as the
expected winner had been from Russia according to pre-
competition polls. The song was on a controversial political
topic, telling a story about deportation of Crimean Tatars by
Soviet Union forces in the 1940s. Tweets related to Jamala were
collected within 5 days of the contest. Basic statistics are
reported in Table 1. As pre-processed in (Al Amin et al.,
2017), the most popular 1,000 claims were manually
annotated. They were separated into 600 pro-Jamala,
239 anti-Jamala, and 161 neutral claims.

In the context of the dataset, the entire set of sources is
regarded as a big group, G1, with belief set, B1, agreed among
all users. The group is further divided into three disjoint groups,
group G1a (with inherited belief set B1 and incremental belief set
B1a), group G1b (with inherited belief set B1 and incremental

TABLE 3 | Top 3 tweets from separated beliefs (United States election 2020).

(Incremental) beliefs Sample tweets

Ba: Pro-Trump “@ senatemajldr and Republican Senators have to get tougher, or you won’t have a Republican Party anymore. We won the
Presidential Election, by a lot. FIGHT FOR IT. Don’t let them take it away!” (Dec. 18)
The lie of the year is that Joe Biden won! Christina Bobb @OANN
@RudyGiuliani They’ve been caught red handed! Lock them all up and declare @realDonaldTrump the winner of the
presidential election!

Bb: Anti-Trump Trump has berserk late night meltdown and everyone just laughs at him https://t.co/Qh7uUIknux
In other words: Donald Trump’s incompetence was the leading cause of death in the Unitd States this week. https://t.co/
Gh9C0wkPIb
Wisconsin Supreme Court turns away Trump election lawsuit https://t.co/8QvcqPgZbN https://t.co/ti9c4qJUWM

TABLE 4 | Macro- and weighted- metrics comparison (eurovision 2016).

Models Eurovision 2016

Macro Weighted

Prec Recall F1 Prec Recall F1

Random 0.329 ± 0.016 0.326 ± 0.020 0.308 ± 0.017 0.412 ± 0.016 0.329 ± 0.017 0.350 ± 0.017
Sentiment140 0.425 ± 0.000 0.377 ± 0.000 0.339 ± 0.000 0.413 ± 0.000 0.384 ± 0.000 0.354 ± 0.000
H-NCut 0.479 ± 0.042 0.336 ± 0.001 0.245 ± 0.001 0.557 ± 0.035 0.561 ± 0.000 0.407 ± 0.001
DBSCAN 0.328 ± 0.007 0.347 ± 0.021 0.323 ± 0.008 0.462 ± 0.003 0.475 ± 0.022 0.459 ± 0.013
Polarization 0.468 ± 0.028 0.488 ± 0.025 0.438 ± 0.039 0.581 ± 0.021 0.529 ± 0.030 0.515 ± 0.032
NMTF 0.474 ± 0.056 0.450 ± 0.051 0.428 ± 0.047 0.549 ± 0.040 0.551 ± 0.053 0.522 ± 0.041
FNMTF 0.394 ± 0.012 0.348 ± 0.016 0.366 ± 0.013 0.712 ± 0.014 0.581 ± 0.033 0.636 ± 0.023
BSMF 0.521 ± 0.013 0.522 ± 0.010 0.481 ± 0.020 0.609 ± 0.016 0.523 ± 0.020 0.525 ± 0.015
BSMFS 0.628 ± 0.011 0.561 ± 0.008 0.564 ± 0.023 0.675 ± 0.006 0.675 ± 0.018 0.656 ± 0.004
BSMFM 0.584 ± 0.007 0.564 ± 0.007 0.568 ± 0.010 0.659 ± 0.006 0.628 ± 0.014 0.639 ± 0.007
BSMFM−BERT 0.592 ± 0.006 0.570 ± 0.009 0.576 ± 0.013 0.657 ± 0.007 0.640 ± 0.012 0.645 ± 0.004
BSMFMS 0.635 ± 0.015 0.610 ± 0.008 0.618 ± 0.010 0.697 ± 0.010 0.690 ± 0.019 0.690 ± 0.012
BSMFMS−BERT 0.657 ± 0.006 0.622 ± 0.009 0.635 ± 0.008 0.712 ± 0.004 0.712 ± 0.018 0.708 ± 0.009

*Prec. stands for precision.
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belief set B1b), and the residual group G−
1 (with belief set B1). In

this case, the belief structure is:

B �
1 0 0
1 1 0
1 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
where rows correspond to groups G−

1 , G1a, and G1b, respectively,
whereas columns correspond to belief sets, B1, B1a and B1b

respectively.

