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Editorial on the Research Topic

Safe and Trustworthy Machine Learning

Machine learning (ML) provides incredible opportunities to answer some of the most important and
difficult questions in a wide range of applications. However, ML systems often face a major challenge
when applied in the real world: the conditions under which the system was deployed can differ from
those under which it was developed. Recent examples have shown that ML methods are highly
susceptible to minor changes in image orientation, minute amounts of adversarial corruptions, or
bias in the data. Susceptibility of ML methods to test-time shift is a major hurdle in a universal
acceptance of these solutions in several high-regret applications. To overcome this challenge, in this
research topic “Safe and Trustworthy Machine Learning”, a wide range of solutions are contributed
as potentially viable solutions to address trust, safety and security issues faced by ML methods.

PAPERS INCLUDED IN THIS RESEARCH TOPIC

Song, et al., considered the problem of dataset shift detection for safety-critical graph applications.
The authors proposed a practical two-sample test approach for shift detection in large-scale graph
structured data.

Anirudh, et al., considered the problem of post-hoc interpretability tasks, such as, prediction
explanation, noisy label detection, adversarial example detection. The authors introduced MARGIN,
a simple yet general approach, that exploits ideas rooted in graph signal analysis to determine the
most influential nodes in a graph to solve the aforementioned tasks.

Majumdar, et al., considered the problem of mitigation of bias arising due to unbalanced
representation of sub-groups in the training data. The authors proposed a bias mitigation
algorithm to generate Subgroup Invariant Perturbation (SIP) which when added the input
dataset reduces the bias in model predictions.

Huang, et al., showed that seq2seq models, successful in natural language correction, is also
applicable in programming language correction. Their results show that seq2seq models can provide
suggestions to potential errors and have a decent correct rate in code auto-correction task.

Qayyum, et al., conducted a systematic evaluation of literature of cloud-hosted ML/DL models
along both the important dimensions -- attacks and defenses -- related to their security. The authors
identified the limitations and pitfalls of the analyzed papers and highlight open research issues that
require further investigation.

Berghoff, et al., presented a comprehensive list of threats and possible mitigations of IT security of
connectionist artificial intelligence (AI) applications. AI-specific vulnerabilities such as adversarial
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attacks and poisoning attacks as well as their AI-specific root
causes are discussed in detail. The article concluded that single
protective measures are not sufficient but rather multiple
measures on different levels must be combined to achieve a
minimum level of IT security for AI applications.

Kusters, et al., analyzed key challenges to interdisciplinary AI
research, and deliver three broad conclusions: 1) future
development of AI should not only impact other scientific
domains but should also take inspiration and benefit from
other fields of science, 2) AI research must be accompanied by
decision explainability, dataset bias transparency as well as
development of evaluation methodologies and creation of
regulatory agencies to ensure responsibility, and 3) AI
education should receive more attention, efforts and
innovation from the educational and scientific communities.

CONCLUSIONS AND OUTLOOK

The papers included in this research topic “Safe and Trustworthy
Machine Learning” discussed some promising solutions,
highlighted open research issues, and offered visionary
perspectives regarding trust, safety and security issues faced by
machine learning. We hope that challenges and potential
solutions presented here will help researchers better
understand the current limitations of machine learning

methods and motivate future work in the direction of
developing trustworthy, safe, and robust machine learning
methods, and their applications to high-regret application areas.
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