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Scene understanding is a key technical challenge within the autonomous driving domain. It
requires a deep semantic understanding of the entities and relations found within complex
physical and social environments that is both accurate and complete. In practice, this can
be accomplished by representing entities in a scene and their relations as a knowledge
graph (KG). This scene knowledge graph may then be utilized for the task of entity
prediction, leading to improved scene understanding. In this paper, we will define and
formalize this problem as Knowledge-based Entity Prediction (KEP). KEP aims to improve
scene understanding by predicting potentially unrecognized entities by leveraging
heterogeneous, high-level semantic knowledge of driving scenes. An innovative neuro-
symbolic solution for KEP is presented, based on knowledge-infused learning, which 1)
introduces a dataset agnostic ontology to describe driving scenes, 2) uses an expressive,
holistic representation of scenes with knowledge graphs, and 3) proposes an effective,
non-standard mapping of the KEP problem to the problem of link prediction (LP) using
knowledge-graph embeddings (KGE). Using real, complex and high-quality data from
urban driving scenes, we demonstrate its effectiveness by showing that the missing
entities may be predicted with high precision (0.87 Hits@1) while significantly
outperforming the non-semantic/rule-based baselines.

Keywords: neuro-symbolic computing, knowledge-infused learning, knowledge graph embeddings, autonomous
driving, scene understanding, entity prediction

1 INTRODUCTION

Knowledge graphs are capable of representing meaningful relations between entities in the world;
and they are now being developed, at large scale, for various applications and uses. One such
application gaining in prominence is knowledge-infused learning, a technique for integrating—or
infusing—knowledge into machine learning models (Valiant, 2006; Sheth et al., 2019; Garcez and
Lamb, 2020). This infusion of knowledge has been shown to improve the predictive capabilities of
machine learning/deep learning models. Examples include 1) recommendations (Chen et al., 2017),
2) visual and textual concept learning (Mao et al., 2018) and 3) question answering (Ma et al., 2019).
Additionally, knowledge-infused learning has displayed great potential for improving the
intepretability and explainability of ML/DL predictions (Gaur et al., 2020; Palmonari and
Minervini, 2020; Tiddi et al., 2020).

For these reasons, knowledge-infused learning holds much promise for helping to meet the
complex technical challenges of scene understanding that’s inherent in autonomous driving (AD).
Scene understanding typically involves processing a multitude of data streams from an array of
sensors including cameras, LIDAR and RADAR. This data is then used to detect, recognize and track
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the objects and events in a scene. While ML/DL techniques have
been successful in solving these challenges (Grigorescu et al.,
2020), they may lack the ability to fully utilize the
interdependence of entities and semantic relations within a
scene. We will demonstrate that knowledge-infused learning
can exploit such information to further improve our ability to
understand driving scenes.

We will consider one scene understanding challenge in
particular: knowledge-based entity prediction (hereafter referred
to asKEP). We define KEP as the task of predicting the inclusion of
potentially unrecognized entities in a scene, given the current and
background knowledge of the scene represented as a knowledge
graph. We hypothesize that, a knowledge-infused learning
approach—with an expressive KG representation of
scenes—would provide rich, high-level semantic cues needed
to predict the unrecognized entities within a given scene. For
example, consider the scenario of an autonomous vehicle driving
through a residential neighborhood on a Saturday afternoon. Its
perception module detects and recognizes a ball bouncing on the
road. What is the probability that a child is nearby, perhaps
chasing after the ball? This prediction task requires knowledge of
the scene that’s out-of-scope for traditional computer vision
techniques. More specifically, it requires an understanding of
the semantic relations between the various aspects of a scene; e.g.
that the ball is a preferred toy of children, that children often live
and play in residential neighborhoods.

Portraying such relational knowledge of a scene requires a
representation that is expressive and holistic. In computer vision,
a scene is often represented as a set of labeled bounding boxes
drawn around the objects detected within a frame. However, as
shown above, driving scenes are more complex than just a set of

recognized objects. In this regard, we agree with Ramanishka et al.
(2018) who argue that parsing visual scenes into a set of semantic
categories is only the first step toward a rich and high-level scene
understanding. In addition, scene data is often multi-modal,
distributed, and originating from multiple sources. This
necessitates the integration of scene information into a unified,
holistic representation. A knowledge graph of scenes satisfies
both of these criteria: the ability to 1) integrate heterogeneous
information, and 2) represent rich semantic relations (Figure 1
for example).

In this paper, we propose a knowledge-infused learning
approach for scene entity prediction. This approach begins
with exploring several autonomous driving datasets (Geiger
et al., 2013; Caesar et al., 2019; Scale AI, 2020) and identifying
the various spatial, temporal and perceptual components that
comprise a scene. These components are then semantically
defined and structured within an ontology. Scene data from
AD datasets are transformed into a KG, conformant to the
ontology, which represents a wide and varied selection of
driving situations. Next, the KG is translated into a knowledge
graph embedding (KGE) (Wang et al., 2017), which encodes the
KG in a low-dimensional, latent feature vector representation.
Three popular embedding algorithms are used for this purpose:
TransE (Bordes et al., 2013), HolE (Nickel et al., 2016), and
ConvKB (Nguyen D. Q. et al., 2018). Finally, the KGE is used to
perform scene entity prediction. This is accomplished by
mapping KEP to the well-known problem of link prediction
(LP), commonly discussed in the KG completion literature.
This mapping is not straightforward, however, given the
insight that KEP may be more accurately formalized as a path
prediction problem. This challenge is ultimately overcome by

FIGURE 1 | Example scene KG with potentially missing entity.
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applying an inventive process of path reification. The
performance of KEP is evaluated, analyzed, and discussed. The
evaluation shows that HolE significantly outperforms the other
embedding algorithms for the KEP task, achieving a peak
precision of 0.87 for Hits@1 with one of the high-quality
datasets. In addition, the evaluation covers several
investigations into the effects of KG structure and external
knowledge on the KEP task.

It is important to note that the focus of this paper is to define a
general knowledge-infused learning approach for KEP and
demonstrate its capabilities with real driving scene data.
Therefore, the specific combination of datasets, algorithms, or
hyperparameter settings described in this paper are not optimized
for peak KEP performance. Such details are included in order to
demonstrate proof-of-concept.