6.2.2 Baselines
We use the same baselines as in Section 6.1.2. Similarly, we also
use all variants of BSMF algorithms.

6.2.3 Evaluation Metrics
In this dataset, we evaluate claim separation using metrics
described in Section 6.1.3. Instead of binary-evaluation, we
use macro-evaluation because there are three groups in this
dataset, as opposed to only two (in the previous subsection).
This metric calculates the mean of the metrics, giving equal
weight to each class. It is used to highlight model performance
of infrequent classes. Still, note that weighted averaging may
produce an f1-score that is not between precision and recall.

6.2.4 Result of Eurovision2016
The comparison results are shown in Table 4. Similar to the
results of United States Election 2020, all baselines beat
Random, and matrix factorization methods work okay for

this problem, but not as good. Sentiment140 still works
poorly for the same reason as before. H-NCut and
DBSCAN yield much weaker performance than before,
likely because they fail to adequately consider the
underlying overlapping belief structure. NMTF outperforms
the NMF-based algorithm. The reason may be that its
additional freedom allows it to capture the underlying
structure better. With both the M-module and S-module,
our BSMF algorithm ranks the top in all metrics. Both
modules help in this experiment. We believe that it is due
to the specific star-like belief structure and the existence of a
residual group who beliefs can be better inferred by message
interpolation. Further, we see that BERTweet variants perform
better than lexical M-modules on several metrics in this case,
because BERTweet is more language focused. As before, for
illustration and to give a sense of the data, Table 5 shows the
top 3 tweets from each belief set (B1, B1a, B1b) estimated by
our model.

6.3 Joint Polarity and Topic Separation
Before we test our algorithm on a dataset with a hierarchical
belief structure, we test it on something it is not strictly
designed to do: namely, joint separation of topic and
polarity. This problem may arise in instances where
multiple interest groups simultaneously discuss different
topics, expressing different opinions on them. We check
whether our algorithm can simultaneously separate the
different interest groups and their stances on their topics of

TABLE 5 | Top 3 tweets from separated beliefs (eurovision 2016).

(Incremental) beliefs Sample tweets

B1: Agreement BBC News–Eurovision Song Contest: Ukraine’s Jamala wins competition https://t.co/kL8SYOPOYL
Parents of “#Ukrainian” Susana #Jamaludinova - @Jamala are #Russian citizens and prosper in the Russian #Crimea
A politically charged ballad by the Ukrainian singer Jamala won the @Eurovision Song Contest http://nyti.ms/1qlmmNs

B1a: Pro-Jamala @jamala congratulations! FORZA UKRAINE!
@DKAMBinUkraine: Congratulations@jamala and #Ukraine!!! You deserved all the 12 points from #Denmark and the victory,
#workingforDK
@NickyByrne: Well done to Ukraine and @jamala

B1b: Anti-Jamala jamala The song was political and agaisnt The song contest rules shows NATO had influence on jury decision
@VictoriaLIVE @BBCNews @jamala Before voting we rated it worst song in the contest. Not changed my mind
@JohnDelacour So@jamala has violated TWOESC rules - the song is not new, and it includes political content. Result MUST
be annulled

TABLE 6 | Separation accuracy and macro-/weighted- F1 scores comparison.