The primary contributions of this paper include:

1. Introducing the Knowledge-based Entity Prediction (KEP)
task and proposing an innovative knowledge-infused
learning approach.

2. Mapping KEP to the well-known problem of KG link
prediction, showing it’s limitations and how they can be
overcome through a process of path reification.

3. Developing a dataset agnostic ontology to describe driving
scenes.

The rest of the paper proceeds as follows: Section 2 discusses
the related work. Details about the datasets, ontology, and
knowledge graph are introduced in Section 3. The overall
methodology and evaluation are presented in Section 4 and
Section 5, respectively. Section 6 discusses additional
investigations conducted on two incidental problems, and in
Section 7 we provide an analysis and discussion on all
evaluations. Finally, in Section 8, we wrap up with
conclusions and future work.

2 RELATED WORK

In this section we outline three important areas of related work,
including: object detection and recognition, scene representation,
and link prediction.

2.1 Object Detection and Recognition
Object detection and recognition are key components in scene
understanding. The objective is to detect objects and classify
them into known semantic types. The input to this process
could be either 2D images obtained from cameras or 3D point
clouds generated by LIDAR. Note that, in each case, detected
objects are recognized by the 2D/3D bounding-boxes drawn
around them. Semantic segmentation, on the other hand, takes
a more granular approach by assigning a semantic category to
each pixel in an image. State-of-the-art DL architectures
proposed for each of these methods can be found in
(Grigorescu et al., 2020; Yurtsever et al., 2020). At a high-
level, both object recognition and semantic segmentation
produce a set of object label annotations for a given image

or 3D point cloud, and such information is readily available in
the AD datasets. KEP is distinct from these approaches in
several ways. First the input to visual object detection methods
may include raw images, video, or LIDAR point clouds. In
contrast, KEP expects a set of semantic entity labels as the
input. Also, object recognition intends to assign a semantic
label to a detected object, while KEP aims at predicting
additional semantic labels for the entire scene. These
additional labels represent entities that should actually be in
the scene but may have been missed by the object recognition
methods. This could occur for various reasons, such as
hardware limitations, occluded entities, poor field-of-view,
or degraded visuals. Viewed in this manner, KEP can be
seen as a post-processing step in a AD perception pipeline
(Figure 2.)

2.2 Scene Representation
As described in the previous section, a scene can be represented as
a set of labeled bounding boxes within 2D images or 3D point
clouds. However, this representation may not be expressive
enough to capture contextual information of a scene. Scene
graph generation (SGG) (Xu et al., 2020) aims at solving this
issue by representing the detected objects as nodes in a graph,
with direct edges representing the relationships between these
objects; for example, the location of an object (e.g. pedestrian in
front of the ego-vehicle), part of an object (e.g. bicycle has wheels)
or action of an object (e.g. car overtakes a truck). While this
representation can locally represent scene objects and the basic
relations among them, it lacks the ability to represent the global
view of relations among detected objects/events, location, notions
of time and easily integrate external knowledge (e.g. common-
sense). Our proposed approach addresses these limitations by
first representing global relational structure of driving scene
components in an ontology, and then representing the
detected objects and relevant metadata in a conformant
knowledge graph.

To develop this ontology and KG, we used the ontology
proposed by (Wickramarachchi et al., 2020) as a foundation
and extended it in several ways. First, we unified and added a wide
array of entity types (i.e. objects and event) encountered in
multiple AD datasets. Second, we improved the support for
location attributes such as Geometry (GPS coordinates) and
Address (street address, points of interests, etc.). Third, we
enriched the structuring of Event by categorizing the events a
vehicle could encounter on the road into four main categories
such as vehicular/pedestrian/weather/animal events. Several
ontologies have been previously developed for use in the
autonomous driving domain; e.g. for scene creation (Bagschik
et al., 2018), and representing scenarios (de Gelder et al., 2020;
Geng et al., 2017)). While DSO shares some commonalities with
these ontologies, it is also distinct in two primary aspects: 1)
While prior ontologies were often designed for ontological
reasoning and inference, the purpose of DSO is simply to
structure scene information that can be used to train KGEs.
This led to a minimalist ontology design involving the necessary
components of a scene (i.e. objects, events, spatio-temporal
attributes). 2) DSO is also designed with the structure and
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composition of current (open) AD datasets in mind. This makes
the process of generating a KG from a new AD dataset as
straightforward as possible.

A few recent works in the area of AD have also explored the
quality of KGEs based on intrinsic evaluation metrics
(Wickramarachchi et al., 2020), synthetic data based KGs
(Halilaj et al., 2021), and the integration of external knowledge
with scene graphs (Suchan et al., 2020).

2.3 Link Prediction
Link prediction (LP) is a well-studied problem in KG
literature that focuses on addressing the KG incompleteness
issue. Formally, a KG is defined as G ⊂ N ×R ×N such that
N � C ∪ I (Table 1 for list of notation used). The facts in G are
represented as triples of the form 〈h, r, t〉 where h, t ∈ N and
r ∈ R. LP aims to enrich G with new facts by predicting the
missing links between existing nodes (Chen et al., 2020)—i.e.
predicting head 〈?, r, t〉 or tail 〈h, r, ?〉. The techniques for LP can
be categorized into two broad classes: symbolic and sub-symbolic
(i.e. ML/DL). Symbolic LP techniques primarily exploit the
observable features in a KG and use Rule Mining (Galárraga
et al., 2015; Meilicke et al., 2018) and path ranking algorithms
(Lao and Cohen, 2010; Lao et al., 2011) to infer the missing
elements in any given triple. Recently, with the popularity of
ML/DL algorithms, sub-symbolic-based LP methods have gained
traction due to their superior performance. These techniques
learn to predict links by first encoding KG nodes and relations as
a latent vectorized representation in low-dimensional space;
referred to as knowledge graph embeddings, or KGEs.

Knowledge Graph Embeddings
There are now a wide variety of KGE-based techniques for LP.
Researchers in this field have categorized these methods into
meaningful classes based on their underlying algorithm (Wang
et al., 2017; Rossi et al., 2021), including geometric, matrix
factorization, and deep learning based methods. In geometric

models, the LP objective is formulated such that relations between
nodes are interpreted as spatial translations in a geometric space.
The matrix/tensor decomposition models consider KG as a 3D
adjacency matrix and the LP objective is modeled as a
decomposition of a triple tensor into a bi-linear product,
resulting in node vectors and relation vectors/matrices. Finally,
in deep learning-based models, the LP task is modeled using
neural networks and the node/relation embeddings are jointly
learned with shared parameters of the layers. Beyond LP, the
learned embedding space has been widely used to query about
KGE facts for various downstream applications [e.g. (Celebi et al.,
2019; Mohamed et al., 2020)]. Our proposed solution is also based
on this approach, re-using the embedding space for KEP. For this
task, we evaluate multiple ML-based LP techniques, one from
each of these algorithm classes to examine which algorithm and
class may work well. In addition to these three classes, there is a
set of algorithms that leverage path information for LP. Such
methods, including PtransE (Lin et al., 2015) and PConvKB
(Ding et al., 2018), use local and/or global path information to
improve prediction of direct links. KEP, however, focuses on
predicting a path of n-hops (in our setting, n � 2).

3 KNOWLEDGE GRAPHS OF DRIVING
SCENES

Scene understanding relies on high-quality knowledge about a
scene. Scene data are inherently multi-modal; with information
generated from many sources, including cameras, LIDAR,
RADAR, and various other sensors. To integrate such
heterogeneous information into a single, unified semantic
representation, we use knowledge graphs. To understand how
this knowledge about scenes is created and represented, we will
first describe the autonomous driving datasets in which the scene
data originates. Next, a formal semantics of scenes is introduced,
as defined by the Driving Scene Ontology (DSO). Finally, a
constructed KG of scenes, conformant to DSO, is described.

3.1 Datasets
Over the past few years, the autonomous driving domain has seen
an influx of good benchmark datasets; including PandaSet (Scale
AI, 2020), NuScenes (Caesar et al., 2019), and KITTI (Geiger
et al., 2013). These datasets typically contain the raw data
generated by cameras, LIDAR, and RADAR sensors, along
with high quality annotations. Two recent, large-scele AD
datasets—PandaSet provided by Hesai and Scale, and

FIGURE 2 | Knowledge-infused KEP as a post-processing step for computer vision entity prediction techniques, which takes a set of labels (L) as input and outputs
a new set of labels (L’).

TABLE 1 | List of notations used.

G Knowledge graph
R Set of all relations in G
N Set of all nodes in G
C Set of all class nodes in G
I Set of all instance nodes in G
T Set of triples; 〈h, r, t〉 ∈ T
S Set of Scene instance nodes
E Set of Entity class nodes

(i.e. Objects and Events)
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NuScenes provided by Motional—are used to prototype and
evaluate the knowledge-infused learning methods described in
this paper. The first open-source dataset made available for both
academic and commercial use, PandaSet includes complex
driving scenarios—e.g. steep hills, construction, dense traffic
and pedestrians, and a variety of times of day and lighting
conditions—from two routes in Silicon Valley: 1) San
Francisco; and 2) El Camino Real. It uses a full sensor suite of
a self-driving-car; including a forward-facing LiDAR, a
mechanical spinning LiDAR, six cameras and an on-board
GPS/IMU.1 This dataset represents 103 driving sequences of
8 s each, composed of 48K camera images and 16K LIDAR
sweeps. Each sequence is sampled into frames with a
frequency of 10FPS. PandaSet provides a rich set of
annotations with 28 cuboid labels (i.e. 3D bounding box) and
37 semantic segmentation labels. The semantic segmentation
labels include more granular-level details such as smoke, car
exhaust, vegetation, and driveable surface. When annotating
objects, Pandaset uses the same unique identifier for an object
when it appears across multiple frames.

NuScenes consists of 1,000 driving sequences of 20 s each, from
routes in Boston and Singapore with heavy traffic and challenging
driving situations. Each driving sequence is sampled into frames with
a frequency of 2FPS. It has a rich diversity of scenes as they are from
different continents, different weather types, different traffic patterns
(left vs right-hand traffic), etc. It contains 23 3D bounding box labels
as well as object-level attributes such as vehicular activity (e.g.,
parked/stopped/moving). The full dataset contains 1.4M camera
images, 390K LIDAR sweeps, 1.4M RADAR sweeps and 1.4M
bounding boxes across 40K frames. Note that, different from
Pandaset, NuScenes uses a new set of identifiers to identify
objects in each frame. Hence the same object will get a different
identifier if it appears in a subsequent frame.

3.2 Driving Scene Ontology and Knowledge
Graph
The Driving Scene Ontology (DSO) provides a formal structure
and semantics for representing information about scenes;
formalized in OWL (McGuinness and Van Harmelen, 2004).

A scene is defined as an observable volume of space and time
(Henson et al., 2019). More colloquially, a scene typically refers to
a situation in which objects may appear (e.g. vehicle) and events
may occur (e.g. lane change maneuver). Figure 3A depicts the
basic structure of a scene defined by DSO.

Note that while PandaSet and NuScenes are the primary
datasets used in this paper, DSO is not constrained by this
choice. Rather, DSO is dataset agnostic and is designed to
describe any driving scene, regardless of its source. In other
words, it could just as easily be used to describe scenes
originating in all other AD datasets mentioned in Section 3.1.
When developing DSO, we included entity types encountered in
the NuScenes, Lyft and Pandaset datasets while manually
unifying and normalizing the concepts with similar semantic
types across the datasets.

In DSO, two types of Scene are represented:
SequenceScene and FrameScene. SequenceScene represents
the situation in which an ego-vehicle drives over a interval of
time and along a path of spatial locations; often captured as
video. FrameScene represents the situation of an ego-
vehicle at a specific instant of time and point in space;
often captured as an image, and generated by sampling
the frames of a video. A FrameScene may be a part of a
SequenceScene if its time instant and spatial point are within
the time interval and spatial path of the SequenceScene,
respectively (Figure 3B).

Time may be represented in several ways. Firstly, each
FrameScene is annotated with a time instant, encoded as xsd:
dateTime. Each SequenceScene is annotated with two time

FIGURE 3 | (A) Basic structure of a scene, (B) Two types of scene: sequence scene and frame scene.

TABLE 2 | Relations associated with a Scene, including their domain and range.