Models Separation Eurovision 2016 F1 US election 2020 F1

Accuracy Macro Weighted Binary Weighted

BSMF 0.744 ± 0.017 0.451 ± 0.033 0.532 ± 0.026 0.628 ± 0.016 0.563 ± 0.010
BSMFS 0.937 ± 0.002 0.552 ± 0.038 0.625 ± 0.030 0.884 ± 0.013 0.833 ± 0.015
BSMFM 0.836 ± 0.010 0.481 ± 0.040 0.567 ± 0.052 0.681 ± 0.010 0.608 ± 0.006
BSMFM−BERT 0.918 ± 0.006 0.542 ± 0.022 0.605 ± 0.016 0.793 ± 0.015 0.740 ± 0.019
BSMFMS 0.952 ± 0.009 0.546 ± 0.014 0.616 ± 0.008 0.820 ± 0.025 0.767 ± 0.026
BSMFMS−BERT 0.952 ± 0.009 0.588 ± 0.027 0.659 ± 0.028 0.838 ± 0.017 0.780 ± 0.017
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interest. To do so, we artificially concatenated tweets from
Eurovision2016 and the United States Election 2020 datasets.
This operation creates a virtual hierarchy where each original
topic is viewed as a different interest group. Inside each group,
there are sub-structures as introduced before. Accordingly, we
apply our algorithm on the following belief structure:

B �

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where rows correspond to groups G−
1 , G1a, G1b, Gα, and Gβ

respectively, whereas columns correspond to belief sets, B1,
B1a B1b, Bα and Bβ respectively.

6.3.1 Evaluation Metrics
We first evaluate the accuracy of the dataset separation by collapsing
the label to each 0 and 1 corresponding to two datasets. Then, for
each dataset, we employ Macro-f1 score and Weighted-f1 score on
Eurovision2016 dataset, Binary-f1 score and Weighted-f1 score on
United States Election 2020 dataset.

6.3.2 Result of Separation
The comparison results are shown in Table 6. All BSMF variants,
specifically those with M-module and S-module, performed well
on separation of two datasets. In addition, comparing the f1-
scores to the performance of the same variant in to Table 2 and
Table 4, we are pleased to discover the f1-scores have not

deteriorated, demonstrating the basic ability of our model to
perform hierarchical belief estimation.

6.4 Hierarchical Belief Structure: Global
Warming
We consider a real hierarchical scenario in this section, with a
majority group, G1, and a minority group, G2, of beliefs B1 and B2

that do not overlap. Since more data is expected on G1 (by
definition of majority), we opt to further divide it into
subgroups G1a and G1b, who (besides believing in B1) hold the
incremental belief sets B1a and B1b, respectively. The
corresponding belief structure is reflected by the belief matrix:

B �
1 0 0 0
1 1 0 0
1 0 1 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where rows represent groups G−
1 , G1a, G1b, and G2 and columns

represent the belief sets B1, B1a, B1b, and B2. The matrix is not an
identity matrix because beliefs overlap (e.g, groups G−

1 , G1a, and
G1b share belief B1). It also features a hierarchical subdivision of
G1, into G−

1 , G1a, and G1b.

6.4.1 Datasets
We apply this belief structure to an unlabeled dataset, Global
Warming, which is crawled in real time with the Apollo Social
Sensing Toolkit. This dataset is about a twitter discussion of global
warming in the wake of Australia wildfires that ravaged the

TABLE 7 | Top 3 tweets from separated beliefs (global warming).

(Incremental) beliefs Sample tweets

Australia’s top scientists urge government to do more on global warming https://t.co/NclFqGKXE1

B1: Global Warming/urge response Australia’s most prestigious scientific organisation has added to growing pressure on Prime Minister Scott Morrison over
climate change policy, calling on the government to “take stronger action” in response to the bushfire crisis
“Have we now reached the point where at last our response to global warming will be driven by engineering and economics
rather than ideology and idiocy?” #auspol
As long as the ALP keep accepting ‘donations’ (bribes) from the climate change deniers the fossil fuel industry, who spent
millions and millions spreading lies about global warming, they have zero creditibility when they talk about phasing out fossil
fuel

B1a: Global Warming/fossil fuel Tomitigate the effects of climate change, wemust do away with fossil fuel burning as they are themajor contributors of global
warming
Turnbull: “The world must, and I believe will, stop burning coal if we are to avoid the worst consequences of global warming.
And the sooner the better.” Malcom Turnbull, The Guardian 12 January #ScottyfromMarketing
That time when The Australian misrepresented @JohnChurchOcean to say sea level rise wasn’t linked to global warming.
After I wrote about it, they pulled the story

B1b: Global Warming/sea level Brave global warming researchers are studying sea level rise in the Maldives this morning. https://t.co/aqGtgXAj2t
CO2 is a magical gas which causes Lake Michigan water levels to both rise and fall https://t.co/8FrC1Cx2Rm
CLIMATE’S FATAL FLAW: ‘Greenhouse Gases Simply Do Not Absorb Enough Heat To Cause Global Warming’—“New
data and improved understanding now show that there is a fatal flaw in greenhouse-warming theory.”