Relation Domain Range

beginTime SequenceScene xsd:dateTime
endTime SequenceScene xsd:dateTime
hasLocation Scene SpatialRegion
hasPart SequenceScene FrameScene
hasParticipant Event Object
hasTime FrameScene xsd:dateTime
Includes Scene Entity
isParticipantOf Object Event
isPartOf FrameScene SequenceScene
occursAfter Scene Scene
occursBefore Scene Scene

1https://scale.com/open-datasets/pandaset#overview
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instants, representing the beginning and end of a time interval.
Secondly, scenes may be linked to other scenes based on their
relative temporal order, using the relations occursBefore and
occursAfter. Spatial information is linked to a Scene through
the hasLocation property. The range of hasLocation is a
SpatialRegion, which may be expressed as a Geometry (in
GeoSPARQL) (Perry and Herring, 2012) with latitude and
longitude coordinates or (inclusive) as an Address with
country, province, city, street, etc.

An Entity is a perceived object or event, and is linked to a
Scene (i.e. either FrameScene or SequenceScene) through the
includes relation. The Entity class is divided into two subclasses,
Object and Event. An Object may participate in an Event,
represented with the is Participant Of and has Participant
relations. 38 classes are defined as a subclass of Entity (either
as an Object or Event); derived from the 3D bounding box
annotation labels and semantic segmentation annotation labels
used by PandaSet (Section 3.1). Table 2 lists the primary
relations associated with a Scene.

TheDriving Scene Knowledge Graphs (DSKG) are generated by
converting the scene data contained in each AD dataset (Section
3.1) to RDF2 format (Lassila et al., 1998), conformant with the
Driving Scene Ontology. The PandaSet SDK3, and NuScenes SDK4

are used to query and extract the relevant scene data from each
dataset, making this process trivially straightforward. The RDF is
then generated using the RDFLib5 Python library (version: 4.2.2).
The resultant KG from Pandaset (DSKG-P) contains 3.3M triples
and 53K entities whereas NuScenes KG contains 5.9M triples and
2.11M entities. To make NuScenes KG more scalable for
subsequent experiments, we create a sampled version (DSKG-
N) by selecting frames in a sequence at every 4 s instead of every
0.5 s in the original KG. Note that entities are instantiated and

FIGURE 4 |Co-occurrence of entity types within scenes in DSKG-N. Each cell value represents the frequency of Frames in which two entities co-occur, normalized
row-wise by the total frequency of Frames in which the row entity occurs.

2https://www.w3.org/RDF/
3https://github.com/scaleapi/pandaset-devkit
4https://github.com/nutonomy/nuscenes-devkit
5https://github.com/RDFLib/rdflib
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related only to the FrameScene in which they occur. Table 3 shows
the basic statistics of these KGs.

By analyzing the entity co-occurrences in driving scenes, we
find that some entity classes—e.g. moving vehicles, parked
vehicles, pedestrians—co-occur with high frequency in urban
driving scenes, while some classes—e.g. ambulances, pedestians
with wheelchairs—seldom co-occur with other classes (Figure 4).
Further, to obtain a relative measure of how often two items co-
occur with respect to one’s appearance across all frames, we
normalize the co-occurrences row-wise in Figure 4 by dividing
each cell value from the total frequency of row label. This reveals
the asymmetric relationships between two concepts appearing in
the dataset. For example, the frequency of seeing a Child in scenes
with an Adult in NuScenes is not as same as the frequency of
seeing an Adult in scenes with a Child.

4 METHODOLOGY

The pipeline architecture developed for KEP contains four
primary phases, illustrated in Figure 5; including 1) KG
construction, 2) path reification, 3) KGE learning, and 4)
entity prediction. In this section the final three phases of the
architecture are detailed, starting with a scene knowledge graph
and ending with a prediction of entities in the scene. First, we
formally describe the mapping of the KEP task into a LP
problem (Section 4.1). The challenges associated with this
mapping are then outlined and addressed (Section 4.2).
Next, we describe the process of learning KGEs, along with

discussion about the selection of algorithms, algorithmic details
and practical challenges (Section 4.3). Finally, we show how
entities are predicted using the KGEs (Section 4.4).

In addition, we also include the technical details of two related
investigations. The first investigates several alternative KG
structures for DSKG in order to understand their relative
effect on KEP (Section 6.1). The second investigates the
integration of relevant external knowledge of the scene and its
effect on KEP (Section 6.2).

4.1 Mapping Knowledge-Based Entity
Prediction into a Link Prediction Problem
DSKG contains triples of the form 〈scenei, includes, carj〉
representing an entity instance (carj) included in a scene (scenei);
Figure 1. Note that entity instances are expressed with all lowercase
letters (e.g. carj while their corresponding entity classes in title case
(e.g. Car). An entity instance is linked to its class in DSO through
triples of the form 〈carj, rdf:type, Car〉. In this context, it may be
tempting to formulate KEP as a LP problem (described in Section 2.3)
with the objective to complete triples of the form 〈scenei, includes, ?〉.
This formulation, however, would entail predicting a specific entity
instance rather than predicting the class of an entity. Similar to CV-
based object recognition, the objective of KEP should be to predict the
class of an entity in the scene—e.g. predicting Car rather than carj. In
otherwords,most LPmodels are unable to complete the triple 〈h, r, t〉
when there is no r that directly links h and t in the training data, even if
h and t are linked through a path of n-hops (n > 1) in the KG, such as:
〈h, r1, t1〉, 〈t1, r2, t〉. This is precisely the issue faced by KEP with the
DSKG, as a Scene instance is connected to an Entity sub-class only via
a 2-hop path. Due to this requirement, KEP cannot simply rely on LP
in a straightforward manner. In the next section, we present an
approach to overcome this limitation.

4.2 Path Reification
As described in Section 4.1, a solution for KEP would require
finding the class of an entity. Since class information is not
immediately available through a direct link from scenei, the
KEP task may be more accurately formulated as a path
prediction problem—i.e. predicting the path from a scene
instance to a sub-class of Entity. Any solution for KEP should
specifically address the path prediction requirement. To overcome

FIGURE 5 | Four main phases involved in Scene Entity Prediction (KEP) pipeline.

TABLE 3 | Basic KG statistics of Pandaset (DSKG-P) and NuScenes, sampled at
4s (DSKG-N).

Pandaset NuScenes (sampled)

# Triples 3,301,929 819,084
# Entity Classes 38 31
# Relations 19 14
# Sequence scene inst. 103 850
# Frame scene inst. 8,240 4,498
# Entity inst. 53,248 277,287
Triples per entity ratio 62.01 2.95
Avg. cardinality of entity class 15.7 9.07
Avg. cardinality of entity inst. 369.6 57.78
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this issue, we introduce a new relation to the base DSKG that reifies
this 2-hop path. More specifically, the includesType relation directly
links Scene instances with Entity sub-classes. This requirement can
be more formally defined as follows:

Let si be the i
th scene instance node in DSKG (si ∈ S), ej

be the jth entity instance node (ej ∈ I) and ? be a sub-
class of Entity in DSO (? ∈ E where E � {Car,
Animal, Pedestrian, . . . } 4 C). Then:

〈si, includes, ej〉∧〈ej, rdf:type, ?〉0
〈si, includesType, ?〉

With this addition, DSKG is transformed into DSKGR; i.e.
DSKG with reified paths. Since the includesType relation is
now present during training, it will enable the re-use of LP
methods. As a result, KEP can now be mapped to LP in order
to complete triples of the form 〈si, includesType, ?〉 in DSKGR.
As an added advantage, this transformation also allows
KEP to be used in predicting the type of instances that
can possibly be new/non-existent/missing at the time of KG
creation.

4.3 Transforming KGs to KG Embeddings
The KGE learning with LP objective results in generating a
latent space that may be useful for many downstream
applications [e.g. (Celebi et al., 2019; Mohamed et al.,
2020)] and various other tasks such as querying, entity
typing, and semantic clustering (Jain et al., 2021). For
these reasons, our approach for KEP involves learning
KGEs using several KGE algorithms and re-using the
learned latent space for KEP. For this task, our KGE
algorithm selection strategy is two-fold: 1) select one
popular (Jia et al., 2020) representative algorithm from
each of the three classes mentioned in Section 2.3, and 2)
select algorithms with space and time complexities lower than
O(n2), efficient enough to conduct multiple experiments.
Considering these criteria, 3 KGE algorithms are selected
for experimentation: TransE, HolE, and ConvKB.

First, TransE (Bordes et al., 2013), one of the most popular
and representative KGE model, learns relations between
nodes as a geometric translation in the embedding space.
This, however, limits it’s ability to handle symmetric/
transitive relations, 1-to-N relations and N-to-1 relations
(Rossi et al., 2021). Second, HolE (Nickel et al., 2016) uses
the circular correlation (denoted by + in Table 4) among
head and tail of a triple with its relation embedding to learn an

efficient compression of a full expressive (Kazemi and Poole, 2018)
bi-linear model. This allows both nodes and relations to be
represented in Rd. Finally, ConvKB (Nguyen D. Q. et al., 2018)
learns a high-level feature map of the input triple by passing a
concatenated node/relation embeddings through a convolution
layer with Ω set of filters (# filters τ � |Ω|). The fact score is
then computed by using a dense layer with only one neuron and
weights W. Table 4 summarizes the scoring function of each
algorithm along with their space and time complexities.

4.4 Entity Prediction Using Knowledge
Graph Embeddings
To use KGEs for KEP, we first learn an embedding space from
DSKG using the three selected algorithms. Notably, there are a
few key differences between KEP and the traditional LP setup.
The KGE algorithms for LP learn to maximize the estimated
plausibility ϕ (h, r, t) for any valid triple while minimizing it for
any invalid, or negative, triple. Such KGE models can then be
used to infer any missing link by obtaining the element (h? or
t?) with the highest plausibility to complete the triple 〈h, r, t〉.
In contrast, the objective of KEP is to predict a specific link
captured by triples of the form: 〈si, includesType, ?〉. To enable
this more specific link prediction, a KGE representation of
nodes and relations are first learned using the LP objective.
Then, for each scene si, the KGE is queried using includesType
relation to find the missing k entity class labels Lk4E (see line
5–10 in Algorithm 1). Note that, for the experiments presented
in this paper, we consider scene si to be an instance of
FrameScene. However, depending on the application of
KEP, si can be either a FrameScene or SequenceScene. In
the case of a SequenceScene, all entities included in each
FrameScene, within a sequence, could be aggregated and
linked directly to the SequenceScene si. Algorithm 1
succinctly describes the proposed KEP process, given a KGE
model trained using any KGE algorithm. The computational
complexity of the proposed algorithm is O(N ×M) where
N � |S| and M � |E|.

5 EVALUATION

In this section, a detailed evaluation of KEP is conducted. First,
the evaluation setup and metrics considered for KEP are
introduced. The performance of KEP is then evaluated on
each dataset considering the complete DSKG with path
reification (DSKGR). Second, an association rule-mining

TABLE 4 | Details of selected KGE algorithms: class of algorithm, triple scoring functions and their space and time complexities. Notation used:m � |N |, n � |R|, nt � # of
training triples, h, r, t ∈ Rd , τ � |Ω| � # of convolution filters.

Algorithm Class Scoring function Space (S) and time (T) complexity

TransE Geometric fr (h, t) � − |h + r − t|1/2 S: O(md + nd) T: O(ntd)
HolE Matrix factorization [h+t] � ∑d−1

k�0 [h]k .[t](k+i)modd fr (h, t) � rT (h + t) S: O(md + nd) T: O(ntd log d)
ConvKB Deep learning fr (h, t) � concat (g ([h, r, t]pΩ)).W S: O(md + nd + (τ + 3)d) T: O(ntτd)
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approach is introduced as a baseline for comparison and its
performance is evaluated against the KEP approach.

5.1 Evaluation Setup
The first step of each KEP experiment is to train KGEs using the
three selected algorithms. The training phase is not different from
the traditional LP setup. To ensure consistency, we use the
algorithm implementations6 provided by the Ampligraph
library (version 1.3.1) (Costabello et al., 2019). Considering
tunable hyper-parameters, the embedding dimension (k) is set
to 100 across all algorithms and with batch count of 100. Due to
the high cardinality of entity instances per scene, the generation
of negative triples is restricted to five for each positive triple. We
use the multi-class negative log-likelihood (Multiclass-NLL) loss
function proposed by (Toutanova and Chen, 2015) where both
the head and the tail of triples are corrupted to generate negatives.
This loss is then minimized during training using Adam (Kingma
and Ba, 2014) as the optimizer. To prepare the datasets for
evaluation, each KG is divided into train, validation and test
subsets with an 8:1:1 ratio while also ensuring that there are no
unseen entities present in the valid/test sets. Additionally, when
evaluating the performance of KEP, we filter the test subset to
include only triples with the includesType relation. All
experiments are performed on a system with Intel Xeon
Platinum 8260 CPU @2.40 GHz and NVIDIA TESLA V100
GPU (32 GB GPU memory).