B2: No Global Warming “Three new research studies confirm that geothermal heat flow, not man-made global warming, is the dominant cause of
West Antarctic Ice Sheet (WAIS) melting,” writes geologist James Edward Kamis
Left Media talks about\enleadertwodots Climate Change, Global Warming, But . . . Jihad is reason for recent Forest Fires in
Australia !
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continent, in September 2019, where at least 17.9 million acres of
forest have burned in the fire. Our goal is to identify and separate
posts according to the above abstract belief structure.

Table 7 shows the algorithm’s assignment of claims to belief
groups (only the top 3 claims are shown for space limitations).
The first column shows the abstract belief categories B1, B1a, B1b,
and B2. While the algorithm allocates posts to categories based on
the structure of matrix B, for readability, we manually inspect
posts assigned to each category in the matrix, and give that
category a human-readable name, also shown in the first column.
For each belief category, the table also shows the top ranked
statements. The table reveals that sources in our data set are
polarized between a group, G1, that believes in global warming
(offering statements that urge a serious response) and a group, G2,
that does not (offering statements that oppose the thesis of man-
made global warming). Within group, G1 (apart from G−

1 ), there
are two subgroups, G1a and G1b. The former blames the fossil fuel
industry, whereas the latter is concerned with rising sea levels.
While we do not claim to have reached conclusions on global
warming, the table shows how structured matrix factorization can
fit data sets automatically to useful belief structures, thereby
offering visibility into what individuals are concerned with,
what actions they agree on, and what they disagree about.

6.4.2 Quantitative Measurements
Next, we do a sanity check by measuring user grouping
consistency. Specifically, we first identify the belief sets (by
claim separation) and then assign belief labels to users by
having a user inherit the assigned belief set label for each
claim they made. The inherited labels are inconsistent if they
belong to different groups according to matrix, B. For example, if
the same user has been assigned belief labels B1 and B1a, then the
labeling is coherent because both represent beliefs of G1

(remember that a group inherits the beliefs of its parent). If
another user is labeled with both B1 and B2, then it is apparently
wrong, since belief sets B1 and B2 belong to different groups.

The percentage of coherently labeled users was 96.08%. Note
that, we do not conduct comparison in this dataset, since most
baselines do not uncover hierarchical group/belief structures,
whereas those that do generally break up the hierarchy
differently (e.g., by hierarchical topic, not hierarchical stance)
thus not offering an apples to apples comparison. In future work,
we shall explore more comparison options.

7 RELATED WORK

The problem of modeling social groups has been long researched.
For example, the problem of belief mining has been a subject of
study for decades (Liu, 2012). Solutions include such diverse
approaches as detecting social polarization (Conover et al., 2011;
Al Amin et al., 2017), opinion extraction (Srivatsa et al., 2012; Irsoy
and Cardie, 2014; Liu et al., 2015), stance detection (Darwish et al.,
2020) and sentiment analysis (Hu et al., 2013a,b), to name a few.

Pioneers, like Leman at el (Akoglu, 2014). and Bishan at el.
(Yang and Cardie, 2012), had used Bayesian models and other
basic classifiers to separate social beliefs. On the linguistic side,

many efforts to extract user opinions based on domain-specific
phrase chunks (Wu et al., 2018), and temporal expressions
(Schulz et al., 2015). With the help of pre-trained embedding,
like Glove (Liu et al., 2015) or word2vec (Wang et al., 2017), deep
neural networks (e.g., variants of RNN (Irsoy and Cardie, 2014;
Liu et al., 2015)) emerged as powerful tools (usually with
attention modules (Wang et al., 2017)) for understanding the
polarity or sentiment of user messages. In contrast to the above
supervised language-specific solutions, we want to provide
options and consider the challenge of developing an
unsupervised approach that could also be language-agnostic.