During the evaluation, the learned embedding model is
queried to complete triples of form 〈si, includesType, ?〉
(Algorithm 1, line 9)7. In contrast to the traditional LP
evaluation where candidates for the tail of this triple include
all nodes in the KG—i.e. ? ∈ N—in our setup, the tail is restricted
to only entity sub-class nodes—i.e. ? ∈ E.

Several evaluation metrics are used to quantify the
performance of KEP. As our evaluation is a special case of
traditional LP, we can re-use the metrics common in LP
literature. The first group of metrics, referred to as ranking
metrics, include: 1) Mean Reciprocal Rank (MRR) (Eq. (2))

that captures the average of inverse entity prediction ranks,
and 2) Hits@K (Eq. (3)) that calculates the proportion of test
triples—containing the includesType relation—with an entity
prediction rank that is equal or less than a specified threshold
(K). The range of values for bothMRR andHits@K are between 0
and 1, with the higher value indicating better model performance.
The values reported in this paper for these metrics use “filtered”
setting ensuring that none of the corrupted negatives are actually
positives.

MRR � 1
|Q| ∑

q∈Q

1
|Q|

where Q � set of ranks from test predictions

(2)

Hits@K � |q ∈ Q: q≤K|
|Q|

where Q � set of ranks from test predictions
(3)

The second group of metrics captures the overall KEP task
performance. The first metric to consider is KEP accuracy. When
the DSKG is divided into train/test subsets, some parts of a scene
may be included with the training set while others could be included
with the valid or test set. Hence, during testing, the objective is to
measure how well the KGE model can recover the unseen entity
classes of a scene in the test set. Specifically, given a scene si ∈ Stest

(i.e. set of scenes in the test set), let entity classes missing from si
during testing beE(i)

s 4E, and the predicted entity classes linked to si
beL(i)

p 4E (i.e.K highest ranked entities,K � |E(i)
s |). Note that KEP

accuracy is an example-based evaluation metric (i.e. evaluated per-
scene) and thatL(i)

p disregards entity classes that are present in train
and validation sets. The KEP accuracy is defined as:

KEP Accuracy � 1
|Stest| ∑

|Stest |

i

|L(i)
p ∩ E(i)

s |
|E(i)

s | (4)

Next, we consider two metrics widely used in multi-label
classification tasks to evaluate the per-label performance of
KEP. Even though KEP—unlike traditional multi-label
classification—does not predict the full set of labels for a given
scene, the evaluation metrics for multi-label classification can still
be useful considering the subset of labels predicted at test time. In
this regard, label-based metrics can be used to evaluate the

6https://docs.ampligraph.org/en/1.3.1/ampligraph.latent_features.html
7https://docs.ampligraph.org/en/latest/generated/ampligraph.discovery.query_
topn.html
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performance on each class label separately and then with micro/
macro averaging across all classes. For KEP, we consider bothmacro
and micro averaged F1-scores [Eq. (5)]. While macro-averaging
captures the arithmetic mean of the per-class F1 values, micro-
averaging considers all samples together to compute the (micro-
averaged) precision and recall first, and then combine them using
Eq. (5). Futher details about these metrics can be found in (Zhang
and Zhou, 2014). Note thatmacro-averaged F1 gives equal weight to
each class. Therefore, to evaluate a problem with class imbalance,
such as ours, micro-averaged F1 would be a better fit.

F1 score � 2.
precision × recall

precision + recall
(5)

5.2 Association Rule Mining as a Baseline
To our knowledge, there are no existing baselines that provide a
direct comparison with the KEP task. In this section we will
establish a baseline considering an alternative approach. Recall
that the objective of KEP is to predict a subset of (new) labels
given a partially observed set of labels. Given this objective, we
may ask the question of how would the co-occurrence of labels
(i.e. label association) help predict the missing set of labels.
Association rule mining (ARM) is an unsupervised data-
mining technique that can be used to uncover the associations
among different items in a set by considering their co-occurrence
frequencies. For example, in retail market basket analysis, ARM is
successfully used to find associations among items that a
customer frequently buys together. Viewed in this manner,
KEP can be formulated as a market basket analysis problem,
where the set of basket items represent the set of observed labels

in a scene. The rules ARM generates take the form: ri: {A, B}0
{C}|c where the antecedents {A, B} imply the co-occurrence of
consequent {C} with a confidence factor of c; 0 ≤ c ≤ 1, indicating
minimum c% transactions in the set of transactions T satisfying ri
rule. For the entity prediction task, an association rule mining
approach contains three primary steps. First, a set of association
rules are generated using the Apriori algorithm on the training
dataset (Agrawal et al., 1996). Second, for each scene, a mask is
created considering the rules whose antecedents are subsets of the
observed set of labels in the training set. Finally, the set of
predicted labels are obtained by aggregating the unique set of
consequents to satisfy the mask created above. The accuracy is
calculated by averaging the proportion of test labels correctly
predicted for each scene.

5.3 Evaluation Results
The KEP evaluation results are presented, including performance
on the path reified DSKGs—DSKG-PR (Pandaset) and DSKG-NR

(NuScenes)—along with the ARM baseline results. Table 5(A)
summarizes the results of the ARM baseline and Table 5(B,C)
show the KEP results on DSKG-PR, DSKG-NR, respectively.
When considering evaluation on DSKG-PR, both ranking
metrics (i.e. MRR, Hits@K) and KEP performance metrics (i.e.
accuracy, macro/micro-averaged F1) across all three algorithms,
HolE performs significantly better than ConvKB and TransE. On
the contrary, ConvKB and TransE perform better compared to
HolE on DSKG-NR. When considering the two datasets, KEP
peak performance is significantly higher with Pandaset (88.91%
compared to 36.35%). The association rule mining baseline
achieved average accuracy of 27.19%, which is significantly
lower than the peak accuracy obtained using HolE on

TABLE 5 | KEP results of association rule mining (ARM) baseline (A), DSKGR generated using Pandaset (DSKG-PR) and NuScenes (DSKG-NR) on three algorithms, each
experiment averaged with standard deviation across five runs (B,C), followed by the results of the additional investigations: different KG structures (D,E) and integration of
external knowledge (F). Evaluation metrics: MRR � Mean Reciprocal Rank, H@K� Hits@K, Accu. � KEP Accuracy, Micro/Macro F1 � Micro/Macro-averaged-F1-score.

Ranking metrics KEP performance metrics

MRR H@1 H@3 H@10 Accu.
(%)

Micro
F1

Macro
F1

(A) ARM — — — — — 27.19 0.16 0.06

(B) DSKG-PR TransE 0.32 ± 0.03 0.16 ± 0.05 0.35 ± 0.04 0.71 ± 0.03 22.98 ± 4.33 0.26 ± 0.04 0.20 ± 0.02
HolE 0.93 ± 0.00 0.87 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 88.91 ± 0.64 0.90 ± 0.01 0.87 ± 0.00

ConvKB 0.29 ± 0.01 0.11 ± 0.02 0.31 ± 0.02 0.86 ± 0.02 17.83 ± 1.99 0.22 ± 0.02 0.17 ± 0.02

(C) DSKG-NR TransE 0.42 ± 0.03 0.22 ± 0.03 0.51 ± 0.03 0.91 ± 0.01 28.08 ± 2.45 0.32 ± 0.03 0.20 ± 0.01
HolE 0.23 ± 0.01 0.11 ± 0.01 0.22 ± 0.01 0.51 ± 0.03 13.80 ± 0.84 0.16 ± 0.01 0.11 ± 0.01

ConvKB 0.49 ± 0.02 0.31 ± 0.04 0.60 ± 0.02 0.91 ± 0.01 36.35 ± 2.96 0.40 ± 0.03 0.20 ± 0.01

(D) DSKGBi TransE 0.41 0.19 0.52 0.97 29.03 0.34 0.32
HolE 0.29 0.11 0.28 0.87 16.55 0.19 0.20

ConvKB 0.23 0.07 0.21 0.68 12.30 0.16 0.14

(E) DSKGProt TransE 0.26 0.10 0.28 0.62 17.77 0.21 0.18
HolE 0.33 0.17 0.32 0.81 23.70 0.27 0.22

ConvKB 0.30 0.10 0.36 0.86 19.21 0.24 0.20

(F) DSKGSE TransE 0.30 0.18 0.32 0.50 24.53 0.27 0.17
HolE 0.81 0.69 0.92 0.98 74.52 0.82 0.81

ConvKB 0.29 0.13 0.32 0.71 21.01 0.26 0.22

“Bold” values in (B, C) indicate the peak performance for each metric in DSKG-R, while “underlined” values in (D,E, and F) indicate the same for each additional investigation.
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Pandaset (88.91%), however, still 9.36% better than ConvKB’s
inferior performance.

6 ADDITIONAL INVESTIGATIONS

Our proposed solution for KEP motivated an investigation of two
other incidental issues. First, we setup experiments to investigate
the effect of various KG structures on the KEP task. Second, a
preliminary evaluation is conducted to examine the effect of
integrating external knowledge of scenes from OSM (DSKGSE).
Note that Pandaset is used as the dataset to conduct all additional
investigation.

6.1 Investigation into Different Knowledge
Graph Structures
In DSKG-P, each scene is linked to a high number of entity
instances, resulting in a high cardinality of the includes relation.
This situation results in a large KG, and thus the KGE training
process can be time consuming with poor scalability. This situation
motivates a question related to the structure of DSKG: Would an
alternative, more compact, representation of a scene yield better
performance? To answer, we consider three different graph
patterns (Figure 6), including the DSKGR discussed previously,
and compare their performance on the KEP task:

1) Complete Graph (DSKGR)—All entity instances and entity
types are linked to the scene (Figure 6A).

2) Bipartite Graph (DSKGBi): Only entity types are linked to the
scene (Figure 6B).

3) Prototype Graph (DSKGProt): Entity types are linked to the
scene along with a single prototype instance for each distinct
entity type (i.e. the prototype represents all entity instances of
this type) (Figure 6C).

Each pattern represents entity instance information along the
path from a scene to an entity class in a slightly different way.
DSKGR is the KG described throughout this paper and provides
the most expressive representation of a scene including all entity
instances and classes, along with the added includesType
relations. DSKGBi is a more compact representation and
contains only the includesType relations between scenes and
entity types, discarding all the entity instances and includes

relations from the graph. This pattern results in a bipartite-
graph structure linking scenes and entity types. The resulting
entity instance cardinality for each scene is reduced to zero while
maintaining the same entity class cardinality. DSKGProt is similar
to DSKGBi, but instead of removing all entity instances, they are
replaced with a single prototype instance for each linked entity
class. Note that this prototype instance represents all the entity
instances of a particular entity class that are linked to a scene. In
this case, the resulting entity instance cardinality for a scene is
equal to the entity class cardinality.

Results for Investigation into Different Knowledge
Graph Structures
The KEP results are presented when the alternative KG
structures, DSKGBi and DSKGProt, are used. The entity
prediction results using the bipartite graph structure (DSKGBi)
are significantly poor as compared to the results with DSKGR,
with the use of TransE as an exception (Table 5D).

Now we look at how KEP performs using the DSKG with
prototype instances. Note that this KG version contains some
information about entity instance nodes, as opposed to DSKGBi,
but at a minimal level when compared with DSKGR. The results
are summarized in Table 5E and show that this minimal entity
instance information may be useful for outperforming DSKGBi,
but it still underperforms the complete DSKGR.

6.2 Investigation into Integrating External
Knowledge
A key advantage of representing scenes in a KG is that it allows for
the integration of information from external sources. This begs
the question of whether integrating additional knowledge about a
scene would enhance the KEP performance. To demonstrate the
process and test the hypothesis, we incorporate additional
location attributes that enrich the spatial semantics of scenes.
The underlying dataset, Pandaset, records GPS coordinates (i.e
latitude and longitude) for each frame. Since the numeric
representation of latitude/longitude does not carry much
semantic information about the location, we enriched each
frame with location attributes queried from Open Street Map
(OSM)8. This process is two-fold: First, a reverse query of the

FIGURE 6 | Different KG structures: (A) DSKGR: KG with all instances + reified paths, (B) DSKGBi: KG with only reified paths, (C): DSKGProt: KG with reified and
prototype paths.