In the domain of unsupervised algorithms, our problem is
different from the related problems of unsupervised topic
detection (Ibrahim et al., 2018; Litou and Kalogeraki, 2017),
sentiment analysis (Hu et al., 2013a,b), truth discovery (Shao
et al., 2018, 2020), and unsupervised community detection
(Fortunato and Hric, 2016). Topic modeling assigns posts to
polarities or topic mixtures (Han et al., 2007), independently of
actions of users on this content. Hence, they often miss content
nuances or context that helps better interpret the stance of the
source. Community detection (Yang and Leskovec, 2013), on the
other hand, groups nodes by their general interactions, maximizing
intra-class links while minimizing inter-class links (Yang and
Leskovec, 2013; Fortunato and Hric, 2016), or partitioning
(hyper)graphs (Zhou et al., 2007). While different communities
may adopt different beliefs, this formulation fails to distinguish
regions of belief overlap from regions of disagreement.

The above suggests that belief mining must consider both
sources (and forwarding patterns) and content. Prior solutions used
a source-claim bipartite graph, and determined disjoint polarities by
iterative factorization (Akoglu, 2014; Al Amin et al., 2017). Our
work extends a conference publication that first introduced the
hierarchical belief separation problem (Yang et al., 2020). This
direction is novel in postulating a more generic and realistic
view: social beliefs could overlap and can be hierarchically
structured. In this context, we developed a new matrix
factorization scheme that considers 1) the source-claim graph (Al
Amin et al., 2017); 2) message word similarity (Weninger et al.,
2012) and 3) user social dependency (Zhang et al., 2013) in a new
class of non-negative matrix factorization techniques to solve the
hierarchical overlapping belief estimation problem.

The work also contributes to non-negative matrix factorization.
NMF was first introduced by Paatero and Tapper (Paatero and
Tapper, 1994) as the concept of positive matrix factorization and
was popularized by the work of Lee and Seung (Lee and Seung,
2001), who gave an interesting interpretation based on parts-based
representation. Since then, NMF has been widely used in various
applications, such as pattern recognition (Cichocki et al., 2009) and
signal processing (Buciu, 2008).

Two main issues of NMF have been intensively discussed
during the development of its theoretical properties: solution
uniqueness (Donoho and Stodden, 2004; Klingenberg et al., 2009)
and decomposition sparsity (Moussaoui et al., 2005; Laurberg
et al., 2008). By only considering the standard formula X˜UM⊤, it
is usually not difficult to find a non-negative and non-singular
matrixV, such thatUV andV−1M⊤ could also be a valid solution.
Uniqueness will be achieved if U and M are sufficiently sparse or
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if additional constraints are included (Wang and Zhang, 2012).
Special constraints have been proposed in (Hoyer, 2004;
Mohammadiha and Leijon, 2009) to improve the sparseness of
the final representation.

Non-negative matrix tri-factorization (NMTF) is an
extension of conventional NMF (i.e., X ˜ UBM⊤ (Yoo and
Choi, 2010)). Unconstrained NMTF is theoretically identical
to unconstrained NMF. However, when constrained, NMTF
possesses more degrees of freedom (Wang and Zhang, 2012).
NMF on a manifold emerges when the data lies in a nonlinear
low-dimensional submanifold (Cai et al., 2008). Manifold
Regularized Discriminative NMF (Ana et al., 2011; Guan
et al., 2011) were proposed with special constraints to
preserve local invariance, so as to reflect the multilateral
characteristics.

In this work, instead of including constraints to impose
structural properties, we adopt a novel belief structured matrix
factorization by introducing the mixture matrix B. The structure
of B can well reflect the latent belief structure and thus narrows
the search space to a good enough region.

8 CONCLUSION

In this paper, we discuss computational modeling of polarized
social groups using a class of NMF, where the structure of parts
is already known (or assumed to follow some generic form).
Specifically, we use a belief structure matrix B to describe the
structure of the latent space and evaluate a novel Belief
Structured Matrix Factorization algorithm (BSMF) that
separates overlapping, hierarchically structured beliefs from
large volumes of user-generated messages. The factorization
could be briefly formulated as XMS ≈ UBM⊤, where B is known.
The soundness of the model is first tested on a synthetic
dataset. A further evaluation is conducted on real Twitter
events. The results show that our algorithm consistently
outperforms baselines. The paper contributes to a research

direction on automatically separating data sets according to
arbitrary belief structures to enable more in-depth modeling and
understanding of social groups, attitudes, and narratives on
social media.
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