8https://www.openstreetmap.org/
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latitude/longitude is executed using OSM Nominatim9, which
returns relevant address information such as the City, County,
StreetName, etc. This information is added to an Address
instance that is created and linked to the scene (Figure 3A).
Second, OSM-tags are leveraged to find additional entities in the
scene, such as ParkingLane, Highway, Building, etc. These
additional entities are instantiated and linked to the scene
instance via the includes relation. Compared to DSKGR, the
resultant KG, termed DSKGSE, contains 34.14% additional
entity classes and 3.19% additional triples.

Results for Investigation into Integrating External
Knowledge
We evaluate the performance of entity prediction when the
DSKGR is enriched with external information from OSM,
resulting in DSKGSE. As shown in Table 5F, the enrichment
from OSM did not yield better overall predictive performance
across all three algorithms. However, it did slightly improve the
performance of TransE and ConvKB when the prediction
conditions are tougher with Hits@1 and KEP accuracy. When
it comes to the best performing algorithm, HolE, the OSM
enrichment actually hinders its performance.

7 ANALYSIS AND DISCUSSION

The evaluation of KEP above leads to some interesting
observations. First, when considering the hypothesis tested in
the paper—i.e. whether an expressive KG structure used within a
knowledge-infused learning approach could help predict the
unrecognized entities in a scene—our evaluation suggests that
the unrecognized entities can indeed be predicted with high
precision when the DSKG is constructed from a high-quality
dataset (e.g., 0.87 Hits@1 and 88.91% accuracy in Pandaset).
Next, we’ll discuss other findings of our evaluation considering 4
aspects: 1) dataset perspective, 2) algorithmic perspective, 3)

investigation into KG structure and the importance of instance
information, 4) integration of external knowledge.

First, when considering the two datasets used for experiments,
the results clearly show the superior performance on Pandaset
compared to NuScenes. While this could be due to several reasons,
we divulge into two possible reasons: 1) diversity of content in
scenes, and 2) differences in dataset (and resultant KG) structure.
When considering the increased diversity of content in scenes,
NuScenes has a richer diversity than Pandaset. For example it
includes scenes from cities in two continents (Singapore and
Boston), different driving patterns (left/right-hand driving), and
variety of weather/traffic conditions. Next, when considering the
dataset structure, different design decisions impacted the overall
structure of the datasets and the resultant KGs. Specifically, each
dataset handles objects occurring across frames differently.
Pandaset keeps the same identifier for an object across frames
while NuScenes introduces unique identifier for an object in each
frame. For NuScenes this results in a very large entity space (2.11M
in original KG, 277K in the sampled version) and a sparse KG (e.g.,
entity instance cardinality is 6.4 times less in NuScenes compared to
Pandaset). Additionally, the triples per entity ratio is significantly
less in NuScenes (2.95 compared to 62.01 in Pandaset, Table 3),
making the KGE learning task difficult due to lack of training triples
about entities. Therefore, the differences in diversity and dataset
structure could lead to a more challenging prediction task for
NuScenes. It is important to note that the quality of the KG is
heavily dependant of the quality of the underlying data, in terms of
annotation quality and coverage, which impacts the performance of
KEP. This evaluation highlights the challenge and importance of
creating, selecting, and/or cleaning a dataset that is suitable for the
kind of approach presented in this paper.

Second, when considering the KGE algorithms used for
evaluation, these results clearly show the superior performance
of HolE on the KEP task. This may be a consequence of HolE’s
ability to handle graph patterns with higher instance cardinality,
as it can represent 1-to-N, N-to-1 and N-to-N relations through
circular correlation (+) (see scoring function in Table 4). TransE,
however, lacks this ability to represent such relations and
ConvKB suffers from the same as it can be considered as a
DL-based extension of TransE (Jia et al., 2020).

Third, the investigation into the use of different KG structures
indicates that entity instance information along the path from
scenes to entity classes may be important even when the
prediction task does not consider this information directly
(recall Figure 6). Figure 7 shows that the Hits@1 performance
with HolE increases with an increasing number of paths
(DSKGR>DSKGProt>DSKGBi). Having more of these paths,
and entity instances, directly increases the number of 1-to-N
relations associated with a scene. HolE can better capture such
relations, leading to better KEP performance.

Fourth, our investigation into integrating external knowledge
from OSM shed some light on a practical issue with knowledge
integration. Even though this integration did slightly help the
poorly performing TransE and ConvKB, it negatively impacted the
best performing algorithm—HolE. One potential explanation
could be that the contribution of only 3.19% new triples from
the enrichment is hugely disproportionate to the 34.13% increase

FIGURE 7 | Hits@1 variation of KGE algorithms over different KG
structures.

9https://wiki.openstreetmap.org/wiki/Nominatim
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in label space. Hence, the newly added triples do not provide
enough new training data to support the added complexity of the
prediction task.

Finally, we will shed some light into the generalizability of this
approach for other domains and problems. With the current
approach, the path to be predicted, and subsequently reified, is
required to be known apriori. Therefore, the approach presented
in the paper can be generalizable to any problem that naturally fits
this constraint.

8 CONCLUSIONS AND FUTURE WORK

This paper defines an innovative process for entity prediction
that leverages relational knowledge of driving scenes. The
limitations of LP methods are explored and ultimately
overcome through path reification. Our evaluation justifies
the hypothesis tested in the paper by suggesting that
unrecognized entities can be predicted with high precision of
0.87 with the HolE KGE algorithm. We believe this approach is
generalizable to a range of problems and use-cases, both within
AD and beyond, which is the focus of future work. In addition,
we’d also like to explore the benefits of an end-to-end
framework with joint learning of embeddings. The evaluation
and analysis has led to many interesting open and challenging
research questions to be explored in future work, including 1)
how to leverage temporal relations among Frames in a Sequence
to improve KEP, 2) how to transfer knowledge from one dataset/
KG to another in order to perform KEP, and 3) deriving effective

mechanisms to integrate and leverage external knowledge of the
scene. Nontheless, it’s clear that knowledge-infused learning is a
potent tool that may be effectively utilized to enhance scene
understanding for autonomous driving systems.
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